Selective and Multiple Functionalization of Pyridines and Alkaloids via Mg- and Zn-Organometallic Intermediates

Milica Jaric, Benjamin A. Haag, Sophia M. Manolikakes and Paul Knochel Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany.

paul.knochel@cup.uni-muenchen.de

Supporting Information
Experimental Details

Table of Contents

Typical Procedures 1-4 S3
Preparation of compounds $\mathbf{4 a}-\mathbf{2 1}$ S5
NMR-Spectra S26

General All reactions were carried out under argon atmosphere in flame-dried glassware. Syringes which were used to transfer anhydrous solvents or reagents were purged with argon prior to use. THF were continuously refluxed and freshly distilled from sodium benzophenone ketyl under nitrogen. Diethyl ether was predried over calcium hydride and dried with the solvent purification system SPS-400-2 from INNOVATIVE TECHNOLOGIES INC ($\mathrm{Al}_{2} \mathrm{O}_{3}, 1-3 \mathrm{~mm}$, ICN, Eschwege, Germany). TMPH, liquid acid chlorides and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ were distilled under argon prior to use. Yields refer to isolated yields of compounds estimated to be $>95 \%$ pure as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(25{ }^{\circ} \mathrm{C}\right)$ and capillary-GC analysis. NMR spectra were recorded on solutions in deuterated chloroform $\left(\mathrm{CDCl}_{3}\right)$ with residual chloroform (δ 7.25 ppm for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\delta 77.0 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$-NMR) or D6-DMSO ($\delta 2.49 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\delta 39.5 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$-NMR). Column chromatographical purifications were performed using SiO_{2} ($0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM) from Merck if not indicated otherwise.

Typical Procedure for the metalation of heteroaromatics with hindered metal amide bases (TP1)

A dry and argon flushed $50-\mathrm{mL}$ Schlenk-tube, equipped with a magnetic stirring bar, was charged with a solution of the corresponding N-heteroarene (1.0 mmol) in dry THF (5 mL) and then cooled to the indicated temperature. A THF-solution of the indicated hindered metal amide base, titrated prior use, was added dropwise and the reaction mixture was stirred at the indicated temperature for the given time. Complete metalation was monitored by GC analysis of reaction aliquots, quenched with iodine in dry THF using decane as internal standard.

Typical Procedure for the $\mathbf{B F}_{3}$-triggered metalation of heteroaromatics with hindered metal amide bases (TP2)

A dry and argon flushed $50-\mathrm{mL}$ Schlenk-tube, equipped with a magnetic stirring bar, was charged with a solution of the corresponding N-heteroarene (1.0 mmol) in dry THF (5 mL) and cooled to $0{ }^{\circ} \mathrm{C} . \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(156 \mathrm{mg}, 1.1 \mathrm{mmol})$ was added dropwise and stirred for 15 min at the same temperature. The reaction mixture was cooled to the given temperature followed by dropwise addition of a THF-solution of the indicated hindered metal amide base titrated prior use, and stirring the reaction mixture at the indicated temperature for the given time. Complete metalation was monitored by GC analysis of reaction aliquots, quenched with iodine in dry THF using decane as internal standard.

Typical Procedure for the BF_{3}-triggered metalation of quinine (7) with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}$ (TP4)

A dry and argon flushed $50-\mathrm{mL}$ Schlenk-tube, equipped with a magnetic stirring bar, was charged with a solution of quinine ($324 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry THF (4 mL) and cooled to $0^{\circ} \mathrm{C}$. MeLi ($0.61 \mathrm{~mL} 1.0 \mathrm{mmol}, 1.63 \mathrm{M}$ in diethyl ether) were added dropwise and stirred for 1 h at $25^{\circ} \mathrm{C}$. After cooling to $0{ }^{\circ} \mathrm{C} \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}, 2.2 \mathrm{mmol})$ was slowly added and stirred for 15 min at the same temperature. After dropwise addition of a THF-solution of the hindered metal amide base $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1}, 1.1 \mathrm{mmol})$, titrated prior use, the reaction mixture was stirred for further 40 min at $0^{\circ} \mathrm{C}$.

Synthesis of 2-(4-methoxyphenyl)-N,N-dimethylpyridin-4-amine (4a):

According to TP2, a mixture of DMAP (2a; $244 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (312 mg , $2.2 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.8 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.2 \mathrm{M}$ in THF$)\left(0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{ZnCl}_{2}(2.2 \mathrm{mmol}, 2.2 \mathrm{~mL}, 1 \mathrm{~m}$ in THF) was added dropwise. After stirring for 30 min at the same temperature $\mathrm{Pd}(\mathrm{dba})_{2}(56 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{P}(o \text {-fur })_{3}(46 \mathrm{mg}, 10 \mathrm{~mol} \%)$ dissolved in THF $(2 \mathrm{~mL})$ were then transferred via cannula to the reaction mixture, followed by the addition of 1-iodo-4-methoxybenzene ($374 \mathrm{mg}, 1.6 \mathrm{mmol}$) dissolved in THF (2 mL). The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 12 h at the same temperature. The reaction mixture was quenched with a sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(9 \mathrm{~mL})$ and NH_{3} (conc.) (1 mL) followed by extraction with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{EtOAc}=$ 1:5) afforded the product $\mathbf{4 a}(295 \mathrm{mg}, 81 \%)$ as yellow solid.
M.p. $\left({ }^{\circ} \mathbf{C}\right): 120.0-125.1$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta / \mathrm{ppm}=8.27(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.91-7.83(\mathrm{~m}, 2 \mathrm{H}), 6.99-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=6.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~s}$, 6 H).
${ }^{13}$ C-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=160.3,156.7,155.2,148.4,132.2,128.3,113.9$, 105.0, 102.8, 55.3, 39.3.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3434,3196,3032,2932,2640,2442,2030,1946$, $1638,1594,1576,1540,1512,1448,1438,1418,1404,1390,1376,1302,1268,1236,1182$, 1172, 1128, 1110, 1060, 1020, 994, 984, 960, 868, 850, 832, 804, 786, 736, 698, 646, 632.

MS (EI, $70 \mathbf{e V}$): m/z (\%) = 228 [$\left.\mathbf{M}^{+}\right](99), 213$ (100), 185 (43), 170 (11), 141 (9), 114 (9), 92 (4).

HRMS (EI) for $\mathbf{C}_{\mathbf{1 4}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{O}$ (228.1263): 228.1258 .

