# **Supplementary Information for**

## Immunosuppressive polyketides from the mantis-associated Daldinia eschscholzii

Ying L. Zhang,<sup>†,§,#</sup> Jie Zhang,<sup>†,#</sup> Nan Jiang,<sup>‡</sup> Yan H. Lu,<sup>||</sup> Lu Wang,<sup>†</sup> Su H. Xu,<sup>†</sup> Wei Wang,<sup>†</sup> Gao F. Zhang,<sup>†</sup> Qiang Xu,<sup>†</sup> Hui M. Ge,<sup>†</sup> Jing Ma,<sup>‡</sup> Yong C. Song,<sup>†</sup> and Ren X. Tan<sup>\*,†</sup>

<sup>†</sup>Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, P. R. China

<sup>‡</sup>Institute of Theoretical and Computational Chemistry, Lab of Mesoscopic Chemistry, Nanjing University, Nanjing 210093, P. R. China

<sup>II</sup>State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai 200237, P. R. China

<sup>§</sup>College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China

<sup>#</sup>These authors contributed equally.

Correspondence should be addressed to R.X.T. (rxtan@nju.edu.cn)

#### **Contents:**

#### **Supplementary Materials and Methods**

Isolation and identification of metabolites

#### **Supplementary Tables**

Table S1. Analytic conditions of 5, 6, 15, 16, 22 and 23 by chiral HPLC.

Table S2. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **6** in acetone- $d_6$ .

Table S3. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **10** in acetone-*d*<sub>6</sub>.

Table S4. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **27** in acetone-*d*<sub>6</sub> and **28** in DMSO-*d*<sub>6</sub>.

Table S5. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **29** in CDCl<sub>3</sub>.

Table S6. TDDFT results for the optimized conformer of (8*R*,19*R*,28*R*,29*S*)-5 (200nm<λ<400nm).

Table S7. TDDFT results for the optimized conformer of (2R,3S)-15 (200nm $<\lambda<$ 600nm).

Table S8. TDDFT results for the optimized conformer of (2R, 3R, 2'R)-23 (200nm<λ<600nm).

Table S9. Antioxidative activities of daeschols and dalesconol A as determined by DPPH radical Assay.

#### **Supplementary Figures**

Figure S1. The <sup>1</sup>H NMR spectrum of **5** in DMSO- $d_6$  (500MHz).

Figure S2. The  $^{13}$ C NMR spectrum of **5** in DMSO- $d_6$  (125MHz).

Figure S3. The HMQC spectrum of 5 in DMSO-*d*<sub>6</sub> (500MHz).

Figure S4. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **5** in DMSO- $d_6$  (500MHz).

Figure S5. The HMBC spectrum of **5** in DMSO- $d_6$  (500MHz).

Figure S6. The NOESY spectrum of **5** in DMSO- $d_6$  (500MHz).

Figure S7. The <sup>1</sup>H NMR spectrum of **6** in acetone- $d_6$  (500MHz).

Figure S8. The <sup>13</sup>C NMR spectrum of **6** in acetone- $d_6$  (75MHz).

Figure S9. The HMQC spectrum of **6** in acetone- $d_6$  (500MHz).

Figure S10. The  ${}^{1}\text{H}-{}^{1}\text{H}$  COSY spectrum of **6** in acetone- $d_{6}$  (500MHz).

Figure S11. The HMBC spectrum of **6** in acetone- $d_6$  (500MHz).

Figure S12. The NOESY spectrum of **6** in acetone- $d_6$  (500MHz).

Figure S13. The <sup>1</sup>H NMR spectrum of **10** in acetone- $d_6$ (300MHz).

Figure S14. The <sup>13</sup>C NMR spectrum of **10** in acetone- $d_6$  (75MHz).

Figure S15. The DEPT135 spectrum of **10** in acetone- $d_6$  (75MHz).

Figure S16. The HMQC spectrum of 10 in acetone- $d_6$  (300MHz).

Figure S17. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **10** in acetone- $d_6$  (300MHz).

Figure S18. The HMBC spectrum of **10** in acetone- $d_6$  (300MHz)

Figure S19. The <sup>1</sup>H NMR spectrum of **15** in DMSO- $d_6$  (500MHz).

Figure S20. The <sup>13</sup>C NMR spectrum of **15** in DMSO-*d*<sub>6</sub> (75MHz).

Figure S21. The DEPT135 spectrum of **15** in DMSO-*d*<sub>6</sub> (75MHz).

Figure S22. The HMQC spectrum of **15** in DMSO- $d_6$  (500MHz).

Figure S23. The  $^{1}$ H- $^{1}$ H COSY spectrum of **15** in DMSO- $d_{6}$  (500MHz).

Figure S24. The HMBC spectrum of 15 in DMSO- $d_6$  (500MHz). Figure S25. The NOESY spectrum of 15 in DMSO- $d_6$  (500MHz). Figure S26. The <sup>1</sup>H NMR spectrum of **16** in acetone- $d_6$ (500MHz) Figure S27. The <sup>1</sup>H NMR spectrum of **16** in DMSO- $d_6$  (500MHz) Figure S28. The <sup>13</sup>C NMR spectrum of **16** in DMSO- $d_6$  (125MHz). Figure S29. The DEPT135 spectrum of **16** in DMSO- $d_6$  (125MHz). Figure S30. The HMOC spectrum of **16** in DMSO- $d_6$  (500MHz). Figure S31. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **16** in DMSO- $d_6$ (500MHz). Figure S32. The HMBC spectrum of **16** in DMSO- $d_6$  (500MHz). Figure S33. The ROESY spectrum of **16** in DMSO- $d_6$  (500MHz). Figure S34. The <sup>1</sup>H NMR spectrum of **22** in DMSO- $d_6$  (500MHz) Figure S35. The <sup>13</sup>C NMR spectrum of **22** in DMSO- $d_6$  (125MHz) Figure S36. The DEPT135 spectrum of **22** in DMSO- $d_6$  (125MHz). Figure S37. The HMQC spectrum of **22** in DMSO- $d_6$  (500MHz). Figure S38. The  ${}^{1}\text{H}-{}^{1}\text{H}$  COSY spectrum of **22** in DMSO- $d_{6}$  (500MHz). Figure S39. The HMBC spectrum of **22** in DMSO- $d_6$  (500MHz). Figure S40. The ROESY spectrum of **22** in DMSO- $d_6$  (500MHz). Figure S41. The <sup>1</sup>H NMR spectrum of **23** in DMSO- $d_6$  (500MHz) Figure S42. The <sup>13</sup>C NMR spectrum of **23** in DMSO- $d_6$  (125MHz) Figure S43. The DEPT135 spectrum of **23** in DMSO- $d_6$  (125MHz). Figure S44. The HMQC spectrum of **23** in DMSO- $d_6$  (500MHz). Figure S45. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **23** in DMSO- $d_6$ (500MHz). Figure S46. The HMBC spectrum of 23 in DMSO- $d_6$  (500MHz). Figure S47. The ROESY spectrum of 23 in DMSO- $d_6$  (500MHz). Figure S48. The <sup>1</sup>H NMR spectrum of **27** in acetone- $d_6$ (500MHz) Figure S49. The <sup>13</sup>C NMR spectrum of **27** in acetone- $d_6$  (125MHz) Figure S50. The HMQC spectrum of **27** in acetone- $d_6$  (500MHz). Figure S51. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **27** in acetone- $d_6$  (500MHz). Figure S52. The HMBC spectrum of 27 in acetone- $d_6$  (500MHz). Figure S53. The NOESY spectrum of **27** in acetone- $d_6$ (500MHz). Figure S54. The <sup>1</sup>H NMR spectrum of **28** in acetone- $d_6$  (500MHz). Figure S55. The <sup>1</sup>H NMR spectrum of **28** in DMSO- $d_6$  (500MHz) Figure S56. The <sup>13</sup>C NMR spectrum of **28** in DMSO- $d_6$  (125MHz) Figure S57. The HMQC spectrum of **28** in DMSO- $d_6$  (500MHz). Figure S58. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **28** in DMSO- $d_6$  (500MHz). Figure S59. The HMBC spectrum of **28** in DMSO- $d_6$  (500MHz). Figure S60. The NOESY spectrum of **28** in DMSO- $d_6$  (500MHz). Figure S61. The <sup>1</sup>H NMR spectrum of **29** in CDCl<sub>3</sub> (300MHz) Figure S62. The <sup>13</sup>C NMR spectrum of **29** in CDCl<sub>3</sub> (75MHz) Figure S63. The DEPT135 spectrum of 29 in CDCl<sub>3</sub> (75MHz).

