Synthesis of Saturated 1,4-Benzodiazepines via Pd-Catalyzed Carboamination Reactions.

Joshua D. Neukom, Alvin S. Aquino and John P. Wolfe*

Department of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055

Supporting Information

Experimental procedures, characterization data for all new compounds, and description of stereochemical assignments (29 pages).

Table of Contents

General Considerations	Page S1
Substrate Synthesis (General Procedures 1, 2, and 3)	Page S2
Pd-Catalyzed Synthesis of 1,4-Benzodiazepines (General Procedure 4)	Page S11
Pd-Catalyzed Synthesis of 1,4-Benzodiazepin-5-ones (General Procedure 5)	Page S23
Assignment of Stereochemistry	Page S28
References	Page S28

General Considerations

All reactions were carried out under a dry nitrogen atmosphere in flame-dried glassware using standard Schlenk techniques. All reagents were obtained from commercial sources and used without further purification. Toluene, THF, diethyl ether, and dichloromethane were purified using a GlassContour solvent purification system. Xylenes and diisopropylethylamine

were distilled over CaH_2 before use. Methyl 2-(phenylamino)benzoate, methyl 2-(3,5-dichlorophenylamino)benzoate, methyl 2-(4-methoxyphenylamino)benzoate, N-benzylbut-3-enyl-2-amine, N-allyloctan-1-amine, N-benzylprop-2-en-1-amine, and tert-butyl 4-bromobenzoate were prepared according to literature procedures. (*E*)-but-2-enyl acetate was prepared by treatment of crotyl alcohol with acetic anhydride, triethylamine and DMAP at rt in dichloromethane. Yields refer to isolated yields of compounds estimated to be \geq 95% pure as determined by H NMR analysis unless otherwise noted. The product yields reported in the experimental section are the result of a single experiment whereas the yields in the manuscript are an average of two experiments.

Substrate Synthesis

General Procedure 1: Saponifcation of benzoate substrates. A flask equipped with a magnetic stirbar was charged with the benzoate substrate (1.0 equiv) and a 1:1 mixture of water:EtOH (7.5 mL/mmol substrate). Finely ground KOH (2.5 equiv) was added, and the resulting mixture was heated to reflux for 3 h. The mixture was then cooled to rt and concentrated to remove all of the EtOH. Additional water (15 mL) was added, the mixture was acidified to pH \sim 2 with HCl (1 M), and a precipitate formed. The precipitate was collected by filtration and the crude product was purified by flash column chromatography on silica gel to furnish the pure carboxylic acid product.

General Procedure 2: Peptide coupling of acid substrates with allylic amines. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate carboxylic acid substrate (1.0 equiv) and N-hydroxybenzotriazole, (1.2 equiv). The flask was purged with

nitrogen for 5 min, then the appropriate allylic amine substrate (1.0 equiv), diisopropylethylamine (3.0 equiv), and dichloromethane (3 mL/mmol substrate) were added. The resulting clear solution was stirred for ca. 2 min, then diisopropylcarbodiimide (1.05 equiv) was added. The reaction mixture was stirred for 12–24 h and then concentrated *in vacuo*. The crude material was purified by flash column chromatography on silica gel to afford the pure benzamide product.

General Procedure 3: Reduction of amides to amine substrates. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate benzamide substrate (1.0 equiv) and purged with nitrogen for 5 min. THF (1 mL/mmol substrate) was added, the resulting solution was cooled to 0 °C, and a 1 M solution of LiAlH₄ in diethyl ether (1.0 equiv) was added slowly over 5 min. The reaction mixture was stirred at 0 °C for 15 min then warmed to rt and stirred until TLC analysis indicated complete consumption of starting material. The reaction mixture was cooled to 0 °C, then water (0.05 mL/mmol substrate), 6 M NaOH (0.05 mL/mmol substrate) and additional water (0.15 mL/mmol substrate) were sequentially added. The resulting white suspension was stirred vigorously for 30 min, then filtered and the white precipitate was washed with diethyl ether (3 × 30 mL). The organic solution was dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The resulting product was purified by flash column chromatography on silica gel.