Synthesis of 2-(cyclohex-2-en-1-yl)-5-((S)-1-methylpyrrolidin-2-yl)pyridine (4b):

According to TP2, a mixture of (S)-nicotine ($\mathbf{2 b} ; 162 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(156 \mathrm{mg}$, $1.1 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}\left(1 ; 1.3 \mathrm{~mL}, 1.5 \mathrm{mmol}, 1.2 \mathrm{~m}\right.$ in THF) $\left(0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{mmol}, 1.1 \mathrm{~mL}, 1 \mathrm{~m}$ in THF) was added dropwise. After stirring for 30 min at the same temperature 3-bromocyclohex-1ene ($160 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 12 h at the same temperature. The reaction mixture was quenched with a sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4.5 mL) and NH_{3} (conc.) (0.5 mL) followed by extraction with diethyl ether $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ III, pentane / $\left.\mathrm{Et}_{2} \mathrm{O}=1: 1\right)$ afforded the product $\mathbf{4 b}(223 \mathrm{mg}, 92 \%)$ as red oil.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta /(\mathrm{ppm})=8.43(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.84(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.29(\mathrm{~m}$, $1 \mathrm{H}), 3.03-3.07(\mathrm{~m}, 1 \mathrm{H}), 1.48-2.41(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=164.3,149.0,135.7,135.2,135.1,128.8,128.7$, $121.7,68.7,68.6,56.0,43.7,40.3,35.0,30.6,24.9,22.5,21.1,21.1$.

IR (Diamond-ATR, neat): $\tilde{v}\left(\mathrm{~cm}^{-1}\right): 3018,2934,2874,2858,2836,2774,2720,2664,2362$, 2340, 1734, 1674, 1616, 1596, 1566, 1480, 1456, 1448, 1420, 1400, 1374, 1344, 1332, 1314, 1288, 1250, 1216, 1210, 1152, 1132, 1116, 1086, 1044, 1026, 988, 966, 922, 902, 886, 838, 788, 764, 722, 688, 642, 610.

MS (70 eV, EI) m/z (\%): 242 [M $\left.{ }^{+}\right]$(63), 213 (30), 185 (16), 156 (8), 133 (15), 84 (100), 42 (9).

HRMS (EI) for $\mathbf{C}_{\mathbf{1 6}} \mathbf{H}_{\mathbf{2 2}} \mathbf{N}_{\mathbf{2}}$ (242.1783): 242.1777.

Synthesis of 2-iodo- N, N-dimethylpyridin-4-amine (4c):

According to TP2, a mixture of DMAP (2a; $244 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (312 mg , $2.2 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.8 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.2 \mathrm{~m}$ in THF$)\left(0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and a solution of iodine ($1 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (4 mL) was added and slowly warmed to $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL), NH_{3} (conc.) (1 mL) and a sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, EtOAc) afforded the product 4 c ($323 \mathrm{mg}, 72 \%$) as yellow oil.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=7.89(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43 (dd, $J=6.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=154.8,149.5,119.2,116.4,105.5,39.1$.
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3008,2882,2816,1580,1506,1436,1394,1372$, 1294, 1260, 1220, 1124, 1064, 970, 956, 806, 780, 682.

MS (EI, $70 \mathbf{e V}$): m/z (\%) = $248\left[\mathrm{M}^{+}\right]$(98), 121 (78), 106 (17), 95 (14), 61 (14), 43 (100).
HRMS (EI) for $\mathbf{C}_{7} \mathbf{H}_{9} \mathbf{I N} \mathbf{N}_{\mathbf{2}}$ (247.9810): (247.9808).

Synthesis of 2-chloro-N,N-dimethylpyridin-4-amine (4d):

According to TP2, a mixture of DMAP (2a; $244 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ (312 mg , $2.2 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.8 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.2 \mathrm{~m}$ in THF$)\left(0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. $\mathrm{C}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{3}(412 \mathrm{mg}, 2.2 \mathrm{mmol})$ dissolved in THF (3 mL) was added at $0^{\circ} \mathrm{C}$ and slowly warmed
to $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL) and NH_{3} (conc.) (1 mL) followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{EtOAc}=1: 5$) afforded the product $\mathbf{4 d}$ ($219 \mathrm{mg}, 70 \%$) as yellow oil.
${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=7.94(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.38 (dd, $J=6.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.97 (s, 6H).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=156.0,152.1,148.9,105.8,105.3,39.1$.
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2922,2360,1918,1594,1520,1444,1420,1404$, 1384, 1296, 1270, 1224, 1188, 1134, 1080, 1066, 980, 808, 716, 698, 612.

MS (EI, 70 eV): m/z (\%) = $156\left[\mathrm{M}^{+}\right](66), 155$ (100), 119 (5), 92 (8), 57 (7).
HRMS (EI) for $\mathbf{C}_{7} \mathbf{H}_{\mathbf{9}} \mathbf{C l N} \mathbf{N}_{\mathbf{2}}$ (156.0454): 156.0436.

Synthesis of (4-chlorophenyl)(4-(dimethylamino)pyridin-2-yl)methanone (4e):

According to TP2, a mixture of DMAP ($\mathbf{2 a} ; 244 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}$, $2.2 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}\left(\mathbf{1} ; 1.8 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.2 \mathrm{~m}\right.$ in THF) $\left(0^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$. The reaction mixture was cooled to $-40^{\circ} \mathrm{C}$ and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(2.2 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1 \mathrm{~m}$ in THF) was added and the reaction mixture was stirred for 30 min at the same temperature. Then, 4chlorobenzoyl chloride ($280 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added at $-40^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $25^{\circ} \mathrm{C}$ and was stirred at this temperature for 12 h . The reaction mixture was quenched with a mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(9 \mathrm{~mL})$ and NH_{3} (conc.) (1 mL) and extracted with diethyl ether ($3 \times 40 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{EtOAc}=1: 4$) afforded the product $\mathbf{4 e}(284 \mathrm{mg}, 68 \%)$ as yellow oil.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta / \mathrm{ppm}=8.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.34-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{dd}, J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=193.1,154.4,154.4,148.1,138.5,134.7,132.0$, 127.8, 108.1, 106.8, 38.7.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3088,2918,2818,1918,1662,1584,1540,1504$, $1486,1430,1414,1398,1376,1338,1282,1264,1224,1174,1148,1088,1066,1016,980$, 932, 862, 842, 818, 792, 768, 736, 724, 686.

MS (EI, 70 eV): m/z (\%) = $260\left[\mathrm{M}^{+}\right](66), 245$ (64), 232 (48), 225 (45), 219 (34), 217 (100), 189 (50), 154 (20), 141 (26), 139 (83), 111 (94), 75 (36).

HRMS (EI) for $\mathbf{C}_{\mathbf{1 4}} \mathbf{H}_{\mathbf{1 3}} \mathbf{C l N} \mathbf{2} \mathbf{O}$ (260.0716): 260.0711.

