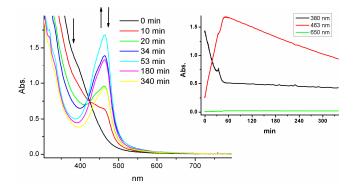

Supporting Information - Photocatalytic H₂ Production from Water with Rhenium and Cobalt Complexes.


Benjamin Probst[#], Miguel Guttentag[#], Alexander Rodenberg[§], Peter Hamm^{*§}, Roger Alberto^{*#}.

[#] Institutes of Inorganic and [§]Physical Chemistry, University of Zürich, Winterthurerstrasse 190, CH-

8057 Zürich Switzerland

Figure SI 1. H₂ production for different concentrations of **10** (mol/s, left scale, dots; TON_{Co} ,right scale, solid lines). Conditions: 30 μ M **1**, 100, 500 or 1000 μ M **10**, 1 M TEOA, 0.1 M HBF₄, H₂O, 10 ml, 380 nm, $q_{n,p} = 1.75 \times 10^{-7}$ einstein/s.

Figure SI 2. Typical absorption change during photolysis (30 μ M 1, 500 μ M 10, 1 M TEOA, 0.1 M HBF₄, H₂O, 3 ml, 380 nm, $q_{n,p} \approx 10^{-9}$ einstein/s).

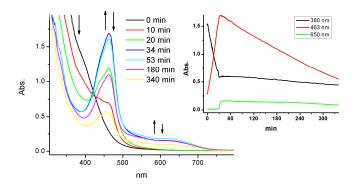
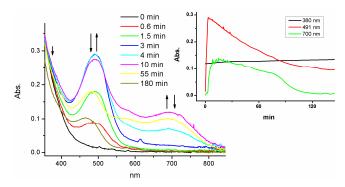
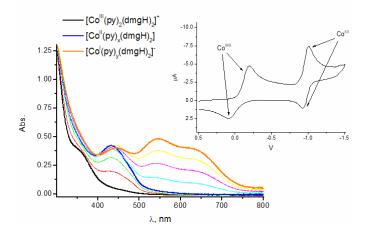
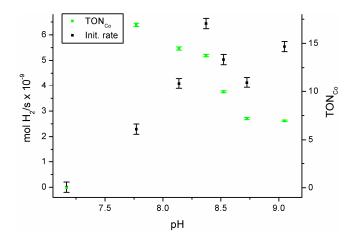
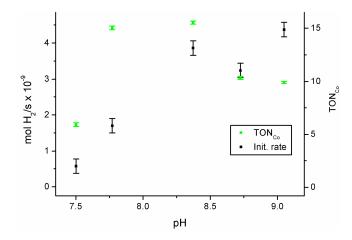


Figure SI 3. Typical absorption change during photolysis (30 μ M 1, 500 μ M 10, 1 M TEOA, 1 mM HBF₄, H₂O, 3 ml, 380 nm, $q_{n,p} \approx 10^{-9}$ einstein/s).


Figure SI 4. Typical absorption change during photolysis (30 μ M 1, 100 μ M 15, 1 M TEOA, 100 mM HBF₄, H₂O, 3 ml, 380 nm, $q_{n,p} \approx 10^{-9}$ einstein/s).

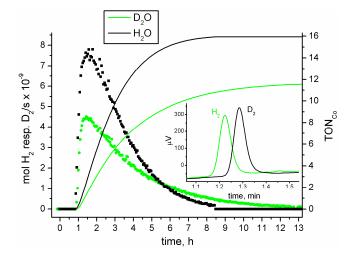

Figure SI 5. Absorption change observed in a OTTLE cell upon applying a potential of -1.2 V on a 2.5 mM solution of $[Co(py)_2(dmgH)_2]PF_6$ in DMF (selected traces, 0.1 M [TBA]PF_6, Ar, Pt mesh WE, Pt CE, Ag/AgCl RE, d = 0.2 mm). Inset: cyclic voltametry on a 1 mM solution of the latter complex (0.1 M [TBA]PF_6, DMF, Ar, 0.1 V/s), showing the irreversible Co^{III/II} couple (upon reduction one axial pyridine is lost) and the reversible Co^{III/II} couple (reversibility on the CV timescale does not necessarily mean reversibility in the bulk experiment, eg. it is possible that the d⁸ species [Co(dmgH)₂] is formed in the spectro-electrochemical experiment).

Figure SI 6. Initial H₂ production rates (left scale, \blacksquare , mol/s) and end TON_{Co} (right scale, \blacksquare) as a function of pH. Conditions: 30 μ M 1, 500 μ M 11, 1 M TEOA, varying HBF₄, H₂O, 10 ml, 380 nm, $q_{n,p} = 1.75 \times 10^{-7}$ einstein/s.

Figure SI 7. Initial H₂ production rates (left scale, \blacksquare , mol/s) and end TON_{Co} (right scale, \blacksquare) as a function of pH. Conditions: 30 μ M 1, 500 μ M 15, 1 M TEOA, varying HBF₄, H₂O, 10 ml, 380 nm, $q_{n,p} = 1.75 \times 10^{-7}$ einstein/s.

Figure SI 8. Comparison of catalytic performance in D₂O vs H₂O for **15** (mol/s, left scale, dots; TON_{Co} , right scale, solid lines; 30 μ M **1**, 0.5 mM **15**, 1 M TEOA, 0.1 M HBF₄, H₂O resp. D₂O, Ar, 10 ml, 380 nm, $q_{n,p} = 1.75 \times 10^{-7}$ einstein/s). Inset: raw GC/TCD chromatograms showing the H₂ (green) resp. the D₂ (black) signals recorded 100 min after the start of the resp. experiment.

Table SI 1. Comparison of experiments with 10, 11, 11 + 1 eq. pyridine and 15 in H₂O versus D₂O.^a

compound	TON _{Co} (H ₂ resp. D ₂ per WRC)	TOF _{init.} (x 10 ⁻⁹ mol/s)
10 , H ₂ O	3.3 ± 0.1	2.3 ± 0.3
10 , D ₂ O	2.4 ± 0.1	2.6 ± 0.2
11 , H ₂ O	7.4 ± 0.2	5.6 ± 0.3
11 , D ₂ O	7.7 ± 0.2	5.7 ± 0.2
11 + py^b , H_2O	7.8 ± 0.2	6.4 ± 0.3
11 + py ^b	9.0 ± 0.2	6.9 ± 0.2
15 , H ₂ O	11 ± 0.3	4.0 ± 0.3
15 , D ₂ O	15.9 ± 0.4	7.8 ± 0.2

^a: 30 μ M **1**, 0.5 mM WRC, 1 M TEOA, 0.1 M HBF₄, H₂O resp. D₂O, Ar, 10 ml, 380 nm, $q_{n,p} = 1.75 \times 10^{-7}$ einstein/s. ^b: 1 eq. of pyridine, quantitative formation of [CoBr(py)DOH]Br.