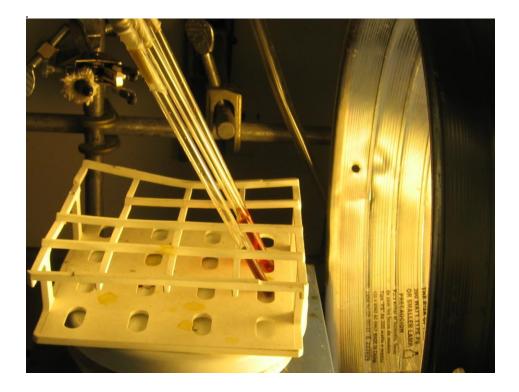
Supporting Information

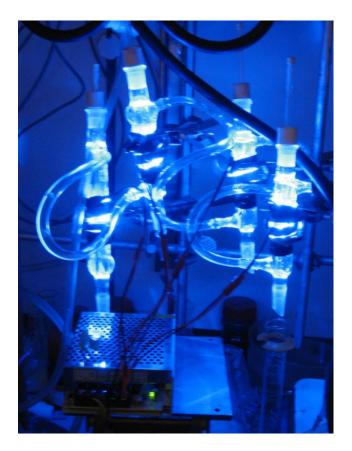
Investigation into the Rate of Photoreductive Alkyl Radical Generation

R. Stephen Andrews, Jennifer J. Becker, and Michel R. Gagné* University of North Carolina at Chapel Hill, Department of Chemistry, Chapel Hill, NC 27599, USA and U.S. Army Research Office, P.O. Box 12211, Research Triangle Park, North Carolina 27709, mgagne@unc.edu


Experimental Section

General. All reagents were reagent grade quality and used as received from Aldrich or Acros unless otherwise indicated. All reactions were conducted under inert conditions (Ar or N₂) using flame dried or oven dried glassware cooled under inert atmosphere unless otherwise indicated Anhydrous acetonitrile (MeCN or CD₃CN) and N,N-diisopropylethylamine (EtNⁱPr₂) were distilled from CaH₂ prior to use. α -D-glucopyranosyl bromide tetrabenzoate (1) was synthesized according to a literature procedure.¹ Ru(bpy)₃Cl₂ and Ru(dmb)₃Cl₂ were synthesized by reported procedures,² and Ru(bpy)₃(PF₆)₂ and Ru(dmb)₃(PF₆)₂ were synthesized in an analogous manner to reported anion metatheses.³ All NMR spectra were recorded on Bruker Avance 600 MHz with Cryoqnp probe, a Bruker 500 MHz with bbo probe, or a 400 MHz with bbfo probe using Topshim at STP. All deuterated solvents were used as received from Cambridge Isotope Laboratories, Inc, unless otherwise noted. ¹H NMR and ¹³C NMR chemical shifts are reported in δ units, parts per million (ppm) relative to the chemical shift of residual solvent or an external standard. Reference peaks for chloroform-*d* in ¹H NMR and ¹³C NMR spectra were set at 7.26 ppm and 77.0 ppm, respectively. The reference peak for acetonitrile-*d*₃ in ¹H NMR was set at1.94 ppm. Reaction vessels were covered in foil to protect them from light during manipulations prior to irradiation.

Reaction apparatuses.


Compact fluorescent light bulb (14 W):

NMR tubes were placed approximately 8-10 cm away from a 14 W CFL with a focusing cone (see image below).

Blue LEDs:

NMR tubes were placed inside a reflux condenser around which 12 inch blue LED light strips (from <u>www.creativelightings.com</u>) were wrapped in a 5 cm vertical span (see image below). Four of these reflux condensers were placed in serial, and water was used to keep the reactions at room temperature (23 °C \pm 1 °C), as the LED strips generated significant amounts of heat. The flow of the water was regulated to keep the temperature between the first and fourth reflux condensers within 1 °C of each other.

Procedures.

Varying concentration of ^tBuSH:

A 10 mL round bottom flask under Ar was charged with **1** (201 mg, 0.305 mmol), $EtN^{i}Pr_{2}$ (160 µL, 0.915 mmol, 3 eq), $Ru(bpy)_{3}(PF_{6})_{2}$ (13 mg, 0.015 mmol), 1,3,5-trimethoxybenzene (41.6 mg as an internal standard), and 2.5 mL CD₃CN. 500 µL of this solution was transferred to oven dried NMR tubes containing 7 µL, 14 µL, 34 µL, and 68 µL of 2-methyl-2-propanethiol, each. The NMR tubes were degassed by three freeze-pump-thaw cycles, and the reactions were irradiated with a 14 W compact fluorescent light bulb for 3 hours. ¹H NMR monitoring (d₁ = 5 µsec) before and after the reaction was used to determine the % conversion.

