
Carrier Generation and Collection in CdS/CdSe Sensitized SnO₂ Solar Cells Exhibiting Unprecedented Photocurrent Densities: Supporting Information

Md. Anower Hossain, James R. Jennings, Koh Zhen Yu and Qing Wang

Department of Materials Science and Engineering, Faculty of Engineering, NUSNNI-NanoCore, National University of Singapore, Singapore 117576

Optical characteristics of CdS/CdSe sensitized TiO₂ layers. Figure S1 shows the optical density spectrum of a 5.4 μ m thick TiO₂ layer sensitized with CdS and CdSe, each deposited by 5 successive cycles of SILAR.

Figure S1. Optical density spectrum for a 5.4 μ m thick CdS/CdSe sensitized TiO₂ electrode.

Based upon these data, the light harvesting efficiency of the electrode is predicted to be greater than 99% between 400 and 600 nm for the optimized 9 μ m thick TiO₂ layers used to fabricate SSCs.

Equivalent circuit used for analysis of impedance spectra. Figure S2 shows the equivalent circuit used for analysis of impedance spectra. Here R_s is the series resistance, C_{sub} is the substrate capacitance, r_t is the distributed transport resistance, c_{μ} is the distributed capacitance of the oxide layer, r_{ct} is the distributed charge transfer resistance, Z_d is a Warburg impedance, R_{Pt} is the resistance of the Pt-coated cathode and C_{Pt} is the capacitance of the cathode. The lower case resistances and capacitances are related to the total resistances and capacitance of the oxide layer (of unit area) by $R_t = r_t d$, $C_{\mu} = c_{\mu} d$ and $R_{ct} = r_{ct}/d$.

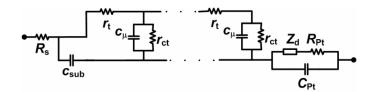


Figure S2. Equivalent circuit used for fitting impedance spectra.