Synthesis of ethyl 2-((4-(2,2,6,6-tetramethylpiperidin-1-yl)pyridin-2-yl)methyl)acrylate

 (4f):

According to TP2, a mixture of 4-(2,2,6,6-tetramethylpiperidin-1-yl)pyridine (2c; 371 mg , $1.7 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(266 \mathrm{mg}, 1.9 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 2.5 \mathrm{~mL}$, $3 \mathrm{mmol}, 1.2 \mathrm{~m}$ in THF) $\left(0^{\circ} \mathrm{C}, 1.5 \mathrm{~h}\right)$. The reaction mixture was cooled to $-40^{\circ} \mathrm{C}$ and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.7 \mathrm{~mL}, 1.7 \mathrm{mmol}, 1 \mathrm{~m}$ in THF) was added and the reaction mixture was stirred for 30 min at the same temperature before ethyl 2-(bromomethyl)acrylate ($386 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added. The reaction mixture was slowly warmed to $25^{\circ} \mathrm{C}$ and was stirred at this temperature for 12 h . The reaction mixture was quenched with a mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL) and NH_{3} (conc.) (1 mL) and extracted with diethyl ether (3 x 40 mL). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ III, pentane $\left./ \mathrm{Et}_{2} \mathrm{O}=4: 1\right)$ afforded the product $\mathbf{4 f}$ ($397 \mathrm{mg}, 71 \%$) as colourless oil.
${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=8.42(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 5.53(\mathrm{~s}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 1.67-1.77(\mathrm{~m}$, 2 H), 1.49-1.59 (m, 4H), 1.22 (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=166.7,159.0,155.5,149.2,138.9,129.0,126.9$, 126.6, 60.7, 54.1, 41.8, 40.6, 29.6, 18.1, 14.1.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2970,2930,2870,1716,1632,1588,1542,1474$, 1456, 1446, 1428, 1378, 1364, 1326, 1294, 1272, 1244, 1186, 1174, 1130, 1096, 1034, 998, 982, 944, 926, 854, 842, 816, 778, 714.

MS (EI, 70 eV): m/z (\%) = $330\left[\mathrm{M}^{+}\right]$(1), 315 (100), 247 (5), 173 (4), 69 (7).
HRMS (EI) for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{3 0}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (330.2307): 330.2310.

Synthesis of 2-chloro-6-iodo- N, N-dimethylpyridin-4-amine (4g):

According to TP2, a mixture of 2 -chloro- N, N-dimethylpyridin-4-amine ($\mathbf{4 c} ; 313 \mathrm{mg}$, $2.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}, 2.2 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 2.5 \mathrm{~mL}$, $3 \mathrm{mmol}, 1.2 \mathrm{M}$ in THF) $\left(0^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and a solution of iodine ($1 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (4 mL) was added and slowly warmed to $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL), NH_{3} (conc.) (1 mL) and a sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, EtOAc / pentane $=1: 1$) afforded the product $\mathbf{4 g}(452 \mathrm{mg}, 80 \%)$ as white solid.
M. p. $\left({ }^{\circ} \mathbf{C}\right): 119.0-120.1$.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=6.84(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.98 ($\mathrm{s}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=156.1,150.2,115.9,115.7,105.4,39.4$.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3114,2928,2806,1584,1500,1428,1416,1396$, 1366, 1346, 1284, 1226, 1160, 1100, 1082, 1068, 984, 964, 808, 754, 702.

MS (EI, $70 \mathbf{e V}$): m/z (\%) = $282\left[\mathrm{M}^{+}\right](100), 155$ (38), 119 (7).
HRMS (EI) for $\mathbf{C}_{\mathbf{7}} \mathbf{H}_{\mathbf{8}} \mathbf{C I I N} \mathbf{2}_{\mathbf{2}}$ (281.9421): 281.9419 .

Synthesis of 2-chloro-6-cyclohex-2-en-1-yl-N,N-dimethylpyridin-4-amine (4h):

According to TP2, a mixture of 2-chloro- N, N-dimethylpyridin-4-amine (4c; 157 mg , $1.0 \mathrm{mmol})$ and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(156 \mathrm{mg}, 1.1 \mathrm{mmol})$ reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.3 \mathrm{~mL}$, $1.5 \mathrm{mmol}, 1.2 \mathrm{M}$ in THF) $\left(0^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{~mL}, 1.1 \mathrm{mmol}, 1 \mathrm{~m}$ in THF) was added dropwise. After stirring for 30 min at the same temperature 3-bromocyclohex-1-ene ($193 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added. The reaction mixture was slowly warmed to $25^{\circ} \mathrm{C}$ and was stirred at this temperature for 12 h . The reaction mixture was quenched with a mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (4.5 mL) and NH_{3} (conc.) (0.5 mL) and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane / EtOAc $=1: 1$) afforded the product 4 h ($185 \mathrm{mg}, 78 \%$) as colourless oil.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta / \mathrm{ppm}=6.32(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 5.91-5.84 (m, 1H), 5.77-5.69 (m, 1H), 3.48-3.38 (m, 1H), $2.96(\mathrm{~s}, 6 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 3 \mathrm{H})$, 1.74-1.54 (m, 3H).
${ }^{13} \mathbf{C}$-NMR (100 MHz, $\mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=165.6,156.6,151.4,129.1,128.5,103.3,103.2$, 43.7, 39.3, 30.3, 25.0, 20.9.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3020,2928,2860,2836,1662,1590,1528,1504$, 1422, 1366, 1326, 1294, 1214, 1184, 1126, 1064, 980, 934, 914, 896, 888, 822, 810, 748, 726, 710.

MS (EI, 70 eV): m/z (\%) = $236\left[\mathrm{M}^{+}\right]$(88), 221 (48), 209 (40), 207 (100), 201 (39), 195 (23), 191 (15), 181 (12), 170 (38), 156 (12), 57 (19), 43 (17).
HRMS (EI) for $\mathbf{C}_{\mathbf{1 3}} \mathbf{H}_{\mathbf{1 7}} \mathbf{C l N} \mathbf{2}$ (236.1080): 236.1076.

Synthesis of (R)-(3-bromo-6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2yl)methanol (6a):

According to $\mathbf{T P 4}$ quinine ($\mathbf{7} ; 648 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with MeLi $(1.23 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.63 M in diethyl ether), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}, 2.2 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.85 \mathrm{~mL}$, $2.2 \mathrm{mmol}, 1.19 \mathrm{~m}$ in THF). 1,2-Dibromo-1,1,2,2-tetrachloroethane ($781 \mathrm{mg}, 2.4 \mathrm{mmol}$) was added and the reaction mixture was stirred for 15 h at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(9 \mathrm{~mL}), \mathrm{NH}_{3}$ (conc.) (1 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ III, isohexane $/$ ethyl acetate $=1: 1$) furnished the product $\mathbf{8 a}$ as off-white solid $(532 \mathrm{mg}, 66 \%$ yield).
M. p. $\left({ }^{\circ} \mathbf{C}\right): 84.2-87.5$.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta /(\mathrm{ppm})=: 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=9.2 \mathrm{~Hz}, 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.25(\mathrm{~m}, 1 \mathrm{H})$, 2.99-2.80 (m, 1H), 2.71-2.45 (m, 2H), 2.32-2.18 (m, 1H), 1.94-1.83 (m, 1H), 1.76-1.56 (m, $2 \mathrm{H}), 1.57-1.36(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=157.4,149.6,144.3,143.9,141.8,131.4$, $128.8,121.5,119.6,114.3,104.2,75.8,60.0,55.7,55.4,42.8,39.6,27.8,27.3,25.8$.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3134,3076,2932,2864,2362,1736,1618,1576$, $1558,1500,1464,1452,1418,1388,1380,1356,1322,1286,1262,1226,1184,1158,1112$,
$1094,1028,988,950,938,912,886,870,858,830,810,784,774,746,714,686,668,648$, 610.

HRMS (ESI) for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 4}} \mathbf{B r N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}\left(403.1016\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$: 403.1014.

