Supporting Information

Synthesis of the Azaphilones (+)-Sclerotiorin and (+)-8-*O*-Methylsclerorotiorinamine Utilizing (+)-Sparteine Surrogates in Copper-Mediated Oxidative Dearomatization

Andrew R. Germain,¹ Daniel M. Bruggemeyer,¹ Jianglong Zhu,¹ Cedric Genet,² Peter O'Brien,² and John A. Porco, Jr.^{1*}

¹Department of Chemistry and Center for Chemical Methodology and Library Development (CMLD-BU), Boston University, Boston, MA 02215 ²Department of Chemsitry, University of York, Heslington, York YO10 5DD, U.K.

E-mail: porco@bu.edu

Table of Contents

I. General Information	S2
II. Evaluation of (+)-Sparteine Surrogates in Enantioselective Oxidative	
Dearomatization	
a. Evaluation of (+)-sparteine surrogates	
b. Chiral HPLC Analysis	
III. Synthesis of 8-O-methylsclerotiorinamine	S11
IV. 3-D Structures of (+)-sclerotiorin and its isomer	
V. Select NMR Spectra	

I. General Information

¹H NMR spectra were recorded at 400 MHz at ambient temperature with CDCl₃ as the solvent unless otherwise stated. ¹³C NMR spectra were recorded at 75.0 MHz at ambient temperature with CDCl₃ as the solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to $CDCl_3$ (¹H, δ 7.24; ¹³C, δ 77.0). Data for ¹H NMR are reported as follows: chemical shift, integration, multiplicity (app = apparent, par obsc = partially obscure, ovrlp = overlapping, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet) and coupling constants. All 13 C NMR spectra were recorded with complete proton decoupling. Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Flash chromatography was performed using 200-400 mesh silica gel. Enantiomeric excess was determined using a HPLC (Chiralcel OD, 15% 'PrOH in hexane, 1.0 mL/min) using UV detection at 320 nm. Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated. (+)-Sparteine mimics were synthesized from cytosine extracted from Laburnum anagyroides cytisus seeds. A natural sample of (+)-Sclerotiorin was purchased for comparision. Methylene chloride, acetonitrile, methanol, and benzene were purified by passing through two packed columns of neutral alumina. All reactions were carried out in oven-dried glassware under an argon atmosphere unless otherwise noted.

II. Evaluation of (+)-Sparteine Surrogates in Oxidative Dearomatization

HO Me	$(CH_2)_6CH_3$ 1.1 equiv. L ₂ Cu ₂ O ₂ , CHO 1.6 equiv. DIEA, OH 2.4 equiv. DMAP 10 CH ₂ Cl ₂ , -10°C, 30 h CH 2 PF Cu 0 Cu 0 Cu 1 Cu 2 PF		$\frac{O}{HO} - \frac{(CH_2)_6CH_3}{11}$
			S]₂Cu₂O₂ →
entry	ligand	product	yıeld" (ee)
1			84% (98%) ^{S2}
2	Me N 5	Me ₁₁ , HO O (S)-11	63% (92%)
3	Me N H 6	(<i>S</i>)-11	70% (95%)
4	D ₃ C _N H	(<i>S</i>)-11	68% (90%)
5		(<i>S</i>)-11	64% (89%)
6		(<i>S</i>)- 11	54% (74%)
7^b	N H S	(<i>R</i>)-11	33% (11% ^c)

Table 1.Enantioselective Oxidative dearomatization of alkynylbenzaldehyde 10employing (+)-sparteine mimics

^{*a*} Isolated yield for two steps. ^{*b*} Based on 60% conversion; ^{*c*} Ligand **7** slightly favored formation of *R*-enantiomer.

c. Chiral HPLC Analysis

Chiral HPLC Traces for racemic 11 and (*R*)-11derived from (-)-sparteine:

Chiral HPLC Trace for (S)-11 from N-Methyl (+)-sparteine surrogate 5 (92% ee)

	· · · · · · · · · · · · · · · · · · ·
Injection Date Sample Name Acq. Operator	: 6/13/05 3:32:17 PM : N-Me-(+)-sp Location : Vial 66 : jianglong
Method Last changed MWD1 A, Sig	Inj Volume : 10 µl : C:\HPCHEM\1\METHODS\JZCHIRAL.M : 6/4/05 4:28:04 PM by jianglong =320.8 Ref=360.100 (Z.M.1W-ME-SP.D)
mAU - 100 - 0 -	18.714
MWD1 B, Sig	=230,8 Ref=360,100 (ZJL1W-ME-SP.D) 15 20 25 min

