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Generation of correlated stochastic forces by autoregressive se-

ries

This appendix details the algorithm used to generate the environment-induced forces term Fr in the

generalized Langevin equation (GLE), eq. (9) of the accompanying article, for an arbitrary friction

kernel, based on the work of references1,2.

The fluctuations of Fr are modeled as a stochastic process with the required statistical properties

that Fr has a zero average value and that its tcf is be proportional to the applied friction kernel

through eq. (10) of the article. While MD simulations have exposed deviations to the generally

assumed gaussian distribution3,4, the gaussian choice is employed in this study.

In the autoregressive method1,2,5, a new occurrence of Fr is determined by linear prediction

from previous Fr values, i.e., at a given time t = n∆t, where ∆t is the integration time step and

n is the time step number, Fr for one trajectory and one coordinate is given by a linear combina-

tion of previously occurred values for that trajectory and a gaussian random number ε with zero

expectation value (white noise)

Fr(n∆t) =
min(p,n)

∑
i=1

aiFr((n− i)∆t)+ ε(n∆t). (1)

Here ai are coefficients termed generators which have to be calculated, and p is the model order

corresponding to the maximum number of generators to be used. Equations for the coefficients can

be obtained by multiplying (1) by Fr(n∆t) and taking the ensemble average to obtain

〈Fr(n∆t) ·Fr(n∆t)〉=
min(p,n)

∑
i=1

〈aiFr((n− i)∆t) ·Fr(n∆t)〉+ 〈ε(n∆t) ·Fr(n∆t)〉 . (2)

Since the generators ai are the same for all the ensemble and are constants for given values of p

and n, they can be factored out of the correlation under the sum. Further the random number ε is
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uncorrelated with the Fr value and the last term in (2) is thus zero, so that eq. (2 can be written

〈Fr(n∆t) ·Fr(n∆t)〉=
min(p,n)

∑
i=1

ai 〈Fr((n− i)∆t) ·Fr(n∆t)〉 . (3)

It is now noted that the stochastic force tcf is related to the friction kernel by eq. (10) of the article,

which in this work is taken as a specific analytic form and can thus be calculated at any time value.

By taking a number of equations of the form of (3) equal to the smallest value between n and p, a

system of linear equations is obtained from which all the generators can be obtained. This system

of equations, called Yule-Walker equations5, can be written in matrix form



γ0 γ1 · · · γmin(p,n)−1

γ−1 γ0 · · · γmin(p,n)−2
...

... . . . ...

γ−min(p,n)+1 γ−min(p,n)+2 · · · γ0





a1

a2

...

amin(p,n)


=



γ1

γ2

...

γmin(p,n)


, (4)

where γi = 〈Fr(0) ·Fr(i∆t)〉 and since tcfs are even with respect to time, γ−i = γi. The matrix

in (4) is thus symmetric and has a Toeplitz structure6. There are very efficient algorithms for

solving linear systems with such a structure6. The greatest concern in solving the Yule-Walker

equations has however not been computational efficiency, but numerical stability7. In fact for

the cases studied in this thesis the matrix in eq. (4) is ill-conditioned, the system of equations is

numerically unstable and very sensitive to rounding errors. This means that small variations in

the matrix values have very significant effects on the values of the generators, and different sets of

values will be obtained in using different numerical methods. In order to minimize this problem,

the systems of equations (4), and the full procedure of determining Fr values, was solved using an

arbitrary precision numerical implementation8 using 60 digits of precision. It is however noted that

differing sets of generators obtained with different numerical methods provide a solution within a

reasonable numerical accuracy to eq. (4), and since the generators bear no physical significance,

merely providing an instrument to obtain Fr values from eq. (1), their exact determination is not
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crucial for the method.

In order to calculate the stochastic force value from eq. (1), apart from the generators values,

it is required to determine the standard deviation σε associated with the gaussian random number

ε . This can be done by introducing the expression for Fr(n∆t) into the last term in eq. (2) which,

by noting that ε(n∆t) is an independent random number uncorrelated to any value of Fr, yields

〈Fr(n∆t) ·Fr(n∆t)〉=
min(p,n)

∑
i=1

ai 〈Fr((n− i)∆t) ·Fr(n∆t)〉+ 〈ε(n∆t) · ε(n∆t)〉 . (5)

The last term in eq. (5 is the second central moment (variance) of the distribution of the distribution

of ε(n∆t) which is the quantity sought. By rearranging eq. (5), one has

σε
2(n∆t) = γ0−

min(p,n)

∑
i=1

aiγi, (6)

where, as before, γi = 〈Fr(0) ·Fr(i∆t)〉. The terms in the product under the sum have the same

index, in contrast to eq. (1).