Synthesis of (R)-(3-iodo-6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2yl)methanol (6b):

According to TP4 quinine ($\mathbf{7} ; 648 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with MeLi ($1.23 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.63 m in diethyl ether), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}, 2.2 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.85 \mathrm{~mL}$, $2.2 \mathrm{mmol}, 1.19 \mathrm{~m}$ in THF). Iodine ($761 \mathrm{mg}, 3 \mathrm{mmol}$) was added and the reaction mixture was warmed to $25^{\circ} \mathrm{C}$. The reaction solution was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL), NH_{3} (conc.) (1 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ III, isohexane $/$ ethyl acetate $\left.=1: 1\right)$ furnished the product $\mathbf{8 b}$ as off-white solid ($585 \mathrm{mg}, 65 \%$ yield).
M.p. $\left({ }^{\circ} \mathbf{C}\right): 84.8-85.1$.
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta / \mathrm{ppm}=8.80(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27(\mathrm{dd}, J=8.9 \mathrm{~Hz}, 2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.82-5.73(\mathrm{~m}, 1 \mathrm{H}), 5.51-5.44(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=$ $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{dt}, J=7.2 \mathrm{~Hz}, 1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.48(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.86(\mathrm{~m}$, $1 \mathrm{H}), 2.68-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48$ (m, 1H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta / \mathrm{ppm}=156.8,154.6,147.6,144.3,141.0,130.9,129.1$, $121.7,116.5,114.6,104.3,81.0,60.0,55.3,55.1,43.1,39.1,27.2,27.1,24.6$.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3110,2936,2858,2418,2382,2350,2160,2048$, 1736, 1686, 1616, 1542, 1498, 1462, 1452, 1412, 1284, 1260, 1226, 1214, 1180, 1164, 1156,
$1130,1110,1038,1026,986,948,908,884,874,828,808,786,766,744,734,712,674,654$, 640, 622, 612.

MS (EI, 70 eV): 450 [$\left.\mathbf{M}^{+}\right]$(2), 323 (17), 136 (100), 81 (7), 61 (12), 43 (16).
HRMS for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2}} \mathbf{I} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (450.0804): 450.0932.

Synthesis of (R)-(3-allyl-6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2yl)methanol (6c):

According to TP4 quinine ($7 ; 973 \mathrm{mg}, 3.0 \mathrm{mmol}$) reacted with MeLi ($1.84 \mathrm{~mL}, 3.0 \mathrm{mmol}$, 1.63 m in diethyl ether), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(937 \mathrm{mg}, 6.6 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 2.77 \mathrm{~mL}$, $3.3 \mathrm{mmol}, 1.19 \mathrm{~m}$ in THF). $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(3.3 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.0 \mathrm{~m}$ in THF) was added and the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. After addition of allyl bromide (436 mg , 3.6 mmol) the reaction was stirred for 1.5 h at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (14 mL) and NH_{3} (conc.) (2 mL) followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right.$ III, pentane / ethyl acetate $=5: 1$) furnished the compound $\mathbf{8 c}$ as slightly yellow resin ($451 \mathrm{mg}, 40 \%$).
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta /(\mathrm{ppm})=8.42(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 5.95-6.10(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.62(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.44(\mathrm{~m}, 1 \mathrm{H})$, 5.04-5.11 (m, 1H), 4.87-5.01 (m, 3H), 3.88 (s, 3H), 3.63-3.73 (m, 1H), 3.51-3.59 (m, 1H), 3.07-3.22 (m, 2H), 2.84-2.83 (m, 1H), 2.61-2.71 (m, 1H), 2.45-2.54 (m, 1H), 2.18-2.27 (m, $1 \mathrm{H}), 1.87-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.53(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=157.7,147.4,144.2,144.1,142.0,131.3$, $130.2,127.1,121.5,120.5,116.2,114.1,101.0,71.4,60.4,55.8,55.3,51.1,42.3,39.8,37.6$, 35.1, 30.4 .

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3134,3076,2932,2864,2362,1736,1618,1576$, $1558,1500,1464,1452,1418,1388,1380,1356,1322,1286,1262,1226,1184,1158,1112$, 1094, 1028, 988, 950, 938, 912, 886, 870, 858, 830, 810, 784, 774, 746, 714, 686, 668, 648, 610 .

HRMS (ESI) for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{2 4}} \mathbf{B r N} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (403.1016 [$\left.\mathrm{M}+\mathrm{H}^{+}\right]$): 403.1014.

Synthesis of ethyl 4-(4-((R)-hydroxy $((2 S, 4 S, 8 R)$-8-vinylquinuclidin-2-yl)methyl)-6-methoxyquinolin-3-yl)benzoate (6 d):

According to $\mathbf{T P 4}$ quinine ($\mathbf{7} ; 648 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with $\mathrm{MeLi}(1.2 \mathrm{~mL}, 2.0 \mathrm{mmol}$, 1.63 m in diethyl ether), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(624 \mathrm{mg}, 4.4 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 1.8 \mathrm{~mL}$, $2.2 \mathrm{mmol}, 1.19 \mathrm{M}$ in THF). The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{ZnCl}_{2}(2.2 \mathrm{mmol}$, $2.2 \mathrm{~mL}, 1 \mathrm{~m}$ in THF) was added dropwise. After stirring for 30 min at the same temperature $\mathrm{Pd}(\mathrm{dba})_{2}(56 \mathrm{mg}, 5 \mathrm{~mol} \%)$ and $\mathrm{P}(o-\mathrm{fur})_{3}(46 \mathrm{mg}, 10 \mathrm{~mol} \%)$ dissolved in THF $(2 \mathrm{~mL})$ were then transferred via cannula to the reaction mixture, followed by the addition of ethyl 4iodobenzoate ($442 \mathrm{mg}, 1.6 \mathrm{mmol}$) dissolved in THF (2 mL). The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 12 h at the same temperature. The reaction mixture was quenched with a sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL) and NH_{3} (conc.) (1 mL) followed by extraction with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, EtOAc / MeOH / $\mathrm{NEt}_{3}=10: 1: 1$) afforded the product 8d ($378 \mathrm{mg}, 50 \%$) as yellow resin.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta /(\mathrm{ppm})=8.31(\mathrm{~s}, 1 \mathrm{H}), 8.05-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.95-8.00$ $(\mathrm{m}, 1 \mathrm{H}), 7.86-7.92(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.30(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.21-$ $5.28(\mathrm{~m}, 1 \mathrm{H}), 4.85-4.97(\mathrm{~m}, 2 \mathrm{H}), 4.86(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.53(\mathrm{~m}, 1 \mathrm{H})$,
3.06-3.15 (m, 1H), 2.67-2.77 (m, 1H), 2.19-2.43 (m, 3H), 2.07-2.17 (m, 1H), 1.69-1.76 (m, 1H), 1.18-1.41 (m, 6H).
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 2{ }^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=177.1,166.3,157.1,148.7,144.5,143.4$, $141.4,133.9,131.0,129.3,127.1,121.5,114.2,110.9,105.1,71.7,61.0,58.2,55.4,55.1$, 41.8, 39.2, 29.5, 27.2, 27.1, 25.1.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3074,2950,2930,2884,1714$ (s$), 1622,1608,1552$ (w), 1502 (m), 1462, 1422, 1396, 1390, 1366, 1352, 1308, 1264, 1230, 1176, 1102, 1072, 1028, 1020, 1004, 938, 912, 862, 852, 834, 804, 776, 732, 708, 672.
HRMS (ESI) für $\mathbf{C}_{\mathbf{2 9}} \mathbf{H}_{\mathbf{3 3}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}}\left[\mathrm{M}+\mathrm{H}^{+}\right]$(473.2440): 443.2436.