Signal 1: MWD1 A, Sig=320,8 Ref=360,100

Peak Rei	Time Ty	ype Width	Area	Height	Area
# [:	nin]	[min]	[mAU*s]	[mAU]	%
1 15	5.714 BE	B 0.9254 B 0.9856	571.04761 1.40780e4	8.31334	3.8982

Chiral HPLC Trace for (S)-11 from N-ethyl (+)-sparteine surrogate 6 (95% ee) N-Et-(+)-sp

Injection Date : 6/13/05 6:06:53 Sample Name : N-Et-(+)-sp Acq. Operator : jianglong	РМ	Location : Vi	al 67	
Mothod . C.\UDCUEM\1\MEMU		j Volume : 10	μι	
Last changed : 6/13/05 6:02:38 (modified after	PM by jianglong loading)			м. К
MWD1 A, Sig=320,8 Ref=360,100 (ZJL1\N-E	T-SP.D)			
mAU 1 100 -		18.760	23.506	
0 5	10 1	5	20	25
MM/D1 B Siz=220 8 Daf=260 400 (7 II 41) E			20	25 Min
Signal 1: MWD1 A, Sig=320,	8 Ref=360,10	00		
Peak RetTime Type Width # [min] [min]	Area [mAU*s]	Height [mAU]	Area %	
1 18.760 BB 0.8727 2 23.506 BB 1.3270	510.08386 1.88562e4	6.97903 212.54881	2.6339 97.3661	
Totals :	1.93663e4	219.52785		

Chiral HPLC Trace for (S)-11 from N-isopropyl (+)-sparteine surrogate 7 (74% ee)

Chiral HPLC Trace for (*R*)-11 from *N*-neopentyl (+)-sparteine surrogate 8 (11% ee)

Chiral LC trace of	racemic sclerotiorin	(52:48 dr)
--------------------	----------------------	------------

	SAMPLE	INFORMATIC	D N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	rac Unknow n 35 1 10.00 ul 90.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System third times a charm ChiralPak AD 5%IPA 80m ChiralPak AD 5%IPA 80m UV Ch1 2487Channel 1 254 nm
Date Acquired: Date Processed:	11/26/2007 5:52:07 PM EST 9/11/2009 3:44:12 PM EDT		

Peak Results							
	Name	RT	Area	Height	Amount	Units	% Area
1		55.956	1016148	8472			51.94
2		63.566	940389	6056			48.06

Chiral LC trace of (+)-12 (12:1 dr)

	SAMPLE	INFORMATIC	D N
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time:	plus Unknow n 36 1 10.00 ul 90.0 Minutes	Acquired By: Sample Set Name: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System third times a charm ChiralPak AD 5%IPA 80m ChiralPak AD 5%IPA 80m UV Ch1 2487Channel 1 254 nm
Date Acquired: Date Processed:	11/26/2007 7:23:29 PM EST 11/27/2007 9:47:00 AM EST		

	Peak Results						
	Name	RT	Area	Height	Amount	Units	% Area
1		51.264	113811	1086			7.93
2		56.305	1321745	8515			92.07

Chiral LC trace of (-)-12 (7:1 dr)

As can be seen from the racemic trace, the olefin isomer seems to impact the observed dr of sclerotiorin. Also from model studies, it would be highly unexpected for the (+)-sparteine mimic to outperform (-)-sparteine. For this reason we believe that the olefin isomer artificially suppresses the observed dr.

GC-MS Trace of Recovered N-ethyl (+)-sparteine surrogate 6 after oxidation

GC-MS Trace of *N*-acyl (+)-sparteine surrogate **28**

The GC-MS trace of recovered **6** shows three compounds. By mass spectral analysis, the peaks were determined to be an oxidized form of **6** at 15.22 minutes, **6** at 18.39 minutes, and a second minor oxidized form of **6** at 22.78 minutes. By comparison with a pure sample of *N*-acetyl surrogate **28**, it was determined that oxidation on the *N*-alkyl side chain is not the major location of oxidative modification of the (+)-sparteine surrogates.