N-Allyl-*N*-benzyl-2-(phenylamino)benzamide (13b). 2-(Phenylamino)benzoic acid (1.02 g, 4.8 mmol) was coupled with *N*-benzylprop-2-en-1-amine (680 mg, 4.6 mmol) for 24 h using General Procedure 2. Flash chromatography on silica gel (90:10 hexanes:ethyl acetate) afforded 1.40 g (89%) of the title compound as a white solid, m.p. 73–75 °C. ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.33 (d, J = 8.0 Hz, 1 H), 7.29–7.18 (m, 8 H), 7.04 (d, J = 8.0 Hz, 2 H), 6.97–6.89 (m, 2 H), 6.83 (t, J = 8.0 Hz, 1 H), 5.81–5.69 (m, 1 H), 5.20–5.08 (m, 2 H), 4.67 (s, 2 H), 4.04–3.90 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 60°C) δ 171.4, 142.6, 142.2, 136.9, 133.0, 130.2, 129.3, 128.7, 127.7, 127.49, 127.47, 124.7, 121.5, 119.8, 118.9, 117.9, 117.7, 49.4, one aliphatic carbon signal is incidentally equivalent; IR (film) 3332, 1627 cm⁻¹. MS (ESI) 343.1801 (343.1805 calcd for $C_{23}H_{22}N_2O$, $[M + H]^+$).

N-Allyl-*N*-benzyl-2-(3,5-dichlorophenylamino)benzamide (13d). Methyl 2-(3,5-dichlorophenylamino)benzoate (2.50 g, 8.4 mmol) was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 50:50 hexanes:ethyl acetate \rightarrow 100% ethyl acetate as the eluent to afforded 1.81 g (76%) of 2-(3,5-dichlorophenylamino)benzoic acid as a fluffy white solid, m.p. 245–246 °C. ¹H NMR (400 MHz,

DMSO- d_6) δ 13.1 (s, br, 1 H), 9.54 (s, br, 1 H), 7.91 (d, J = 8.0 Hz, 1 H), 7.52–7.44 (m, 1 H), 7.35 (d, J = 8.4 Hz, 1 H), 7.22 (d, J = 2.0 Hz, 2 H), 7.11 (s, 1 H), 6.95 (t, J = 7.2 Hz, 1 H); ¹³C NMR (125 MHz, DMSO- d_6) δ 169.3, 144.3, 144.2, 134.7, 134.1, 131.9, 120.7, 120.0, 117.3, 116.6, 115.9.

The above 2-(3,5-dichlorophenylamino)benzoic acid (998 mg, 3.5 mmol) was coupled with *N*-benzylprop-2-en-1-amine (556 mg, 3.8 mmol) for 15 h using General Procedure 2. Flash chromatography on silica gel (85:15 hexanes:ethyl acetate) afforded 1.24 g (85%) of the title compound as a white solid, m.p. 131–132 °C. ¹H NMR (400 MHz, CDCl₃, 62 °C) δ 7.38–7.21 (m, 7 H), 7.17 (s, br, 1 H), 7.07–7.00 (m, 1 H), 6.97 (dt, J = 0.8, 7.6 Hz, 1 H), 6.88–6.83 (m, 3 H), 5.81–5.66 (m, 1 H), 5.22–5.07 (m, 2 H), 4.65 (s, 2 H), 4.04–3.83 (m, 2 H); ¹³C NMR (100 MHz, CDCl₃, 62 °C) δ 170.8, 145.2, 139.9, 136.7, 135.7, 130.6, 128.9, 128.6, 127.7, 127.5, 121.9, 121.8, 120.5, 120.4, 118.1, 115.3, 115.2, 49.1, two aliphatic carbon signals are incidentally equivalent; IR (film) 3298, 1621 cm⁻¹. MS (ESI) 433.0850 (433.0845 calcd for $C_{23}H_{20}Cl_2N_2O$, $[M + Na]^+$).

N-Allyl-*N*-octyl-2-(phenylamino)benzamide (13f). Methyl 2-(phenylamino)benzoate (2.76 g, 12.1 mmol) was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 70:30 hexanes:ethyl acetate as the eluent to afforded 1.96 g (76%) of 2-(phenylamino)benzoic acid as a white solid, m.p. 185–187 °C. ¹H NMR (400 MHz, CDCl₃, 60 °C) δ 10.8 (s, br, 1 H), 9.32 (s, br, 1 H), 8.04 (dd, J = 0.8, 6.4 Hz, 1 H), 7.40–7.32 (m,

3 H), 7.30–7.20 (m, 3 H), 7.13 (t, J = 5.6 Hz, 1 H), 6.76 (t, J = 6.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃, 60 °C) δ 173.7, 148.9, 140.3, 135.2, 132.6, 129.4, 124.1, 123.2, 117.2, 114.0, 110.4; IR (film) 3339, 1658 cm⁻¹.

