Supporting Information

Idling Time of Motile Bacteria Contributes to Retardation and Dispersion in Sand Porous Medium

Jun Liu^{\dagger}, Roseanne M. Ford ${ }^{\dagger *}$, and James A. Smith ${ }^{\ddagger}$${ }^{\dagger}$ Department of Chemical Engineering, ${ }^{\dagger}$ Department of Civil and Environmental Engineering,University of Virginia, Charlottesville, VA, 22904
*Corresponding author phone: (434) 924-6283; fax: (434) 982-2865; email: rmf3f@virginia.eduTotal pages: 5
Total documents: 3
Document S1 Physical characteristics of bacterial strains
Document S2 Packed sand column experimental system setup
Document S3 Bacterial diffusion coefficient determination
Total figures: 2
Figure S1 Images of packed sand column experimental system
Figure S2 P. putida F1 diffusion profiles observed in static capillary assays

Document S1. Physical characteristics of bacterial strains
Based on visual inspection of the bacteria under a microscope prior to injecting into the column, the sizes of all E. coli strains were approximately $2 \mu \mathrm{~m}$ in length and $1 \mu \mathrm{~m}$ in diameter, with the exception of the smooth-swimming mutants HCB437, which were noticeably larger. A previous report by Vigeant et al. (1) indicated HCB437 to be $5 \mu \mathrm{~m}$ in length and $2 \mu \mathrm{~m}$ in diameter.

From previous work in our laboratory (unpublished) zeta potentials were calculated from electrophoretic mobility data for several of the E. coli strains in motility buffer at an ionic strength of 0.2 M: $\mathrm{HCB} 1=-15.63 \mathrm{mV}, \mathrm{HCB} 136=-15.82 \mathrm{mV}, \mathrm{HCB} 359=-15.43 \mathrm{mV}$, and $\mathrm{HCB} 437=-16.02 \mathrm{mV}$.

The swimming speed of P. putida PRS2000 is $44 \mu \mathrm{~m} / \mathrm{s}$ (2) and E. coli HCB1 is $22.8 \mu \mathrm{~m} / \mathrm{s}$ (3). The run times are 0.63 s for P. putida F 1 (4) and 1.24 for E. coli HCB 1 (3). The turn angle distributions are bimodal for P. putida F 1 with an average turn angle of 85 ± 50 degrees (4) and unimodal for E. coli HCB1 with an average turn angle of 70 ± 39 degrees (3).

Document S2. Packed sand column experimental system setup
Figure S1 displays the packed sand column experimental system setup.

Figure S1. (a) Image of a 1.5 cm diameter, 6.8 cm long Omnifit glass chromatography column with 1.5 cm diameter polystyrene discs at two ends. (b) Image of packed column experimental setup.

Document S3. Bacterial diffusion coefficient determination

Figure S2 exhibits P. putida F1 bacterial random motility coefficient $\left(\mu_{0}\right)$ determined through capillary assays.

Figure S2. P. putida F1 initial 2-min and final 20-min light scattering images observed in static capillary assays (a) and corresponding normalized concentration profiles (exp data in b) with 1-D transport model fitting curve (fitting curve in b). The best fitted bacterial random motility coefficient $\left(\mu_{0}\right)$ is $3.2 \pm 1.2 \times 10^{-6} \mathrm{~cm}^{2} / \mathrm{s}$. The number of replicate experiments is indicated by n .

References:

(1) Vigeant, M. A.-S., M. Wagner, L. K. Tamm and R. M. Ford, Nanometer distances between swimming bacteria and surfaces measured by TIRAF microscopy. Langmuir, 2001, 17, 2235-2242.
(2) Harwood, C. S.; Fosnaugh, K.; Dispensa, M. Flagellation of Pseudomonas putida and analysis of its motile behavior. J. Bacteriol. 1989, 171, 4063-4066.
(3) Lewus, P.; Ford, R. M. Quantification of random motility and chemotaxis bacterial transport coefficients using individual-cell and population-scale assays. Biotechnol. Bioeng. 2001, 75, 292-304.
(4) Duffy, K. J., and Ford, R. M. Turn angle and run time distributions characterize swimming behavior for Pseudomonas putida. J. Bacteriol. 1997, 179, 1428-1430.