III. Synthesis of 8-O-methylsclerotiorinamine

Synthetic **3** contains a small amount (<10%) of the C11-C12 isomer **31**. However, the rotation and all other data for the major isomer match those reported in the literature. Since no spectra were provided in the isolation reportⁱⁱ at this time we are not able to determine if the natural

product was isolated as a mixture of olefin isomers or if

minor isomer **32** does not interfere with the optical rotation. It should be noted, however, that the isolation^{S6} was carried out through the use of silica gel chromatography which in our hands results in isomerization of the C11-C12 olefin.

Table 2. Comparison of ¹H shifts for **3** and 25^{a}

Proton	Natural 3	Synthetic 3	N-methyl 25
H1	8.97	9.02	7.76
H4	7.49	7.53	7.01
H9	6.54	6.58	6.13
H10	7.46	7.53	6.95
H12	5.66	5.69	5.71
H13	2.45	2.47	2.46
H14a	1.42	1.42	1.41
H14b	1.32	1.32	1.31
H15	0.85	0.85	0.87
H16	0.93	0.97	1.0
H17	1.83	1.83	1.85
H18	1.52	1.53	1.53
H20	2.09	2.09	2.16
H21	3.96	3.99	3.61

^{*a*} Key protons for distinguishing the three compounds are red.

Table 3. Comparison of ¹³C shifts for **3** and **25**^a

Carbon	Natural 3	Synthetic 3	N-methyl 25
C1	149.6	149.5	141.9
C3	162.3	162.4	144.6
C4	116.3	115.5	111.2
C4a	130.5	130.5	102.2
C5	111.9	111.5	145.1
C6	193.1	192.7	184.4
C7	81.3	80.7	84.7
C8	160.6	159.6	193.9
C8a	119.7	119.1	114.5
C9	124.4	124.6	114.5
C10	143.7	143.1	148.2
C11	133.2	132.5	131.6
C12	147.7	146.6	148.5
C13	35.6	34.9	35.1
C14	30.8	30.2	30.0
C15	12.5	12.0	12.0
C16	20.9	20.4	20.2
C17	13.2	12.6	12.6
C18	23.7	23.1	23.2
C19	170.7	170.1	170.1
C20	20.9	20.4	20.3
C21	62.6	61.9	41.9

^aKey carbons for distinguishing the three compounds are red.

IV. 3-D structures of (+)-sclerotiorin 2 and its isomer 23:

Structures obtained from Conformer Distribution at the Ground State, Molecular Mechanics, MMFF level calculation (Spartan 04, Wave Function, Irvine, CA).

3-D structure of the ground state S-trans conformer of 2:

3-D structure of the ground state S-cis conformer of 2:

As can be seen in the 3-D structures of **2**, the *S*-cis conformer may allow the C11-C12 olefin to behave as an isolated tri-substituted olefin, allowing for protonation and formation of a stable allylic, tertiary carbocation. In addition the position of the acetate carbonyl over the two azaphilone carbonyls may also stabilize the developing positive charge. As can be seen in the 3-D structure of **23**, the ratio between **2** and **23** is likely determined by the energy difference between the $A^{1,2}$ strain present in **2** and the $A^{1,3}$ strain present in **23**, which based on the observed ~10:1 ratio, is most likely in the 1 kcal/mol range.

V. Select NMR Spectra: Natural (+)-sclerotiorin **2** and natural (+)-sclerotiorin **2** after treatment with SiO₂

N- Methylsclerotiorinamine **25**

8-O-methylsclerotiorinamine 3 and N- methylsclerotiorinamine 25

HMBC of (+)-8-O-methylsclerotiorinamine 3

nOe for (+)-8-O-methylsclerotiorinamine 3 (Irradiated at H1 (9.02 ppm))

Through HMBC and nOe correlations (key HMBC and nOe correlations shown above), we were able to determine the location of the methyl C21 as done in the isolation report.

References Cited

¹ Dixon, A. J.; McGrath, M. J.; O'Brien, P. Org. Syn. 2006, 83, 141-154.

² Nam, J-Y.; Kim, H-K.; Kwon, J-Y; Han, M. Y.; Son, K-H; Lee, U. C.; Choi, J-D.; Kwon, B-M. *J. Nat. Prod.* **2000**, *63*, 1303.