Synthesis of $\quad(2 S, 4 S, 8 R)-2-((R)$-(tert-butyldimethylsilyloxy)(6-methoxyquinolin-4-yl)methyl)-8-vinylquinuclidine (7):

A 250 mL round bottom flask, equipped with a magnetic stirring bar, was charged with a solution of quinine ($7 ; 8.0 \mathrm{~g}, 24.4 \mathrm{mmol}$) in DMF (40 mL). After addition of triethylamine ($17 \mathrm{~mL}, \quad 122.0 \mathrm{mmol}$), 4-dimethylaminopyridine ($\mathbf{2 a} ; 300 \mathrm{mg}, \quad 2.45 \mathrm{mmol}$) and tertbutyldimethylsilyl chloride $(5.58 \mathrm{~g}, 37.0 \mathrm{mmol})$ the reaction mixture was stirred for 15 h at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with toluene (50 mL). The organic layer was washed with sat. NaHCO_{3} solution (3 x 40 mL) and dried over MgSO_{4}. After filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, EtOAc / $\left.\mathrm{MeOH} / \mathrm{NEt}_{3}=9: 1: 1\right)$ furnished the compound $9(10.4 \mathrm{~g}, 97 \%)$ as orange resin oil.
${ }^{1} \mathbf{H}$-NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=8.72(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), $8.63(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), 8.02 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), 7.97 (d, $J=9.3 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), $8.83(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), $7.51(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, 1 H , major rotamer), 7.36 (dd, $J=9.3 \mathrm{~Hz}, J=2.7 \mathrm{~Hz} 1 \mathrm{H}$, major rotamer), 7.31 (dd, $J=9.3 \mathrm{~Hz}$, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, minor rotamer), $7.19(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$, major rotamer), $7.10(\mathrm{~d}, J=4.2 \mathrm{~Hz}$,

1 H , minor rotamer), $5.91-5.81(\mathrm{~m}, 1 \mathrm{H}$, minor rotamer), $5.70-5.57(\mathrm{~m}, 2 \mathrm{H}$, major rotamer), 5.01-4.74 (m, 2 H), $3.93(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $3.89(\mathrm{~s}, 3 \mathrm{H}$, minor rotamer), 3.57-3.41 (m, $1 \mathrm{H}), 3.06(\mathrm{dd}, J=14 \mathrm{~Hz}, \quad J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.17$ $(\mathrm{m}, 1 \mathrm{H}), 1.88-1.33(\mathrm{~m}, 5 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}$, major rotamer), $0.90(\mathrm{~s}, 9 \mathrm{H}$, minor rotamer), $0.12(\mathrm{~s}$, 3 H , minor rotamer), $0.07(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $-0.39(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $-0.47(\mathrm{~s}, 3 \mathrm{H}$, minor rotamer). Ratio of rotamers determined by $\mathrm{NMR} \approx 2 / 1$.
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=157.9,148.1,147.3,147.3,147.2,144.3$, $142.2,142.1,131.8,131.4,129.0,126.2,121.5,121.5,121.1,118.7,114.2,114.1,104.4$, $100.5,80.1,77.2,72.7,61.2,60.8,57.5,56.1,55.8,55.3,43.2,41.2,40.2,39.9,28.2,27.9$, $27.9,27.8,27.2,25.9,25.7,25.7,25.7,21.1,18.1,18.0,14.2,-3.4,-4.2,-4.7,-5.1,-5.3$.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3076,2998,2948,2930,2884,2858,1916,1620$, $1592,1574,1508,1472,1462,1432,1408,1390,1360,1322,1302,1254,1240,1228,1184$, $1172,1130,1102,1074,1030,1004,978,952,940,912,874,832,802,776,716,704,670$, 642, 630, 612 .

HRMS (ESI) for $\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{3 9}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{S i}$ (439.2775 [M+ H$\left.{ }^{+}\right]$): 439.2772.

Synthesis of (2S,4S,5R)-2-((R)-((tert-butyldimethylsilyl)oxy)(2-iodo-6-methoxyquinolin-4-yl)methyl)-5-vinylquinuclidine (8a):

According to TP2 (2S,4S,8R)-2-((R)-(tert-butyldimethylsilyloxy)(6-methoxyquinolin-4-yl)methyl)-8-vinylquinuclidine ($\mathbf{9} ; 1.75 \mathrm{~g}, 4.0 \mathrm{mmol}$) reacted with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(624 \mathrm{mg}$, $4.4 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}\left(\mathbf{1} ; 4.8 \mathrm{~mL}, 6.0 \mathrm{mmol}, 1.26 \mathrm{~m}\right.$ in THF) $\left(0^{\circ} \mathrm{C}, 15 \mathrm{~h}\right)$. Iodine $(2.03 \mathrm{~g}, 8 \mathrm{mmol})$ was added and the reaction mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (18 mL), NH_{3} (conc.) (2 mL) and a sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo.

Purification by flash chromatography (silica gel, EtOAc $/ \mathrm{MeOH} / \mathrm{NEt}_{3}=50: 1: 1$) furnished the product $\mathbf{1 0 a}$ as resin $(1.00 \mathrm{~g}, 44 \%)$.
${ }^{1} \mathbf{H}$-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$): $\delta /(\mathrm{ppm})=7.95-7.86(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}$, major rotamer), $7.77(\mathrm{br}, 1 \mathrm{H}$, minor rotamer), $7.42(\mathrm{~s}, 1 \mathrm{H}$, minor rotamer), $7.34-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.16$ (br, 1 H , major rotamer), $5.90-5.56(\mathrm{~m}, 2 \mathrm{H}), 5.00-4.61(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $3.86(\mathrm{~s}, 3 \mathrm{H}$, minor rotamer), $3.57-1.36(\mathrm{~m}, 11 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}$, major rotamer), $0.80(\mathrm{~s}, 9 \mathrm{H}$, minor rotamer), 0.14 ($\mathrm{s}, 3 \mathrm{H}$, major rotamer), 0.08 ($\mathrm{s}, 3 \mathrm{H}$, minor rotamer), -0.34 ($\mathrm{s}, 3 \mathrm{H}$, major rotamer), -0.43 (s, 3 H , minor rotamer). Ratio of rotamers determined by NMR $\approx 3 / 1$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25{ }^{\circ} \mathrm{C}\right): \delta(\mathrm{ppm})=158.3,156.9,149.0,145.7,142.1,131.1$, $130.8,129.6,126.3,125.4,122.3,122.0,115.3,114.6,114.1,104.8,101.0,79.3,77.2,61.1$, $60.6,57.1,56.1,56.0,55.3,54.7,43.1,41.2,39.8,28.1,27.7,27.2,25.9,25.7,25.7,20.7$, 18.0, -3.4, -4.2, -4.6, -5.0, -5.3.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3070,3000,2948,2930,2882,2858,2362,2328$, $1738,1618,1576,1548,1502,1470,1462,1432,1404,1388,1362,1322,1284,1256,1232$, $1092,1030,1004,952,944,912,880,870,834,804,776,726,710,672,646$.