The model order p in eq. (1) also needs to be determined. It is expected that the larger the

value of p is, the more accurate will be the tcf of the stochastic forces with respect to the target

function. However, the maximum value of p is limited by the stability of the autoregressive method

described by eq. (1) itself. In fact, it was found that for sufficiently high values of p the values

of Fr start to diverge, reaching absolute values many orders of magnitude larger than the target

variance
〈
Fr(0)2〉. Further, the maximum model order before divergence increases with the time

step, and for the friction kernels used is a relatively small number (p < 10). In the present study, for

simulations involving friction, the largest time step deemed reasonable was used, of value 0.48fs.

For such low model orders, with generator values calculated from eq. (4), the quality of the

stochastic forces tfcs obtained from this method is poor, especially for long times. In order to

improve the quality of the generators, the procedure suggested in1 is followed, by which for a time

step n≤ p the generators are determined from eq. (4), but for the following time steps the system
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of linear eq. (4) is replaced by a least squares problem of the form



γ0 γ1 · · · γmin(p,n)−1

γ−1 γ0 · · · γmin(p,n)−2
...

... . . . ...

γ−p+1 γ−p+2 · · · γ0

...
... . . . ...

γ−min(m,n)+1 γ−min(m,n)+2 · · · γp−min(m,n)





a1

a2

...

ap


=



γ1

γ2

...

γp

...

γmin(m,n)


, (7)

where m is a fixed number greater than p. From eq. (7) generators (p in number) are obtained

which are a best fit to reproduce the Fr tcf up to a time equal to m∆t. For the simulations presented

here the values p = 8 and m = 80 were used for all friction kernels.

Equation (7) determines approximate values for the generators ai and in this sense eq. (6) is no

longer exact for times greater than p∆t. σε is a rapid decaying function of time for values t ≤ p∆t

but exponentially increases for values t > p∆t. This problem does not affect the shape of Fr tcf, but

does affect its normalization. In this way, after all the values of Fr for the length of the simulation

are determined, they have to be rescaled so as to agree with the required value of
〈
Fr(0)2〉.

Given the behaviour of σε with time, it is expected that the aforementioned issues with normal-

ization of the Fr tcf will be relevant after an induction period but less significant for initial times.

In order to obtain an homogeneous magnitude of Fr (to be rescaled) a cut-off to the initial values

is applied which should be proportional to the time scale of the target tcf and to the model order

p. For gaussian Fr tcf values obtained from eq. (1) for time values t < p∆t×σ (where σ here is

the standard deviation of the gaussian) are rejected. For tcf of the form eq. (11) of the article the

t < p∆t/α cut-off is used.
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Energy evolution on the PSB model including dissipation

Figure 1 presents the evolution of the kinetic energy of each coordinate of the PSB model in

solution, with time dependent dissipative effects included.
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Figure 1: Excited (S1) and ground (S0) state evolution of the kinetic energy on each of the three
model coordinates, for water and acetonitrile solvents. Motion on each coordinate is governed by
a generalized Langevin equation with friction kernels defined in Sec. 3 of the article. (Note the
difference in scale for excited and ground state).

The main difference in Figure 1 between the two solvent cases is the clear time scale difference

of the solvent coordinate z motion, faster in the case of water. In the excited state the solvent

starts out of equilibrium, the kinetic energy of the solvent coordinate rises as the solvent is set into

motion, then lowers as the solvent reaches the equilibrium position (compare with Figure 5 of the

article). A less apparent difference between the two solvent cases, is that oscillatory features of the

torsional coordinate θ are better preserved for CH3CN than for H2O.

For both solvents, the kinetic energy in the bond length alternation (BLA) coordinate r, starts

with a clear oscillatory pattern which evolves to a stationary value as dephasing of the vibrations

occurs. Still in the excited state, the kinetic energy in θ rises as the trajectories go down the

potential energy well (see Figure 13 of the article) and then reaches a stationary value. This value
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corresponds to the average kinetic energy of the isomerization torsional motion on the excited state

before the conical intersection (CI) is reached.

In the ground state the kinetic energy of θ starts at a very high value (higher than the plateau

value in the excited state) and then decreases rapidly. Two factors contribute for this behaviour.

First, is the fact that the ground state is first populated by the molecules which reach the CI at the

twisted geometry first (see Figure 13) of the article, which corresponds to the fraction of molecules

with the higher kinetic energy on this coordinate, and as slower molecules reach the ground state

the average kinetic energy decreases. Second, is the friction dissipative effect included in the

dynamics. In the ground state, after some oscillations, a steady increase of the kinetic energy of

r is observed. This is due to the energy transfer from the other degrees of freedom of the model,

namely torsion (see the shape of the free energy surfaces, Figure 2 of the article). Friction is not

effective in removing energy from r in the time scale studied.
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