- Figure S64. The HMQC spectrum of 29 in CDCl<sub>3</sub> (300MHz).
- Figure S65. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **29** in CDCl<sub>3</sub> (300MHz).
- Figure S66. The HMBC spectrum of 29 in CDCl<sub>3</sub> (300MHz).
- Figure S67. The ROESY spectrum of  $\mathbf{29}$  in CDCl<sub>3</sub> (500MHz).
- Figure S68. The reverse-phase HPLC analysis of the extract.
- Figure S69. The chiral HPLC chromatogram of 16.
- Figure S70. The chiral HPLC chromatogram of 22.
- Figure S71. The chiral HPLC chromatogram of 23.
- Figure S72. The CD spectra of (+)-5 and (-)-5 in MeOH.
- Figure S73. The CD spectra of (+)-15 and (-)-15 in MeOH.
- Figure S74. The CD spectra of (+)-16 and (-)-16 in MeOH.
- Figure S75. The CD spectra of (+)-22 and (-)-22 in MeOH.
- Figure S76. The CD spectra of (+)-23 and (-)-23 in MeOH.
- Figure S77. The most important molecular orbitals of the optimized conformer of (8R, 19R, 28R, 29S)-5 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).
- Figure S78. The most important molecular orbitals of the optimized conformer of (2R, 3S)-15 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).
- Figure S79. Plot of the most important molecular orbitals of the optimized conformer of (2R,3R,2'R)-23 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).

### Supplementary References Complete reference 16

### Supplementary Materials and Methods Isolation and identification of metabolites

The filtrate of the culture broth was extracted exhaustively with ethyl acetate. Evaporation of solvent in vacuo from the ethyl acetate extract gave a brown oily residue (140 g), which was subjected to column chromatography over silica gel eluted with CHCl<sub>3</sub>-MeOH mixtures (gradient v/v 100:0 to 100:32) to afford seven fractions (F<sub>1</sub>-F<sub>7</sub>). F<sub>1</sub> was purified subsequently by silica gel chromatography eluted with petroleum ether-ethyl acetate system (gradient v/v 100:10 to 100:80) to give four subfractions (F1A-F1D). F1A, F1B and F1C were further subjected to size-exclusion chromatography on Sephadex LH-20 with CHCl<sub>3</sub>:MeOH mixture (v/v 1:1) and recrystallization in MeOH to yield 14 (53 mg), 29 (30 mg), 21 (28 mg) and dalesconol A (300 mg), respectively. The second fraction F<sub>2</sub> was separated on a silica gel column eluted with CHCl<sub>3</sub>-MeOH mixtures (gradient v/v 200:0 to 200:4) to give five subfractions (F<sub>2A</sub>-F<sub>2E</sub>). F<sub>2A</sub> was then chromatographed using a petroleum ether-acetone system (gradient v/v 100:10 to 100:80) to afford 3 (16 mg), 19 (1.8 g) and 20 (2.2 g). Gel filtration of F<sub>2B</sub> over a Sephadex LH-20 column with MeOH and then recrystallized from MeOH at room temperature to yield 5 (150 mg), 22 (25 mg) and dalesconol B (290 mg). Compounds 1 (143 mg), 8 (15 mg) and 12 (3.2 g) were obtained from subfraction  $F_{2C}$  by silica gel column eluted with petroleum ether-acetone gradient system. F<sub>2D</sub> was purified on Sephadex LH-20 column with MeOH to give 4 (148 mg) and 9 (17 mg). The third fraction F<sub>3</sub> was chromatographed on a silica gel column eluted with CHCl<sub>3</sub>-MeOH mixtures (gradient v/v 100:1 to 100:4) to afford four subfractions (F<sub>3A</sub>-F<sub>3D</sub>). F<sub>3A</sub> was further subjected to silica gel chromatography using petroleum ether-acetone system (gradient v/v 100:20 to 100:80), followed by gel filtration over Sephadex LH-20 with MeOH to yield 2 (15 mg), 10 (27 mg) and 27 (18 mg). Compounds 28 (28 mg) and 25 (19 mg) were obtained on a Sephadex LH-20 column with MeOH from subfractions F<sub>3B</sub> and F<sub>3C</sub>, respectively. F<sub>3D</sub> was isolated by a Sephadex LH-20 column (MeOH), followed recrystallization in MeOH, to give compounds 13 (48 mg) and **17** (425 mg). The fraction  $F_4$  was purified on a silica gel column eluted with CHCl<sub>3</sub>-MeOH mixtures (gradient v/v 100:2 to 100:8) to give three subfractions ( $F_{4A}$ - $F_{4C}$ ). The fraction  $F_{4A}$  and  $F_{4B}$  was rechromatographed on a silica gel column and subsequent gel filtration over Sephadex LH-20 with MeOH and then recrystallization in MeOH to give 23 (53 mg), 24 (45 mg) and 26 (107 mg). The fraction F<sub>4C</sub> was separated on a reversed-phase column to afford 7 (27 mg) and a mixture that was isolated by a Sephadex LH-20 column to give 6 (23 mg) and 18 (21 mg). Finally, the fraction F<sub>5</sub> was subjected to reversed-phase column chromatography eluted with MeOH-H<sub>2</sub>O mixtures (gradient v/v 40:60 to 60:40) to give three fractions (F<sub>5A</sub>-F<sub>5C</sub>).

 $F_{5A}$ ,  $F_{5B}$  and  $F_{5C}$  were then separated on a Sephadex LH-20 column eluted with MeOH to give **11** (4.4 g), **15** (150 mg) and **16** (15 mg), respectively.