HRMS (ESI) for $\mathbf{C}_{\mathbf{2 6}} \mathbf{H}_{\mathbf{3 8}} \mathbf{I} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{S i}\left(565.1742\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$: 565.1737.

Synthesis
of
(2S,4S,5R)-2-((R)-(2-allyl-6-methoxyquinolin-4-yl)((tert-butyldimethylsilyl)oxy)methyl)-5-vinylquinuclidine (8 b):

According to TP2 (2S,4S,8R)-2-((R)-(tert-butyldimethylsilyloxy)(6-methoxyquinolin-4-yl)methyl)-8-vinylquinuclidine ($\mathbf{9} ; 877 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(312 \mathrm{mg}$, $2.0 \mathrm{mmol})$ and $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}(\mathbf{1} ; 2.5 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.22 \mathrm{~m}$ in THF$)\left(0^{\circ} \mathrm{C}, 15 \mathrm{~h}\right)$. $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(2.2 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added and the reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$. After addition of allyl bromide ($387 \mathrm{mg}, 3.2 \mathrm{mmol}$) the reaction was stirred for 4 h at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) and NH_{3} (conc.) (2 mL) followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, pentan / EtOAc / NEt ${ }_{3}$ $=20: 1: 1$) furnished the compound 10b as slightly brown honey like oil ($379 \mathrm{mg}, 41 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=8.00-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{br}, 1 \mathrm{H}$, minor rotamer), $7.45(\mathrm{~s}, 1 \mathrm{H}$, major rotamer), $7.36-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{br}, 1 \mathrm{H}$, major rotamer), 7.03 ($\mathrm{s}, 1 \mathrm{H}$, minor rotamer), 6.17-6.00 (m, 1 H), 5.94-5.54 (m, 2H), 5.23-5.08 (m, 2H), 5.02-4.71 $(\mathrm{m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}$, major rotamer), $3.88(\mathrm{~s}, 3 \mathrm{H}$, minor rotamer), 3.72-1.28 (m, 13 H$), 0.96$ ($\mathrm{s}, 9 \mathrm{H}$, major rotamer), $0.80(\mathrm{~s}, 9 \mathrm{H}$, minor rotamer), 0.13 ($\mathrm{s}, 3 \mathrm{H}$, major rotamer), 0.07 ($\mathrm{s}, 3 \mathrm{H}$, minor rotamer), -0.40 ($\mathrm{s}, 3 \mathrm{H}$, major rotamer), -0.48 ($\mathrm{s}, 3 \mathrm{H}$, minor rotamer). Ratio of rotamers determined by NMR $\approx 3 / 1$.
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=157.6,157.2,144.0,142.2,135.6,131.2$, $124.7,121.3,118.9,117.0,114.3,114.1,100.7,77.2,72.7,61.1,57.5,55.8,43.7,43.3,40.2$, 39.8, 28.0, 27.8, 25.9, 25.7, 20.7, 18.0, -4.2, -5.2.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3076,2998,2948,2930,2884,2858,1916,1620$, $1592,1574,1508,1472,1436,1410,1378,1356,1320,1304,1260,1232,1166,1104,1066$, 1034, 1012, 996, 968, 910, 882, 832, 796, 768, 734, 678, 652.
HRMS (ESI) for $\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4 3}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{S i}\left[\mathrm{M}+\mathrm{H}^{+}\right]$(479.3088): 479.3084.

Synthesis of 3-bromo-6-chloropicolinonitrile (11):

According to TP1, 5-bromo-2-chloropyridine (11; $385 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with TMPMgCl $\cdot \mathrm{LiCl}\left(\mathbf{1} ; 1.96 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.12 \mathrm{M}\right.$ in THF) $\left(-40^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$. After addition of tosyl cyanide ($435 \mathrm{mg}, 2.4 \mathrm{mmol}$) the reaction was stirred for 30 min at $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{Et}_{2} \mathrm{O}=5: 1$) furnished the compound $\mathbf{1 3}$ as white solid ($295 \mathrm{mg}, 68 \%$).
M. p. $\left({ }^{\circ} \mathbf{C}\right)$: 92.3-94.1.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=7.96(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, 1H).
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=150.9,143.0,134.4,129.1,123.2$, 114.6.
IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3106,3058,2948,2920,2850,2360,2340,2240$, $1950,1810,1740,1676,1542,1484,1440,1414,1364,1348,1302,1260,1186,1148,1136$, 1126, 1022, 976, 864, 834, 738, 682, 674.
MS (70 eV, EI): m/z (\%): 218 (100), $216\left[\mathrm{M}^{+}\right]$(73), 101 (20), 75 (27), 50 (12), 43 (22).
$\mathbf{H R M S}$ for $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{2}} \mathbf{B r C l N} \mathbf{2}$ (215.9090): 215.9086 .

Synthesis of 3-bromo-6-chloro-4-(methylthio)picolinonitrile (13):

According to TP1, 3-bromo-6-chloropicolinonitrile (13; $595 \mathrm{mg}, 2.6 \mathrm{mmol}$) reacted with TMPMgCl•LiCl ($\mathbf{1} ; 2.4 \mathrm{~mL}, 2.8 \mathrm{mmol}, 1.19 \mathrm{~m}$ in THF) $\left(-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$. After addition of $\mathrm{S}-$ methyl methanesulfonothioate ($390 \mathrm{mg}, 3.0 \mathrm{mmol}$, the reaction was stirred for 50 min at
$25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (15 mL) followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{Et}_{2} \mathrm{O}=10: 1$) furnished the compound $\mathbf{1 5}$ as white solid ($555 \mathrm{mg}, 81 \%$).
M. p. $\left({ }^{\circ} \mathbf{C}\right)$: 149.4-151.0.
${ }^{1} \mathbf{H}$-NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=7.10(\mathrm{~s}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=157.1,150.7,133.7,121.6,121.5,114.7$, 15.3.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3098,2924,2482,2362,2244,1744,1558,1534$, $1506,1454,1420,1382,1344,1326,1244,1236,1214,1204,1184,1158,1150,1068,1038$, $1018,978,958,890,876,824,778,766,730,716,656,616$.
MS (70 eV, EI): m/z (\%): 264 (100), $262\left[\mathrm{M}^{+}\right](75), 221$ (13), 220 (12), 179 (16), 166 (17), 146 (12), 75 (11), 47 (19), 45 (12).
HRMS for $\mathbf{C}_{7} \mathbf{H}_{\mathbf{4}} \mathbf{B r C l N} \mathbf{2} \mathbf{S}$ (261.8967): 261.8961 .