[tBuSH] (mM)	0.12	0.24	0.57	1.06
% Conversion of 1	49	51	48	47

Average % conversion: $48.8 \pm 3.5\%$

Varying concentration of 1:

A 10 mL round bottom flask under Ar was charged with 2-methyl-2-propanethiol (69 μ L, 0.61 mmol) EtN¹Pr₂ (160 μ L, 0.915 mmol, 3 eq), Ru(bpy)₃(PF₆)₂ (13 mg, 0.015 mmol), 1,3,5-trimethoxybenzene (42.1 mg as an internal standard), and 2.5 mL CD₃CN. 500 μ L of this solution was transferred to oven dried NMR tubes containing 10.1 mg, 19.7 mg, 40.4 mg, and 82.0 mg of **1**, each. The NMR tubes were degassed by three freeze-pump-thaw cycles, and the reactions were irradiated with a 14 W compact fluorescent light bulb for 3 hours. ¹H NMR monitoring (d₁ = 5 μ sec) before and after the reaction was used to determine the % conversion.

[1] (mM)	0.031	0.060	0.122	0.249
mmol of 1 consumed	0.014	0.020	0.026	0.041

Varying concentration of EtNⁱPr₂:

1 (809.7 mg, 1.228 mmol), 2-methyl-2-propanethiol (275 μ L, 2.44 mmol), Ru(bpy)₃(PF₆)₂ (51.0 mg, 0.059 mmol), and 1,3,5-trimethoxybenzene (~200 mg as an internal standard) was brought to a final volume of 5 mL in CD₃CN. Oven dry NMR tubes were charged with 250 μ L of this stock solution and 10 μ L, 32 μ L, 65 μ L, and 100 μ L of EtNⁱPr₂. The reactions were then diluted to a final volume of 0.5 mL with CD₃CN, and the solutions were degassed by three freeze-pump-thaw cycles. The reactions were then irradiated with a 14 W compact fluorescent light for 3 hours. ¹H NMR monitoring (d₁ = 5 μ sec) before and after the reaction was used to determine the % conversion.

[EtN ⁱ Pr ₂] (mM)	0.12	0.37	0.75	1.15
% conversion of 1 (CFL)	37.6	54.5	63.3	65.5

Varying amount of cosolvent:

1 (809.2 mg, 1.228 mmol), EtNⁱPr₂ (638 μ L, 3.66 mmol), 2-methyl-2-propanethiol (275 μ L, 2.44 mmol), Ru(bpy)₃(PF₆)₂ (51.0 mg, 0.059 mmol), and 1,3,5-trimethoxybenzene (~200 mg as an internal standard) was brought to a final volume of 5 mL in CD₃CN. Oven dry NMR tubes were charged with 250 μ L of this stock solution and 10 μ L, 25 μ L, 50 μ L, and 100 μ L of cosolvent was added (see table below). The reactions were then diluted to a final volume of 0.5 mL with CD₃CN, and the solutions were degassed by three freeze-pump-thaw cycles. The reactions

were then irradiated with blue LEDs for 3 hours. ¹H NMR monitoring ($d_1 = 5 \mu sec$) before and after the reaction was used to determine the % conversion.

Cosolvent	2% cosolvent	5% cosolvent	10% cosolvent	20% cosolvent
MeOH	23.3	23.0	22.4	26.3
DMSO	23.9	23.5	а	а
Ethylene Glycol	28.3	29.1	ND	37.4
H ₂ O	33.2	43.5	55.7	b

Table 1: % Conversion of 1 for various cosolvent concentrations

ND: Not determined. *a*: At higher concentrations of DMSO, the reaction suffered from hydrolysis of the substrate, and conversion was not determined for these concentrations. *b*: **1** was insoluble in >10% aqueous acetonitrile.

Varying concentration of catalyst under anhydrous conditions (representative example):

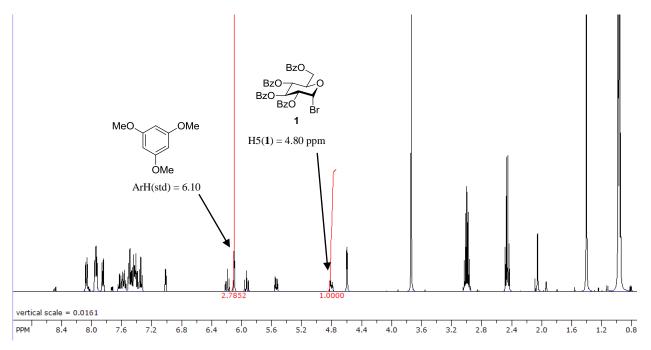
1 (807.2 mg, 1.22 mmol), $EtN^{i}Pr_{2}$ (638 µL, 3.66 mmol), 2-methyl-2-propanethiol (275 µL, 2.44 mmol), and 1,3,5trimethoxybenzene (~200 mg as an internal standard) was brought to a final volume of 5 mL in CD₃CN. Oven dry NMR tubes were charged with 250 µL of this stock solution and varying amounts of a stock solution of $Ru(bpy)_{3}(PF_{6})_{2}$ was added (see manuscript for final concentrations). The reactions were then diluted to a final volume of 0.5 mL with CD₃CN, and the solutions were degassed by three freeze-pump-thaw cycles. The reactions were then irradiated with a 14 W compact fluorescent light bulb or blue LEDs for 3 hours. ¹H NMR monitoring (d₁ = 5 µsec) before and after the reaction was used to determine the % conversion.