The structure determination of new compounds 5-6, 10, 15-16,, 22-23, 27 and 29 were mentioned in the text. Identified by comparison of their spectral data with those in literature were dalesconols A and B,<sup>[1]</sup> 2,6-dihyroxyacetophenone (1),<sup>[2]</sup> 2,4,6-trihydroxy-acetophenone (2),<sup>[3]</sup> 2,4-dihydroxyphenylethanone (3),<sup>[4]</sup> (-)-6-hydroxymellein (4),<sup>[5]</sup> sphaerolone(7),<sup>[6]</sup> dihydrosphaerolone(8),<sup>[6]</sup> daldinone C (9),<sup>[7]</sup> 4-hydroxyscytalone **(11**),<sup>[8]</sup> **(12)**,<sup>[9]</sup> 3,4-dihydro-3,4,8-trihydroxy-1(2H)-naphthalenone **(13**),<sup>[10]</sup> (-)-isosclerone(**14**),<sup>[11]</sup> 4,6,8-trihydroxy-3,4-dihydronaphthalen-1(2H)-one 2,3-dihydro-5-hydroxy-2-methylchromen-4-one (17),<sup>[12]</sup> 5-hydroxy-2-methyl-4H-chromen-4-one (**18**),<sup>[12]</sup> (**19**),<sup>[12]</sup> 3-hydroxy-1-(2,6-dihydroxyphenyl)-butan-1-one (**20**),<sup>[12]</sup> 1-(2,6-dihydroxyphenyl)butan-1-one nodulisporin F (21),<sup>[13]</sup> 6,8-dihydroxy-3-(2-oxopropyl)-1H-isochromen-1-one (24),<sup>[14]</sup> diaporthin (25),<sup>[15]</sup> (+)-orthosporin (**26**),<sup>[16]</sup> and nodulone (**28**).<sup>[17]</sup>

### **Supplementary Tables**

|           |                |             | , re, <b>11</b> and <b>1</b> 0 by enhal |                                    |
|-----------|----------------|-------------|-----------------------------------------|------------------------------------|
| Compounds | Column type    | Column size | Column temperature (°C)                 | Mobile phase (v/v/v)               |
| 5         | Chiralpak IA   | 0.46×15 cm  | 35                                      | Hexane/Ethyl Alcohol/TFA=60/40/0.1 |
| 6         | Chiralpak AD-H | 0.46×15 cm  | 35                                      | Hexane//Isopropanol/TFA=80/20/0.1  |
| 15        | Chiralpak OD-H | 0.46×15 cm  | 35                                      | Hexane/IPA/EDA=80/20/0.1           |
| 16        | Chiralpak IC   | 0.46×15 cm  | 35                                      | Hexane/EtOH/TFA=85/15/0.3          |
| 22        | Chiralpak IA   | 0.46×25 cm  | 35                                      | MtBE/MeOH/TFA=65/35/0.1            |
| 23        | Chiralpak IC   | 0.46×25 cm  | 35                                      | MeOH/TFA=100/0.1                   |
|           |                |             |                                         |                                    |

Table S1. Analytic conditions of 5, 6, 15, 16, 22 and 23 by chiral HPLC.

# Table S2. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **6** in acetone- $d_6$ .

| position | δ <sub>C</sub> | δ <sub>H</sub> (mult., <i>J</i> , Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC | position | δ <sub>C</sub> | $\delta_{\rm H}$ (mult., J, Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC |
|----------|----------------|---------------------------------------|--------------------------------------|----------|----------------|---------------------------------|--------------------------------------|
| 1        | 207.3          |                                       |                                      | 17       | 128.7          |                                 |                                      |
| 2        | 119.0          |                                       |                                      | 18       | 147.2          |                                 |                                      |
| 3        | 163.2          |                                       |                                      | 19       | 64.7           |                                 |                                      |
| 4        | 120.0          | 6.92 (d, 8.0)                         | 2, 6                                 | 20       | 144.2          |                                 |                                      |
| 5        | 136.3          | 7.57 (d, 8.0)                         | 3, 7                                 | 21       | 107.1          | 5.51 (s)                        | 22, 23, 25                           |
| 6        | 125.6          | 7.11 (d, 8.0)                         | 2, 8                                 | 22       | 165.2          |                                 |                                      |
| 7        | 136.7          |                                       |                                      | 23       | 102.2          | 6.04 (s)                        | 21, 24, 25                           |
| 8        | 163.7          |                                       |                                      | 24       | 165.5          |                                 |                                      |
| 9        | 132.9          |                                       |                                      | 25       | 112.2          |                                 |                                      |
| 10       | 134.4          | 7.90 (d, 9.8)                         | 12, 18                               | 26       | 200.7          |                                 |                                      |
| 11       | 133.2          | 6.67 (d, 9.8)                         | 9, 13                                | 27       | 42.3           | 2.73 (dd, 16.7, 3.8)            | 1, 19                                |
|          |                |                                       |                                      |          |                | 3.75 (dd, 16.7, 6.9)            | 26, 28, 29                           |
| 12       | 188.3          |                                       |                                      | 28       | 35.9           | 3.25 (m)                        |                                      |
| 13       | 108.3          |                                       |                                      | 29       | 51.7           | 3.45 (dd, 13.2, 6.8)            | 1, 27, 28                            |
|          |                |                                       |                                      |          |                | 2.82 (dd, 13.2, 2.2)            | 1, 19                                |
| 14       | 162.2          |                                       |                                      | 3–OH     |                | 12.69 (s)                       |                                      |
| 15       | 102.4          | 6.37 (s)                              | 13, 14, 16, 17                       | 14-OH    |                | 10.98 (s)                       |                                      |
| 16       | 158.0          |                                       |                                      | 24–OH    |                | 12.26 (s)                       |                                      |
|          |                |                                       |                                      |          |                |                                 |                                      |



### Table S3. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **10** in acetone-*d*<sub>6</sub>.

| position | δ <sub>C</sub> | δ <sub>H</sub> (mult., <i>J</i> , Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC | position | $\delta_{\rm C}$ | δ <sub>H</sub> (mult., <i>J</i> , Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC |
|----------|----------------|---------------------------------------|--------------------------------------|----------|------------------|---------------------------------------|--------------------------------------|
| 1        | 125.4          |                                       |                                      | 12       | 125.4            | 8.64 (d, 7.0)                         | 10, 14, 20                           |
| 2        | 155.1          |                                       |                                      | 13       | 127.9            | 7.79 (dd, 8.0, 7.0)                   | 11, 15                               |
| 3        | 108.3          | 6.96 (dd, 7.5, 0.8)                   | 1, 2, 5                              | 14       | 122.7            | 8.25 (d, 8.0)                         | 12, 16, 20                           |
| 4        | 128.6          | 7.50 (dd, 8.5, 7.5)                   | 2, 6                                 | 15       | 122.9            |                                       |                                      |
| 5        | 116.3          | 8.33 (dd, 8.5, 0.8)                   | 1, 3, 10                             | 16       | 156.9            |                                       |                                      |
| 6        | 133.0°         |                                       |                                      | 17       | 111.2            | 7.09 (d, 7.5)                         | 15, 17, 19                           |
| 7        | 123.4          | 8.38 (d, 8.6)                         | 2, 6, 9                              | 18       | 123.9            | 8.03 (d, 7.5)                         | 9, 16, 20                            |
| 8        | 119.0          | 8.10 (d, 8.6)                         | 1, 10, 19                            | 19       | 129.4            |                                       |                                      |
| 9        | 139.3          |                                       |                                      | 20       | 134.1            |                                       |                                      |
| 10       | 133.3 <i>°</i> |                                       |                                      | 2-OH     |                  | 9.57 (br s) <sup>b</sup>              |                                      |
| 11       | 138.2          |                                       |                                      | 16-OH    |                  | 9.12 (br s) <sup>b</sup>              |                                      |
| ah       |                |                                       |                                      |          |                  |                                       |                                      |