Synthesis of 5-benzoyl-3-bromo-6-chloro-4-(methylthio)picolinonitrile (16):

According to TP1, 3-bromo-6-chloro-4-(methylthio)picolinonitrile (15; $132 \mathrm{mg}, 0.5 \mathrm{mmol}$) reacted with $\mathrm{TMP}_{2} \mathrm{Zn} \cdot 2 \mathrm{MgCl}_{2} \cdot 2 \mathrm{LiCl}\left(\mathbf{1 6} ; 1.04 \mathrm{~mL}, 0.75 \mathrm{mmol}, 0.72 \mathrm{~m}\right.$ in THF) $\left(-20^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$. $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(0.75 \mathrm{~mL}, 0.75 \mathrm{mmol}, 1 \mathrm{~m}$ in THF) was added and the reaction mixture was stirred for 15 min at the same temperature. After addition of benzoyl chloride $(113 \mathrm{mg}$, 0.8 mmol) the reaction mixture was stirred for 14 h at $25^{\circ} \mathrm{C}$ and was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2.0 \mathrm{~mL})$ followed by extraction with diethyl ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, isohexane $/ \mathrm{Et}_{2} \mathrm{O}=10: 1$) furnished the compound 15 as white solid ($112 \mathrm{mg}, 61 \%$).
M. p. $\left({ }^{\circ} \mathbf{C}\right)$: decomp. at 112.3 .
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=7.76(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}, 25^{\circ} \mathrm{C}\right): \delta /(\mathrm{ppm})=189.5,150.1,147.2,142.0,135.1,135.0$, 134.9, 130.0, 129.6, 129.4, 129.4, 19.0.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2964,2908,1678,1596,1582,1522,1496,1450$, $1416,1302,1260,1224,1192,1176,1046,1012,884,864,792,720,700,686,662,640,616$. HRMS (ESI) for $\mathbf{C}_{\mathbf{1 4}} \mathbf{H}_{\mathbf{9}} \mathbf{B r C l N} \mathbf{2} \mathbf{O S}$ (366.9302 $\left[\mathrm{M}+\mathrm{H}^{+}\right]$): 366.9295 .

Synthesis of 3-bromoisonicotinonitrile (17):

According to TP2, a mixture of isonicotinonitrile (18; $208 \mathrm{mg}, 2.0 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($312 \mathrm{mg}, 2.2 \mathrm{mmol}$) reacted with $\mathrm{TMP}_{2} \mathrm{Zn} \cdot 2 \mathrm{MgCl}_{2} \cdot 2 \mathrm{LiCl}(\mathbf{1 6} ; 3.1 \mathrm{~mL}, 2.2 \mathrm{mmol}, 0.71 \mathrm{M}$ in THF) $\left(-20^{\circ} \mathrm{C}, 3 \mathrm{~h}\right)$. The reaction mixture was cooled to $-78^{\circ} \mathrm{C}$ and $\mathrm{Br}_{2}(352 \mathrm{mg}, 2.2 \mathrm{mmol})$ dissolved in $\mathrm{CCl}_{4}(2 \mathrm{~mL})$ was added dropwise. The reaction mixture was slowly warmed to $25^{\circ} \mathrm{C}$ and was stirred at this temperature for 30 min . The reaction mixture was quenched with a mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(9 \mathrm{~mL})$ and NH_{3} (conc.) (1 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O}=4: 1$) furnished the product 19 as white solid ($234 \mathrm{mg}, 64 \%$).
M. p. $\left({ }^{\circ} \mathbf{C}\right): 96.6-98.2$.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta /(\mathrm{ppm})=8.91(\mathrm{~s}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 8.54(\mathrm{~d}, J=$ 4.9 Hz).

[^0]IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3752,3108,3078,3014,2964,2362,2340,2238$, $1972,1918,1772,1740,1704,1572,1534,1498,1470,1402,1280,1218,1204,1104,1088$, 1026, 848, 784, 730, 694, 668.

MS (EI, $70 \mathbf{e V}$) m/z (\%): 183 [M $\left.{ }^{+}\right]$(100), 181 (97), 103 (88), 76 (31), 75 (14).
HRMS for $\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{3}} \mathbf{B r N} \mathbf{2}$ (181.9480): 181.9483 .

Synthesis of 3-bromo-2-cyclohexylisonicotinonitrile (18):

According to TP1, 3-bromoisonicotinonitrile (19; $366 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with TMPMgCl-LiCl ($\mathbf{1} ; 1.85 \mathrm{~mL}, 2.2 \mathrm{mmol}, 1.2 \mathrm{~m}$ in THF) $\left(-78^{\circ} \mathrm{C}, 1 \mathrm{~h}\right) . \mathrm{CuCN} \cdot 2 \mathrm{LiCl}(2.2 \mathrm{~mL}$, $2.2 \mathrm{mmol}, 1 \mathrm{~m}$ in THF) was added and the reaction mixture was stirred for 30 min at the same temperature before 3-bromocyclohexene ($258 \mathrm{mg}, 1.6 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to $25^{\circ} \mathrm{C}$ and was stirred at this temperature for 12 h . The reaction mixture was quenched with a mixture of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL) and NH_{3} (conc.) (1 mL) and extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O}=5: 1$) furnished the compound 20 as yellowish oil ($274 \mathrm{mg}, 65 \%$ yield).
${ }^{1} \mathbf{H}$-NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=8.63(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.90-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.68(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.15(\mathrm{~m}, 1 \mathrm{H}), 2.00-2.17(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.89(\mathrm{~m}$, $1 \mathrm{H}), 1.53-1.72(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$-NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=165.2,148.3,129.0,127.1,124.6,124.3,122.2$, 115.5, 42.6, 28.4, 24.5, 21.3.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3026,2932,2860,2836,2238,2192,1680,1650$, $1568,1536,1446,1432,1394,1382,1344,1326,1298,1266,1238,1192,1156,1136,1114$, 1082, 1060, 1048, 1022, 944, 916, 892, 838, 810, 784, 760, 744, 720, 702, 634, 618.

MS (70 eV, EI) $m / z(\%): 262\left[\mathrm{M}^{+}\right](33), 235$ (100), 223 (16), 198 (21), 183 (20), 155 (11), 142 (10), 79 (5), 67 (19).
HRMS (EI) for $\mathbf{C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{1 1}} \mathbf{B r} \mathbf{N}_{\mathbf{2}}$ (262.0106): 262.0115 .