Varying concentration of catalyst under aqueous conditions:

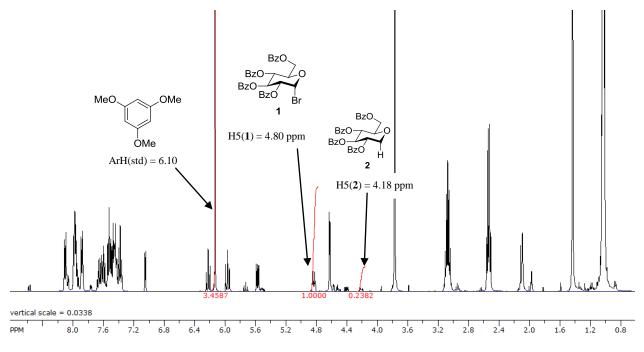
1 (801.6 mg, 1.215 mmol), EtNⁱPr₂ (638 μ L, 3.66 mmol), 2-methyl-2-propanethiol (275 μ L, 2.44 mmol), and 1,3,5trimethoxybenzene (~200 mg as an internal standard) was brought to a final volume of 5 mL in CD₃CN. Oven dry NMR tubes were charged with 250 μ L of this stock solution, and varying amounts of a stock solution of Ru(bpy)₃(PF₆)₂ was added (see manuscript for final concentrations and results). The reactions were then diluted to a final volume of 0.5 mL with CD₃CN, and an additional 50 μ L of H₂O was added. The solutions were degassed by three freeze-pump-thaw cycles. The reactions were then irradiated with a 14 W compact fluorescent light bulb or blue LEDs for 3 hours. ¹H NMR monitoring ($d_1 = 5 \mu sec$) before and after the reaction was used to determine the % conversion.

Blue LED apparatus control experiment:

To determine the consistency of the LED apparatus (see picture above), 4 trial experiments were conducted, one in each of the LED "chambers". A 10 mL round bottom flask under Ar was charged with **1** (204 mg, 0.309 mmol), 2-methyl-2-propanethiol (69 μ L, 0.61 mmol), EtNⁱPr₂ (160 μ L, 0.915 mmol), Ru(bpy)₃(PF₆)₂ (12.8 mg, 0.015 mmol), 1,3,5-trimethoxybenzene (43.4 mg as an internal standard), and 2.5 mL CD₃CN. 500 μ L of this solution was transferred to oven dried NMR tubes, which were then degassed by three freeze-pump-thaw cycles, and the reactions were irradiated with blue LEDs for 3 hours. ¹H NMR monitoring (d₁ = 5 μ sec) before and after the reaction was used to determine the % conversion.


Trial #	1	2	3	4
% Conversion of 1	59.8	60.8	61.3	60.8

Average % conversion: $60.7 \pm 1.1\%$


Radical coupling with electron-deficient alkenes (representative procedure):

A dry 10 mL Schlenk tube under Ar was charged with 4 (50 mg, 0.12 mmol), $\operatorname{RuL}_3(\operatorname{PF}_6)_2$ (0.006 mmol), diethyl 1,4dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (HEH, 34 mg, 0.134 mmol) and 1 mL MeCN (for anhydrous reactions) or 0.9 mL MeCN and 0.1 mL H₂O (for aqueous reactions). EtNⁱPr₂ (64 µL, 0.37 mmol) was added, and the heterogeneous solution was degassed by three freeze-pump-thaw cycles. Methyl acrylate (22 µL, 0.24 mmol) was added, and the vessels were irradiated with blue LEDs. Anhydrous reactions were quenched by passing the reaction through a plug of silica in ether and concentrated *in vacuo*. Aqueous reactions were transferred to a separatory funnel with 10 mL EtOAc and 10 mL H₂O. The layers were separated, and the aqueous layer was extracted 3 x EtOAc. The combined organic layers were successively rinsed 1 x HCl (1M), 1 x sat. NaHCO₃(aq), 1 x brine, dried with MgSO₄, filtered, and concentrated *in vacuo*. 1,3,5-trimethoxybenzene was added as a quantitative internal ¹H NMR standard for determination of yield and conversion (d₁ = 5 µsec). Sample 1H NMR for quantitation of % conversion:

Final spectrum (CD₃CN, 400 MHz):

[%] Conversion of **1** = 19.5%

[%] Yield of **2** = 19.2% (98% brsm)

 ¹ Dowlut, M.; Hall, D. G.; Hindsgaul, O. J. Org. Chem. 2005, 70, 9809.
² Broomhead, J. A.; Young, C. G. Inorg. Synth. 1990, 28, 338.
³ Masui, H.; Murray, R. W. Inorg. Chem. 1997, 36, 5118.