<sup>*a, b*</sup> Interchangeable assignments.



|          |                  | 21                                    |                                      |              | 28                               |                                      |
|----------|------------------|---------------------------------------|--------------------------------------|--------------|----------------------------------|--------------------------------------|
| position | $\delta_{\rm C}$ | δ <sub>H</sub> (mult., <i>J</i> , Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC | $\delta_{c}$ | <i>δ</i> ⊣ (mult., <i>J,</i> Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC |
| 1        | 203.8            |                                       |                                      | 203.7        |                                  |                                      |
| 1a       | 115.3            |                                       |                                      | 114.5        |                                  |                                      |
| 2        | 44.6             | 2.71 (dd, 17.2, 8.8)                  | 1, 3, 4, 1a                          | 12 1         | 2.65 (dd, 17.2, 7.3)             | 1, 3, 4, 1a                          |
|          |                  | 3.03 (dd, 17.2, 4.2)                  |                                      | 43.1         | 2.99 (dd, 17.2, 3.5)             |                                      |
| 3        | 71.8             | 4.07~4.12 (m)                         | 1, 4a                                | 69.8         | 3.95~3.98 (m)                    | 1, 4, 4a                             |
| 4        | 73.5             | 4.66 (dd, 7.2, 5.1)                   | 2, 3, 7, 1a, 4a                      | 71.2         | 4.50 (d, 6.2)                    | 2, 3, 5, 1a, 4a                      |
| 4a       | 146.2            |                                       |                                      | 146.0        |                                  |                                      |
| 5        | 117.0            | 7.16 (s)                              | 4, 6, 7, 9, 1a                       | 112.2        | 7.04 (s)                         | 4, 7, 9, 1a                          |
| 6        | 153.6            |                                       |                                      | 149.1        |                                  |                                      |
| 7        | 114.2            | 6.86 (s)                              | 5, 6, 8, 9, 1a                       | 124.7        |                                  |                                      |
| 8        | 163.3            |                                       |                                      | 155.4        |                                  |                                      |
| 9        | 64.3             | 4.65 (d, 5.8)                         | 5, 6, 7                              | 73.4         | 5.05 (br s)                      | 5, 6, 7, 10                          |
| 10       |                  |                                       |                                      | 70.4         | 4.99 (br s)                      | 6, 7, 8, 9                           |
| 3-OH     |                  | 4.61 (d, 4.0)                         | 2, 3, 4                              |              |                                  |                                      |
| 4-OH     |                  | 4.90 (d, 5.1)                         | 3, 4, 4a                             |              |                                  |                                      |
| 8-OH     |                  | 12.38 (s)                             | 7, 8, 1a                             |              | 12.50 (s)                        | 7, 8, 1a                             |
| 9-OH     |                  | 4.47 (t, 5.8)                         | 6, 9                                 |              |                                  |                                      |

Table S4. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **27** in acetone- $d_6$  and **28** in DMSO- $d_6$ .



Table S5. <sup>1</sup>H, <sup>13</sup>C, and HMBC NMR Data for **29** in CDCl<sub>3</sub>.

| position | δ <sub>C</sub>    | $\delta_{\rm H}$ (mult., J, Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC | position | $\delta_{\rm C}$  | δ <sub>H</sub> (mult., <i>J</i> , Hz) | <sup>1</sup> H- <sup>13</sup> C HMBC |
|----------|-------------------|---------------------------------|--------------------------------------|----------|-------------------|---------------------------------------|--------------------------------------|
| 1        | 173.9             |                                 |                                      | 15       | 37.8              | 1.93~1.98 (m)                         | 13, 14, 16, 17, 22                   |
|          |                   |                                 |                                      |          |                   | 2.54 (dd, 24.2, 11.6)                 |                                      |
| 2-NH     |                   | 5.74 (br s)                     | 3, 4, 9                              | 16       | 39.0              | 2.85~2.93 (m)                         | 14, 15, 18, 22                       |
| 3        | 54.0              | 3.25~3.29 (m)                   | 1, 4, 5, 1'                          | 17       | 217.8             |                                       |                                      |
| 4        | 48.4              | 2.96 (dd, 5.7, 2.9)             | 1, 3, 5, 6, 8, 9, 10, 11, 21         | 18       | 49.1 <sup>a</sup> | 2.25~2.33 (m)                         | 16, 17, 19, 20                       |
| 5        | 34.9              | 2.34~2.40 (m)                   | 3, 4                                 | 19       | 25.8              | 1.61~1.69 (m)                         | 17, 18, 20, 21, 23                   |
| 6        | 140.0             |                                 |                                      | 20       | 37.2              | 1.72~1.78 (m)                         | 18, 19, 21                           |
|          |                   |                                 |                                      |          |                   | 3.30~3.39 (m)                         |                                      |
| 7        | 125.1             | 5.41 (br s)                     |                                      | 21       | 210.6             |                                       |                                      |
| 8        | 49.2 <sup>a</sup> | 2.41~2.47 (m)                   | 4, 14                                | 22       | 20.2              | 1.04 (d, 6.8)                         | 15, 17                               |
| 9        | 68.8              |                                 |                                      | 23       | 16.9              | 1.16 (d, 6.9)                         | 17, 18, 19                           |
| 10       | 44.5              | 2.43 (dd, 13.4, 7.8)            | 3, 4, 1', 2'/6'                      | 1′       | 136.8             |                                       |                                      |
|          |                   | 2.73 (dd, 13.4, 4.7)            |                                      |          |                   |                                       |                                      |
| 11       | 13.3              | 1.14 (d, 7.2)                   | 4, 5, 6                              | 2', 6'   | 129.6             | 7.07 (d, 7.8)                         | 10, 4', 6'/2'                        |
| 12       | 19.8              | 1.71 (s)                        | 5, 6, 7                              | 3', 5'   | 128.7             | 7.23~7.31 (m)                         | 1', 5'/3'                            |
| 13       | 130.9             | 6.16 (ddd, 15.2, 10.2, 1.1)     | 7, 8, 15                             | 4'       | 126.8             | 7.20~7.23 (m)                         | 2'/6'                                |
| 14       | 130.2             | 5.22 (ddd, 15.2, 11.2, 4.0)     | 8, 15, 16                            |          |                   |                                       |                                      |