Synthesis of 3-bromo-2-(cyclohex-2-en-1-yl)-5-iodoisonicotinonitrile (20):

According to TP1, 3-bromo-2-(cyclohex-2-en-1-yl)isonicotinonitrile (21; $526 \mathrm{mg}, 2.0 \mathrm{mmol}$) reacted with $\mathrm{TMPMgCl} \cdot \mathrm{LiCl}\left(\mathbf{1} ; 2.5 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.2 \mathrm{M}\right.$ in THF) $\left(-30^{\circ} \mathrm{C}, 4 \mathrm{~h}\right)$. A solution of iodine ($1 \mathrm{~g}, 4 \mathrm{mmol}$) in THF (4 mL) was added and slowly warmed to $25^{\circ} \mathrm{C}$. The reaction mixture was quenched with a sat. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (9 mL), NH_{3} (conc.) (1 mL) and a sat. aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$ followed by extraction with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O}=10: 1$) furnished the compound $\mathbf{2 2}$ as yellow oil ($521 \mathrm{mg}, 67 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta /(\mathrm{ppm})=8.90(\mathrm{~s}, 1 \mathrm{H}), 5.90-6.07(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.72(\mathrm{~m}$, $1 \mathrm{H}), 2.00-2.22(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.75(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta /(\mathrm{ppm})=164.1,155.5,130.9,129.5,123.3,116.7,93.6$, 42.5, 28.5, 24.6, 21.4.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=3746,3736,3024,3018,3004,2970,2942,2936$, 2906, 2896, 2362, 2340, 2284, 1792, 1736, 1718, 1540, 1508, 1496, 1490, 1482, 1474, 1436, 1420, 1406, 1364, 1340, 1320, 1294, 1264, 1228, 1214, 1164, 1142, 1128, 1044, 1024, 934, 822, 722, 640, 624, 610.
MS (EI, $70 \mathbf{e V}$) m/z (\%): 389 [$\left.{ }^{+}\right]$(65), 360 (99), 359 (100), 321 (23), 308 (40), 154 (21).
HRMS (EI) for $\mathbf{C}_{\mathbf{1 2}} \mathbf{H}_{\mathbf{1 0}} \mathbf{B r I N} \mathbf{2}$ (387.9072): 387.9049 .

Synthesis of ethyl 2-((5-bromo-4-cyano-6-(cyclohex-2-en-1-yl)-3-iodopyridin-2yl)methyl)acrylate (21):

According to TP1, 3-bromo-2-(cyclohex-2-en-1-yl)-5-iodoisonicotinonitrile (22; 389 mg , 1.0 mmol) reacted with $\mathrm{TMP}_{2} \mathrm{Zn} \cdot 2 \mathrm{MgCl}_{2} \cdot 2 \mathrm{LiCl}(\mathbf{1 6} ; 1.5 \mathrm{mmol}, 2.0 \mathrm{~mL}, 0.75 \mathrm{~m}$ in THF) $\left(25^{\circ} \mathrm{C}, 20 \mathrm{~h}\right)$. The reaction mixture was cooled to $-30^{\circ} \mathrm{C}$ and $\mathrm{CuCN} \cdot 2 \mathrm{LiCl}(1.1 \mathrm{mmol}$, $1.1 \mathrm{~mL}, 1 \mathrm{~m}$ in THF) was added dropwise. After stirring for 30 min at the same temperature ethyl 2-(bromomethyl)acrylate ($232 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added. The reaction mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 12 h at the same temperature. The reaction mixture was quenched with a sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(4.5 \mathrm{~mL})$ and NH_{3} (conc.) $(0.5 \mathrm{~mL})$ followed by extraction with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and after filtration the solvents were evaporated in vacuo. Purification by flash chromatography (silica gel, pentane $/ \mathrm{Et}_{2} \mathrm{O}=20: 1$) afforded the product 23 as yellow oil ($311 \mathrm{mg}, 62 \%$).
${ }^{1} \mathbf{H}-$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=6.27-6.32(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.58$ $(\mathrm{m}, 1 \mathrm{H}), 5.43-5.46(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-4.03(\mathrm{~m}, 3 \mathrm{H}), 2.00-2.12(\mathrm{~m}, 2 \mathrm{H})$, $1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.14-1.31(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}-$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=166.8,163.3,161.0,137.8,132.3,129.1,127.1$, 127.1, 120.4, 117.9, 96.8, 61.2, 44.3, 42.5, 28.1, 25.0, 21.6, 14.6.

IR (Diamond-ATR, neat): $\tilde{v} / \mathrm{cm}^{-1}=2980,2934,2838,2360,2340,1718,1654,1646$, $1630,1540,1522,1506,1430,1414,1388,1368,1338,1324,1296,1258,1216,1184,1148$, 1114, 1096, 1044, 1026, 956, 916, 894, 858, 838, 824, 784, 768, 668, 658.

MS (EI, 70 eV) m/z (\%): 501 [M+] (99), 500 (27), 470 (65), 426 (56), 374 (100), 346 (19), 219 (11), 192 (21).

HRMS (EI) for $\mathbf{C}_{\mathbf{1 8}} \mathbf{H}_{\mathbf{1 8}} \mathbf{B r I N} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (499.9596): 499.9589 .

Synthesis of 2-(4-methoxyphenyl)-N,N-dimethylpyridin-4-amine (4a)

Synthesis of 2-(cyclohex-2-en-1-yl)-5-((S)-1-methylpyrrolidin-2-yl)pyridine (4b)

Synthesis of 2-iodo- N, N-dimethylpyridin-4-amine (4c)
N-
3

Synthesis of 2-chloro- N, N-dimethylpyridin-4-amine (4d)
Cl

Synthesis of (4-chlorophenyl)(4-(dimethylamino)pyridin-2-yl)methanone (4e)

Synthesis of ethyl 2-((4-(2,2,6,6-tetramethylpiperidin-1-yl)pyridin-2-yl)methyl)acrylate (4f)

Synthesis of 2-chloro-6-iodo-N,N-dimethylpyridin-4-amine (4g)

Synthesis of 2-chloro-6-cyclohex-2-en-1-yl-N,N-dimethylpyridin-4-amine (4h)

(R)-(3-Bromo-6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol (6a) cesers)

(R)-(3-Allyl-6-methoxyquinolin-4-yl)((2S,4S,8R)-8-vinylquinuclidin-2-yl)methanol (6c) Cosers)

[^1]Ethyl 4-(4-((R)-hydroxy ((2S,4S,8R)-8-vinylquinuclidin-2-yl)methyl)-6-methoxyquinolin-3-yl)benzoate ($6 d$)

(2S,4S,8R)-2-((R)-(Tert-butyldimethylsilyloxy)(6-methoxyquinolin-4-yl)methyl)-8vinylquinuclidine (7)

(2S,4S,5R)-2-((R)-(2-allyl-6-methoxyquinolin-4-yl)((tert-butyldimethylsilyl)oxy)methyl)-5-vinylquinuclidine (8 b)

3-Bromo-6-chloropicolinonitrile (11)

3-bromo-6-chloro-4-(methylthio)picolinonitrile (13)
Cles

Chloroform-d
新

5-benzoyl-3-bromo-6-chloro-4-(methylthio)picolinonitrile (16)

3-bromoisonicotinonitrile (17)

3-bromo-2-cyclohexylisonicotinonitrile (18):

3-Bromo-2-(cyclohex-2-en-1-yl)-5-iodoisonicotinonitrile (20):

[^2]3-bromo-2-(cyclohex-2-en-1-yl)-5-iodoisonicotinonitrile (21):

[^0]: ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta /(\mathrm{ppm})=152.7,148.5,126.8,123.3,122.2,114.8,99.3$.

[^1]:

[^2]:

