1 Supporting Information

2	
3	Idling Time of Motile Bacteria Contributes to Retardation and Dispersion
4	in Sand Porous Medium
5	
6	Jun Liu [†] , Roseanne M. Ford ^{†*} , and James A. Smith [‡]
7	[†] Department of Chemical Engineering, [‡] Department of Civil and Environmental Engineering,
8	University of Virginia, Charlottesville, VA, 22904
9	*Corresponding author phone: (434) 924-6283; fax: (434) 982-2865; email: <u>rmf3f@virginia.edu</u>
10	
11	Total pages: 5
12	Total documents: 3
13	Document S1 Physical characteristics of bacterial strains
14	Document S2 Packed sand column experimental system setup
15	Document S3 Bacterial diffusion coefficient determination
16	Total figures: 2
17	Figure S1 Images of packed sand column experimental system
18	Figure S2 <i>P. putida</i> F1 diffusion profiles observed in static capillary assays
19	
20	
21	
22	

1 **Document S1**. Physical characteristics of bacterial strains

2	Based on visual inspection of the bacteria under a microscope prior to injecting into the column, the
3	sizes of all <i>E. coli</i> strains were approximately 2 μ m in length and 1 μ m in diameter, with the exception
4	of the smooth-swimming mutants HCB437, which were noticeably larger. A previous report by Vigeant
5	et al. (1) indicated HCB437 to be 5 μ m in length and 2 μ m in diameter.
6	From previous work in our laboratory (unpublished) zeta potentials were calculated from
7	electrophoretic mobility data for several of the E. coli strains in motility buffer at an ionic strength of
8	0.2 M: HCB1 = -15.63 mV, HCB136 = -15.82 mV, HCB359 = -15.43 mV, and HCB437 = -16.02 mV.
9	The swimming speed of <i>P. putida</i> PRS2000 is 44 μ m/s (2) and <i>E. coli</i> HCB1 is 22.8 μ m/s (3). The
10	run times are 0.63 s for <i>P. putida</i> F1 (4) and 1.24 for <i>E. coli</i> HCB1 (3). The turn angle distributions are
11	bimodal for <i>P. putida</i> F1 with an average turn angle of 85 ± 50 degrees (4) and unimodal for <i>E. coli</i>
12	HCB1 with an average turn angle of 70 ± 39 degrees (3).
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	

Document S2. Packed sand column experimental system setup

2 Figure S1 displays the packed sand column experimental system setup.

- 12 cm diameter polystyrene discs at two ends. (b) Image of packed column experimental setup.

- _ -

1 **Document S3**. Bacterial diffusion coefficient determination

Figure S2 exhibits *P. putida* F1 bacterial random motility coefficient (μ₀) determined through capillary
assays.

Figure S2. *P. putida* F1 initial 2-min and final 20-min light scattering images observed in static capillary assays (a) and corresponding normalized concentration profiles (exp data in b) with 1-D transport model fitting curve (fitting curve in b). The best fitted bacterial random motility coefficient (μ_0) is $3.2 \pm 1.2 \times 10^{-6}$ cm²/s. The number of replicate experiments is indicated by n.

15

16

- 17
- 18
- 19
- 20
- 21
- 22

1 **References:**

- 2 (1) Vigeant, M. A.-S., M. Wagner, L. K. Tamm and R. M. Ford, Nanometer distances between
 3 swimming bacteria and surfaces measured by TIRAF microscopy. *Langmuir*, 2001, *17*, 2235-2242.
- 4 (2) Harwood, C. S.; Fosnaugh, K.; Dispensa, M. Flagellation of *Pseudomonas putida* and analysis of its
- 5 motile behavior. J. Bacteriol. **1989**, 171, 4063-4066.
- 6 (3) Lewus, P.; Ford, R. M. Quantification of random motility and chemotaxis bacterial transport
- 7 coefficients using individual-cell and population-scale assays. *Biotechnol. Bioeng.* **2001**, *75*, 292-304.
- 8 (4) Duffy, K. J., and Ford, R. M. Turn angle and run time distributions characterize swimming behavior
- 9 for *Pseudomonas putida*. J. Bacteriol. **1997**, 179, 1428-1430.

10

11