<sup>a</sup> Interchangeable assignments.



|            | Excitation | Rotatory Strength |                                    | Dominant              |        |
|------------|------------|-------------------|------------------------------------|-----------------------|--------|
| Transition | energy     | $R^{0}$           | Oscillator Strength f <sup>o</sup> | Contributions         | Weight |
|            | (nm)       | (10 ° cgs)        | 0.0402                             | 100 100               | 0.20   |
| 4          | 326.78     | 28.76             | 0.0193                             | 130→133               | 0.30   |
|            |            |                   |                                    | 131→134               | 0.04   |
| -          | 000.04     | 07.00             | 0.0005                             | 132→136               | 0.05   |
| 5          | 322.24     | 27.00             | 0.0035                             | 132→135               | 0.18   |
| 0          | 040.00     | 70.05             | 0.0040                             | 132→136               | 0.50   |
| 6          | 318.66     | -79.65            | 0.0813                             | $130 \rightarrow 134$ | 0.06   |
| 7          | 242.00     | C2 C0             | 0.0017                             | $131 \rightarrow 137$ | 0.70   |
| 7          | 313.00     | 03.00             | 0.0017                             | 130→133               | 0.10   |
| 0          | 206 71     | 100 52            | 0.0402                             | 130→134<br>124 →122   | 0.50   |
| 9          | 500.71     | 109.52            | 0.0495                             | $124 \rightarrow 133$ | 0.12   |
| 10         | 201.85     | 45 30             | 0 1600                             | $130 \rightarrow 134$ | 0.19   |
| 10         | 301.05     | -40.09            | 0.1090                             | 132→135<br>132 \136   | 0.00   |
| 11         | 201.00     | 27.46             | 0.0661                             | 132→130<br>128 \135   | 0.20   |
|            | 231.03     | 27.40             | 0.0001                             | 120→133<br>132→137    | 0.72   |
| 12         | 289 43     | -33 65            | 0 0058                             | 132→137<br>139→133    | 0.72   |
| 12         | 200.40     | 00.00             | 0.0000                             | 129→134               | 0.20   |
| 15         | 272 74     | -33 87            | 0 0143                             | 126→133               | 0.30   |
| 10         | 212.11     | 00.07             | 0.0110                             | 127→133               | 0.16   |
|            |            |                   |                                    | 128→133               | 0.30   |
| 19         | 261 60     | -40.06            | 0 0242                             | 126→130               | 0.13   |
| 10         | 201100     | 10.00             | 0.0212                             | 126→131               | 0.29   |
| 24         | 255.05     | 34.88             | 0.0150                             | 123→133               | 0.22   |
|            |            | 0.100             |                                    | 125→133               | 0.29   |
|            |            |                   |                                    | 125→134               | 0.16   |
|            |            |                   |                                    | 127→134               | 0.14   |
| 26         | 247.03     | -27.60            | 0.0329                             | 124→134               | 0.24   |
|            |            |                   |                                    | 125→134               | 0.10   |
|            |            |                   |                                    | 132→139               | 0.34   |
| 29         | 240.85     | 46.93             | 0.1727                             | 123→133               | 0.34   |
|            |            |                   |                                    | 124→133               | 0.18   |
| 31         | 237.24     | -21.78            | 0.0162                             | 123→134               | 0.12   |
|            |            |                   |                                    | 131→137               | 0.72   |
| 37         | 226.11     | 23.12             | 0.0081                             | 130→138               | 0.22   |
|            |            |                   |                                    | 131→138               | 0.54   |
| 40         | 219.60     | 85.24             | 0.0254                             | 123→136               | 0.10   |
|            |            |                   |                                    | 125→136               | 0.12   |
|            |            |                   |                                    | 132→140               | 0.09   |
| 45         | 215.97     | -161.81           | 0.0715                             | 130→138               | 0.36   |
|            |            |                   |                                    | 131→138               | 0.08   |
|            |            |                   |                                    | 131→139               | 0.24   |
| 46         | 214.61     | 128.19            | 0.1322                             | 125→136               | 0.16   |
|            |            |                   |                                    | 128→135               | 0.12   |
|            |            |                   |                                    | 132→141               | 0.16   |
| 49         | 210.41     | 169.05            | 0.2468                             | 123→136               | 0.09   |
|            |            |                   |                                    | 124→136               | 0.12   |
|            |            |                   |                                    | 125→136               | 0.09   |
|            |            |                   |                                    | 127→137               | 0.10   |
| <b>F</b> 4 | 000.04     | 10.05             | 0.4070                             | 128→135               | 0.09   |
| 51         | 209.21     | -46.95            | 0.1078                             | $127 \rightarrow 137$ | 0.48   |
|            |            |                   |                                    | 128→137               | 0.12   |
| 50         | 000.00     | <u>05 00</u>      | 0.0050                             | 129→137               | 0.08   |
| 90         | 203.82     | 80.cd             | 0.0250                             | 129-138               | 0.09   |
| 60         | 004 70     | 20.05             | 0.0050                             | 132→142               | 0.49   |
| 60         | 201.70     | -30.25            | 0.0853                             | 1∠1→134<br>102 125    | 0.24   |
|            |            |                   |                                    | 123-3135              | 0.28   |
|            |            |                   |                                    | 1∠ŏ→137               | 0.09   |

Table S6. TDDFT results for the optimized conformer of (8*R*, 19*R*, 28*R*, 29*S*)-**5** (200nm<λ<400nm).

 $^{a}$  Excited states with f < 0.1 and R <  $\pm$  20.0 were not presented.  $^{b}$  All the strengths were in the velocity representation.

|            | Excitation          | Rotatory Strength       |                     | Dominant                                   |        |
|------------|---------------------|-------------------------|---------------------|--------------------------------------------|--------|
| Transition | energy <sup>a</sup> | $R^{b}$                 | Oscillator Strength | Contribution                               | Weight |
|            | (nm)                | (10 <sup>-40</sup> cgs) | f                   | S                                          |        |
| 1          | 464 23              | -35 4623                | 0 2781              | <u>90 → 92</u>                             | 0.02   |
|            | 101.20              | 00.1020                 | 0.2701              | $91 \rightarrow 92$                        | 0.02   |
| 2          | 384 73              | 21 7678                 | 0.0629              | $89 \rightarrow 92$                        | 0.19   |
| 2          | 001.70              | 21.1010                 | 0.0020              | $90 \rightarrow 92$                        | 0.10   |
| 3          | 359 84              | -10 6517                | 0 2181              | $89 \rightarrow 92$                        | 0.25   |
| Ū          | 000.01              | 10.0011                 | 0.2101              | $90 \rightarrow 92$                        | 0.15   |
|            |                     |                         |                     | $91 \rightarrow 93$                        | 0.02   |
| 4          | 339.62              | -24.2959                | 0.0049              | 87 → 92                                    | 0.43   |
|            |                     |                         |                     | <b>87</b> → <b>93</b>                      | 0.02   |
|            |                     |                         |                     | $88 \rightarrow 92$                        | 0.03   |
| 6          | 304.00              | 37.5579                 | 0.1191              | $90 \rightarrow 92$                        | 0.01   |
|            |                     |                         |                     | 91  ightarrow 93                           | 0.43   |
| 8          | 268.12              | -16.4585                | 0.0896              | 85  ightarrow 92                           | 0.06   |
|            |                     |                         |                     | 90  ightarrow 93                           | 0.31   |
|            |                     |                         |                     | 91  ightarrow 94                           | 0.04   |
|            |                     |                         |                     | 91  ightarrow 95                           | 0.05   |
| 10         | 255.43              | -18.9357                | 0.1405              | 85  ightarrow 92                           | 0.28   |
|            |                     |                         |                     | 89  ightarrow 93                           | 0.11   |
|            |                     |                         |                     | $91 \rightarrow 95$                        | 0.06   |
| 12         | 243.65              | -35.1157                | 0.3252              | $84 \rightarrow 92$                        | 0.08   |
|            |                     |                         |                     | $89 \rightarrow 93$                        | 0.02   |
|            |                     |                         |                     | $90 \rightarrow 93$                        | 0.04   |
| 40         | 040.00              | 00 7000                 | 0.0400              | $91 \rightarrow 95$                        | 0.30   |
| 13         | 242.08              | -36.7292                | 0.0168              | $84 \rightarrow 92$                        | 0.07   |
|            |                     |                         |                     | $90 \rightarrow 94$                        | 0.02   |
|            |                     |                         |                     | $91 \rightarrow 94$                        | 0.03   |
|            |                     |                         |                     | $91 \rightarrow 90$                        | 0.02   |
| 15         | 233.68              | 4 7018                  | 0 2048              | $91 \rightarrow 90$<br>$84 \rightarrow 92$ | 0.31   |
| 10         | 200.00              | 4.7510                  | 0.2040              | $0 \rightarrow 32$<br>88 $\rightarrow 93$  | 0.10   |
|            |                     |                         |                     | $90 \rightarrow 93$                        | 0.17   |
|            |                     |                         |                     | $91 \rightarrow 94$                        | 0.05   |
|            |                     |                         |                     | $91 \rightarrow 96$                        | 0.02   |
| 18         | 223.42              | -15.0645                | 0.0394              | 88 → 94                                    | 0.03   |
|            |                     |                         |                     | $89 \rightarrow 94$                        | 0.20   |
|            |                     |                         |                     | 89  ightarrow 95                           | 0.03   |
|            |                     |                         |                     | 90  ightarrow 94                           | 0.15   |
|            |                     |                         |                     | 90  ightarrow 96                           | 0.02   |
| 20         | 216.23              | 4.0129                  | 0.1023              | 88  ightarrow 95                           | 0.01   |
|            |                     |                         |                     | $89 \rightarrow 94$                        | 0.12   |
|            |                     |                         |                     | $89 \rightarrow 95$                        | 0.04   |
|            |                     |                         |                     | $89 \rightarrow 96$                        | 0.04   |
|            |                     |                         |                     | $90 \rightarrow 95$                        | 0.16   |
| 04         | 040.00              | 4 0000                  | 0.4400              | $90 \rightarrow 96$                        | 0.08   |
| 21         | 213.00              | -4.2023                 | 0.1120              | $80 \rightarrow 93$                        | 0.01   |
|            |                     |                         |                     | $00 \rightarrow 94$                        | 0.02   |
|            |                     |                         |                     | $09 \rightarrow 94$                        | 0.05   |
|            |                     |                         |                     | $90 \rightarrow 90$                        | 0.14   |
|            |                     |                         |                     | $90 \rightarrow 95$                        | 0.12   |
|            |                     |                         |                     | $90 \rightarrow 96$                        | 0.09   |
| 26         | 205.09              | 26,2361                 | 0.0674              | $81 \rightarrow 92$                        | 0.06   |
|            |                     | _0.2001                 |                     | $88 \rightarrow 94$                        | 0.02   |
|            |                     |                         |                     | $89 \rightarrow 95$                        | 0.17   |
|            |                     |                         |                     | <b>89</b> → <b>96</b>                      | 0.05   |
|            |                     |                         |                     | $90 \rightarrow 96$                        | 0.08   |

<u>Table S7. TDDFT results for the optimized conformer of (2R,3S)-15 (200nm< $\lambda$ <600nm).</u>

 $^{\overline{a}}$  Excited states with  $f\!<\!0.1$  and  $R\!<\!\pm\!16.0$  were not presented.  $^{b}$  All the strengths were in the velocity representation.

| Transition | Excitation<br>energy <sup>a</sup><br>(nm) | Rotatory Strength <i>R<sup>b</sup></i><br>(10 <sup>-40</sup> cgs) | Oscillator Strength f <sup>b</sup> | Dominant<br>Contributions                                                 | Weight       |
|------------|-------------------------------------------|-------------------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------|--------------|
| 1          | 497.63                                    | 11.1870                                                           | 0.2313                             | $145 \rightarrow 146$                                                     | 0.42         |
| 2          | 402.92                                    | 8.7739                                                            | 0.1692                             | $143 \rightarrow 146$                                                     | 0.42         |
| 4          | 383.32                                    | -2.0654                                                           | 0.1111                             | 142 → 146<br>145 → 148                                                    | 0.32<br>0.13 |
| 6          | 350.04                                    | -3.9694                                                           | 0.2549                             | $145 \rightarrow 148$                                                     | 0.30         |
| 16         | 289.09                                    | 22.2876                                                           | 0.3985                             | $143 \rightarrow 148$                                                     | 0.31         |
| 19         | 275.2                                     | 24.1932                                                           | 0.0111                             | $\begin{array}{c} 137 \rightarrow 146 \\ 139 \rightarrow 148 \end{array}$ | 0.13<br>0.26 |
| 21         | 269.50                                    | 16,5994                                                           | 0.0465                             | $136 \rightarrow 146$                                                     | 0.35         |
| 22         | 267.43                                    | -26.3659                                                          | 0.0065                             | $138 \rightarrow 148$                                                     | 0.33         |
| 24         | 261.16                                    | -16.3377                                                          | 0.4265                             | $140 \rightarrow 147$                                                     | 0.39         |
| 26         | 255.18                                    | 13.4363                                                           | 0.2854                             | $141 \rightarrow 148$                                                     | 0.33         |
| 27         | 252.62                                    | -43.6832                                                          | 0.0162                             | $135 \rightarrow 146$                                                     | 0.26         |
| 34         | 239.71                                    | -18.4188                                                          | 0.0097                             | $134 \rightarrow 146$                                                     | 0.41         |
| 35         | 236 45                                    | 18 0745                                                           | 0 1038                             | 133  ightarrow 146                                                        | 0.14         |
| 55         | 200.40                                    | 10:0745                                                           | 0.1030                             | 145  ightarrow 151                                                        | 0.12         |
| 36         | 235.55                                    | 22.1256                                                           | 0.1344                             | $133 \rightarrow 146$                                                     | 0.14         |
| 42         | 219.45                                    | 25.8962                                                           | 0.0585                             | $142 \rightarrow 150$                                                     | 0.28         |
| 45         | 215.99                                    | 8.5950                                                            | 0.1229                             | 145  ightarrow 153                                                        | 0.10         |
| 50         | 213.19                                    | 34.7230                                                           | 0.0292                             | 130  ightarrow 146                                                        | 0.32         |

Table S8. TDDFT results for the optimized conformer of (2R, 3R, 2'R)-23 (200nm< $\lambda$ <600nm).

<sup>a</sup> Excited states with f < 0.1 and  $R < \pm 15.0$  were not presented. <sup>b</sup> All the strengths were in the velocity representation.

#### Table S9. Antioxidative activities of daeschols and dalesconol A as determined by DPPH radical Assay

| Dy Di i                                            | r rauloar Assay                          |  |
|----------------------------------------------------|------------------------------------------|--|
| Compound                                           | DPPH radical IC <sub>50</sub> ( $\mu$ M) |  |
| 5                                                  | 16.9                                     |  |
| (+)-5                                              | 25.6                                     |  |
| (–)-5                                              | 33.3                                     |  |
| dalesconol A                                       | >200                                     |  |
| Butyl hydroxy anisol (BHA) <sup>a</sup>            | 17.6                                     |  |
| <sup>a</sup> Ca association a manifest association |                                          |  |

Co-assayed as a positve control.

#### **Supplementary Figures**



Figure S1. The <sup>1</sup>H NMR spectrum of **5** in DMSO-*d*<sub>6</sub> (500 MHz)



Figure S2. The  ${}^{13}$ C NMR spectrum of **5** in DMSO- $d_6$  (125 MHz).



Figure S3. The HMQC spectrum of **5** in DMSO-*d*<sub>6</sub> (500 MHz).



Figure S4. The  ${}^{1}\text{H}$ - ${}^{1}\text{H}$  COSY spectrum of **5** in DMSO- $d_{6}$  (500 MHz).



Figure S5. The HMBC spectrum of **5** in DMSO- $d_6$  (500 MHz).





Figure S6. The NOESY spectrum of **5** in DMSO- $d_6$  (500 MHz).



Figure S7. The <sup>1</sup>H NMR spectrum of **6** in acetone- $d_6$  (500 MHz).



Figure S8. The <sup>13</sup>C NMR spectrum of **6** in acetone- $d_6$  (75 MHz).



Figure S9. The HMQC spectrum of **6** in acetone- $d_6$  (500 MHz).



Figure S10. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY spectrum of **6** in acetone- $d_{6}$  (500 MHz).



Figure S11. The HMBC spectrum of **6** in acetone- $d_6$  (500 MHz).



Figure S12. The NOESY spectrum of **6** in acetone- $d_6$  (500 MHz).



Figure S13. The <sup>1</sup>H NMR spectrum of **10** in acetone- $d_6$  (300 MHz).



Figure S14. The <sup>13</sup>C NMR spectrum of **10** in acetone- $d_6$  (75 MHz).



Figure S15. The DEPT135 spectrum of 10 in acetone- $d_6$  (75 MHz).



Figure S16. The HMQC spectrum of 10 in acetone- $d_6$  (300 MHz).



Figure S17. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **10** in acetone- $d_6$  (300 MHz).



Figure S18. The HMBC spectrum of 10 in acetone- $d_6$  (300 MHz).



Figure S19. The <sup>1</sup>H NMR spectrum of **15** in DMSO- $d_6$  (500 MHz).



Figure S20. The  ${}^{13}$ C NMR spectrum of **15** in DMSO- $d_6$  (75MHz).





Figure S22. The HMQC spectrum of **15** in DMSO-*d*<sub>6</sub> (500 MHz).



Figure S23. The  ${}^{1}\text{H}{}^{-1}\text{H}$  COSY spectrum of **15** in DMSO- $d_{6}$  (500 MHz).



Figure S24. The HMBC spectrum of **15** in DMSO-*d*<sub>6</sub> (500 MHz).



Figure S25. The NOESY spectrum of **15** in DMSO- $d_6$  (500 MHz).


Figure S26. The <sup>1</sup>H NMR spectrum of **16** in acetone- $d_6$  (500 MHz).



Figure S27. The <sup>1</sup>H NMR spectrum of **16** in DMSO- $d_6$  (500 MHz).



Figure S28. The <sup>13</sup>C NMR spectrum of **16** in DMSO- $d_6$  (125 MHz).



Figure S29. The DEPT135 spectrum of **16** in DMSO-*d*<sub>6</sub>(125 MHz).



Figure S30. The HMQC spectrum of 16 in DMSO- $d_6$  (500 MHz).



Figure S31. The  $^{1}$ H- $^{1}$ H COSY spectrum of **16** in DMSO- $d_{6}$  (500 MHz).



Figure S32. The HMBC spectrum of 16 in DMSO- $d_6$  (500 MHz).



Figure S33. The ROESY spectrum of **16** in DMSO-*d*<sub>6</sub> (500 MHz).



Figure S34. The <sup>1</sup>H NMR spectrum of **22** in DMSO- $d_6(500 \text{ MHz})$ .



Figure S35. The <sup>13</sup>C NMR spectrum of **22** in DMSO-*d*<sub>6</sub> (125 MHz).



Figure S36. The DEPT135 spectrum of **22** in DMSO- $d_6(125 \text{ MHz})$ .



Figure S37. The HMQC spectrum of **22** in DMSO- $d_6$  (500 MHz).



Figure S38. The  $^{1}$ H- $^{1}$ H COSY spectrum of **22** in DMSO- $d_{6}$  (500 MHz).



Figure S39. The HMBC spectrum of **22** in DMSO- $d_6$  (500MHz).



Figure S40. The ROESY spectrum of **22** in DMSO- $d_6$  (500MHz).



Figure S41. The <sup>1</sup>H NMR spectrum of **23** in DMSO- $d_6(500$ MHz).



Figure S42. The <sup>13</sup>C NMR spectrum of **23** in DMSO- $d_6$  (125MHz).



Figure S43. The DEPT135 spectrum of **23** in DMSO- $d_6$ (125 MHz).



Figure S44. The HMQC spectrum of **23** in DMSO- $d_6$  (500MHz).



Figure S45. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **23** in DMSO- $d_6$  (500MHz).



Figure S46. The HMBC spectrum of **23** in DMSO- $d_6$  (500MHz).



Figure S47. The ROESY spectrum of **23** in DMSO- $d_6$  (500MHz).



Figure S48. The <sup>1</sup>H NMR spectrum of **27** in acetone- $d_6$  (500 MHz).



Figure S49. The  ${}^{13}$ C NMR spectrum of 27 in acetone- $d_6$  (125 MHz).



Figure S50. The HMQC spectrum of **27** in acetone- $d_6$  (500 MHz).



Figure S51. The <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **27** in acetone- $d_6$  (500 MHz).





Figure S52. The HMBC spectrum of 27 in acetone- $d_6$  (500 MHz).



Figure S53. The NOESY spectrum of 27 in acetone- $d_6$  (500 MHz).



Figure S54. The <sup>1</sup>H NMR spectrum of **28** in acetone- $d_6$  (500 MHz).





Figure S56. The <sup>13</sup>C NMR spectrum of **28** in DMSO- $d_6$  (125 MHz).



Figure S57. The HMQC spectrum of  $\mathbf{28}$  in DMSO- $d_6$  (500 MHz).



Figure S58. The  $^{1}$ H- $^{1}$ H COSY spectrum of **28** in DMSO- $d_{6}$  (500 MHz).





Figure S59. The HMBC spectrum of **28** in DMSO- $d_6$  (500 MHz).



Figure S60. The NOESY spectrum of 28 in DMSO- $d_6$  (500 MHz).





Figure S61. The <sup>1</sup>H NMR spectrum of **29** in CDCl<sub>3</sub> (300 MHz).


Figure S62. The <sup>13</sup>C NMR spectrum of **29** in CDCl<sub>3</sub> (75 MHz).



Figure S63. The DEPT135 spectrum of **29** in CDCl<sub>3</sub> (75 MHz).



Figure S64. The HMQC spectrum of **29** in CDCl<sub>3</sub> (300 MHz).



Figure S65. The  ${}^{1}\text{H}-{}^{1}\text{H}$  COSY spectrum of **29** in CDCl<sub>3</sub> (300 MHz).



Figure S66. The HMBC spectrum of  $\mathbf{29}$  in CDCl<sub>3</sub> (300 MHz).



Figure S67. The ROESY spectrum of **29** in CDCl<sub>3</sub> (500 MHz).



Figure S68. The reverse-phase HPLC analysis of the extract (column: Allsphere ODS-2.5 mm (250×4.6 mm), Waters 2487, Dual λ absorbance detector; mobile phase: MeOH/H<sub>2</sub>O=80/20 (v/v); flow rate: 1.0 mL/min). (a) MeCN-soluble extracts of the fungus, which was cultured on liquid medium until 22 day. (b) daeschol A (5). (c) dalesconol A.



Figure S69. The chiral HPLC chromatograms of 16.



Figure S70. The chiral HPLC chromatograms of 22.



<Column Performance Report>

| Peak No. | Time  | Area   | Area % | Plate number | Tailing | Resolution |
|----------|-------|--------|--------|--------------|---------|------------|
| 1        | 4.211 | 320249 | 50.7   | 7859         | 1.20    |            |
| 2        | 5.211 | 311286 | 49.3   | 7726         | 1.15    | 4.68       |

Figure S71. The chiral HPLC chromatograms of 23.



Figure S72. The CD spectra of (+)-5 and (-)-5 in MeOH.



Figure S73. The CD spectra of (+)-15 and (-)-15 in MeOH.



Figure S74. The CD spectra of (+)-16 and (-)-16 in MeOH.



Figure S75. The CD spectra of (+)-22 and (-)-22 in MeOH.



Figure S76. The CD spectra of (+)-23 and (-)-23 in MeOH.



Figure S77. The most important molecular orbitals of the optimized conformer of (8R, 19R, 28R, 29S)-5 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).



Figure S78. The most important molecular orbitals of the optimized conformer of (2R, 3S)-15 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).



Figure S79. Plot of the most important molecular orbitals of the optimized conformer of (2R, 3R, 2'R)-23 at B3LYP/6–31G(d) level in the PCM model (CH<sub>3</sub>OH solvent,  $\varepsilon$ =32.63).

## **Supplementary References**

- Zhang,Y. L.; Ge, H. M.; Zhao,W.; Dong, H.; Xu, Q.; Li, S. H.; Li, J.; Zhang, J.; Song, Y. C.; Tan, R. X. Angew. Chem. 2008, 120, 5907–5910; Angew. Chem. Int. Ed. 2008, 47, 5823–5826.
- (2) Patra, A.; Ghosh, G. P.; Sengupta, K.; Nath, S. Magn. Reson. Chem. 1987, 25, 734-736.
- (3) Lin, C. M.; Huang, S. T.; Lee, F. W.; Kuo, H. S.; Lin, M. H. Bioorgan. Med. Chem. 2006, 14, 4402–4409.
- (4) Liu, Z. B.; Sun, Y. S.; Wang, J. H.; Zhu, H. F.; Zhou, H. Y.; Hu, J. N. Wang, J. Sep. Purif. Technol. 2008, 64, 247–252.
- (5) Islam, M. S.; Ishigami, K.; Watanabe, H. Tetrahedron 2007, 63 1074–1079.
- (6) Bode, H. B.; Zeeck, A. Phytochemistry 2000, 54, 597-601.
- (7) Gu, W.; Ge, H. M.; Song, Y. C.; Ding, H.; Zhu, H. L.; Zhao, X. A.; Tan, R. X. J. Nat. Prod. 2007, 70, 114-117.
- (8) Bell, A. A.; Stipanovic, R. D.; Puhalla, J. E. Tetrahedron 1976, 32, 1353-1356.
- (9) Gremaud, G.; Tabacchi, R. Phytochemistry 1996, 42, 1547-1549.
- (10) Iwasaki, S.; Muro, H.; Sasaki, K.; Nozoe, S.; Okuda, S.; Sato, Z. Tetrahedron Lett. 1973, 37, 3537-3542.
- (11) Venkatasubbaiah, P.; Chilton, W. S. J. Nat. Prod. 1991, 54, 1293-1297.
- (12) Dai, J. Q.; Krohn, K.; Flörke, U.; Draeger, S.; Schulz, B.; Szikszai, A. K.; Antus, S.; Kurtán, T.; Ree, T. V. Eur. J. Org. Chem. 2006, 15, 3498–3506.
- (13) Dai, J. Q.; Krohn, K.; Draeger, S.; Schulz, B. Eur. J. Org. Chem. 2009, 10, 1564-1569.
- (14) Nicolet, B.; Tabacchi, R. International Reinhardsbrunn Symposium, 12th, Friedrichroda, Germany, May 24-29, 1998 (1999), Meeting Date 1998, 469-476.
- (15) Wen, L.; Du, D. S.; She, Z. G.; Guo, Z. Y.; Lin, Y. C.; Vrijmoed, L. L. P. Nat. Prod. Res. Dev. 2007, 19, 952-955.
- (16) Ichihara, A.; Hashimoto, M.; Hirai, T.; Takeda, I.; Sasamura, Y.; Sakamura, S.; Sato, R.; Tajimi, A. *Chem. Lett.* 1989, *8*, 1495-1498.
- (17) Wu, Z. C.; Li, D. L.; Chen, Y. C.; Zhang, W. M. Hel. Chim. Acta 2010, 93, 920-924.

## **Complete reference 16:**

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr, J. A.;
Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J.
B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.;
Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.
L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.;
Chen, W.; Wong, M. W. Gonzalez, C.; Pople, J. A.. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford CT, 2004.