The above 2-(phenylamino)benzoic acid (1.0 g, 4.7 mmol) was coupled with *N*-allyloctan-1-amine (790 mg, 4.7 mmol) for 24 h using General Procedure 2. Flash chromatography on silica gel (90:10 hexanes:ethyl acetate) afforded 1.55 g (91%) of the title compound as a viscous, colorless oil. 1 H NMR (400 MHz, CDCl₃, 60°C) δ 7.33 (d, J = 8 Hz, 1 H), 7.29–7.15 (m, 4 H), 7.05 (d, J = 7.6 Hz, 2 H), 6.92 (t, J = 7.2 Hz, 1 H), 6.88–6.81 (m, 2 H), 5.87–5.71 (m, 1 H), 5.23–5.12 (m, 2 H), 4.10–3.96 (m, 2 H), 3.46–3.31 (m, 2 H), 1.61–1.48 (m, 2 H), 1.31–1.15 (m, 10 H), 0.86 (t, J = 6.4 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃, 60°C) δ 171.0, 142.6, 141.9, 129.4, 129.2, 127.6, 127.4, 125.1, 121.4, 119.6, 119.0, 118.8, 117.4, 46.8, 31.8, 29.2, 29.1, 27.9, 26.9, 22.6, 13.9, one aliphatic carbon signal is incidentally equivalent; IR (film) 3311, 1622 cm⁻¹. MS (ESI) 365.2589 (365.2587 calcd for C₂₄H₃₂N₂O, [M + H]⁺).

2-{[Allyl(benzyl)amino]methyl}-*N***-phenylaniline** (14b). *N*-Allyl-*N*-benzyl-2-(phenylamino)benzamide (4.95 g, 14.5 mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded 3.19 g (67%) of the title compound as a white solid, m.p. 70–71 °C . ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, br, 1 H), 7.38 (d, J = 8.0 Hz, 1 H), 7.32–7.15 (m, 11 H), 6.89 (t, J = 7.2 Hz, 1 H), 6.78 (t, J = 7.2 Hz, 1 H), 5.96–5.84 (m, 1 H), 5.18 (dd, J = 2.4, 14.4 Hz, 2 H), 3.66 (s, 2 H), 3.54 (s, 2 H), 3.06 (d, J = 6.4 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 143.0, 138.6, 134.4, 131.1, 129.3, 129.2, 128.4,

128.1, 127.1, 125.2, 120.2, 119.2, 118.8, 117.7, 114.9, 57.9, 57.7, 55.8; IR (film) 3255, 1593 cm⁻¹. MS (ESI) 329.2017 (329.2018 calcd for $C_{23}H_{24}N_2$, $[M + H]^+$).

2-{[Allyl(benzyl)amino]methyl}-*N***-(4-methoxyphenyl)aniline** (14c). Methyl 2-(4-methoxyphenylamino)benzoate (6.12 g, 23.8 mmol) was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 50:50 hexanes:ethyl acetate \rightarrow 100% ethyl acetate as the eluent to afforded 5.20 g (89%) of 2-(4-methoxyphenylamino)benzoic acid as a light yellow solid, m.p. 185–186 °C. ¹H NMR (500 MHz, CDCl₃) δ 11.7 (s, br, 1 H), 9.14 (s, br, 1 H), 8.02 (dd, J = 1.5, 8.0 Hz, 1 H), 7.33–7.27 (m, 1 H), 7.24–7.16 (m, 2 H), 6.97–6.90 (m, 3 H), 6.69 (dt, J = 1, 7.5 Hz, 1 H) 3.83 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 173.5, 157.0, 150.5, 135.2, 132.9, 132.5, 126.4, 116.3, 114.7, 113.4, 109.4, 55.5; IR (film) 3323, 1664 cm⁻¹.

The above 2-(4-methoxyphenylamino)benzoic acid (2.0 g, 8.2 mmol) was coupled with *N*-benzylprop-2-en-1-amine (1.2 g, 8.2 mmol) for 18 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded 2.96 g (97%) of *N*-allyl-*N*-benzyl-2-(4-methoxyphenylamino)benzamide as a viscous, yellow oil. ¹H NMR (400 MHz, CDCl₃, 60 °C) δ 7.40–7.02 (m, 10 H), 6.89–6.83 (m, 2 H), 6.79–6.71 (m, 1 H), 5.84–5.75 (m, 1 H), 5.22–5.11 (m, 2 H), 4.69 (s, 2 H), 3.98 (d, *J* = 4.4 Hz, 2 H), 3.79 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 171.7, 155.8, 144.2, 137.1, 135.4, 133.1, 130.4, 128.8, 127.8, 127.52,

127.51, 123.0, 122.6, 118.4, 117.9, 115.6, 115.0, 55.7, 49.6, 2 aliphatic carbon signals are incidentally equivalent; IR (film) 3351, 1626 cm⁻¹. MS (ESI) 373.1911 (373.1911 calcd for $C_{24}H_{24}N_2O_2$, $[M + H]^+$).

N-Allyl-*N*-benzyl-2-(4-methoxyphenylamino)benzamide (2.96 g, 8.0 mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (95:5 hexanes:ethyl acetate) afforded 1.68 g (59%) of the title compound as an off-white, solid, m.p. 59–60 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, br, 1 H), 7.29 (d, J = 4.4 Hz, 4 H), 7.26–7.19 (m, 1 H), 7.16–7.02 (m, 5 H), 6.89–6.83 (m, 2 H), 6.72 (dt, J = 1.6, 6.8 Hz, 1 H), 5.97–5.85 (m, 1 H), 5.22–5.15 (m, 2 H), 3.80 (s, 3 H), 3.66 (s, 2 H), 3.55 (s, 2 H), 3.06 (d, J = 6.8 Hz, 2 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 145.1, 138.7, 136.1, 134.5, 131.0, 129.2, 128.3, 128.2, 127.1, 123.8, 121.3, 118.7, 118.1, 114.6, 113.0, 58.0, 57.6, 55.8, 55.6; IR (film) 3240, 1599 cm⁻¹. MS (ESI) 359.2120 (359.2133 calcd for $C_{24}H_{26}N_{2}O$, $[M + H]^{+}$).

N-{2-[(Allyl<benzyl>amino)methyl]phenyl}-3,5-dichloroaniline (14d). *N*-Allyl-*N*-benzyl-2-(3,5-dichlorophenylamino)benzamide (950 mg, 2.3 mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded 712 mg (78%) of the title compound as a viscous, colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 8.56 (s, br, 1 H), 7.35–7.17 (m, 7 H), 7.15 (dd, J = 1.0, 7.5 Hz, 1 H), 6.89 (dt, J = 1.0, 7.5 Hz, 1 H), 6.86–6.76 (m, 3 H), 5.93–5.82 (m, 1 H), 5.24–5.15 (m, 2 H), 3.61 (s, 2 H), 3.52 (s, 2 H), 3.04 (d, J = 7.0 Hz, 2 H); 13 C NMR (100 MHz, CDCl₃) δ 145.3, 141.6, 138.3, 135.3, 134.2, 131.3, 129.3,

128.5, 128.3, 127.4, 126.7, 121.2, 119.23, 119.17, 117.1, 114.4, 57.9, 57.5, 56.0; IR (film) 3238, 1594 cm⁻¹. MS (ESI) 397.1234 (397.1233 calcd for $C_{23}H_{22}Cl_2N_2$, $[M + H]^+$).

2-{[Benzyl(but-3-en-2-yl)amino]methyl}-N-(4-methoxyphenyl)aniline (14a). 2-(4-

Methoxyphenylamino)benzoic acid (494 mg, 1.8 mmol) was coupled with *N*-benzylbut-3-enyl-2-amine (314 mg, 1.9 mmol) for 22 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded 499 mg (66%) of *N*-benzyl-*N*-(but-3-en-2-yl)-2-(4-methoxyphenylamino)benzamide as a viscous, yellow oil. ¹H NMR (500 MHz, CDCl₃, 60 °C) δ 7.37–7.10 (m, 6 H), 7.07–6.97 (m, 3 H), 6.88–6.83 (m, 2 H), 6.76 (dt, J = 1.0, 7.5 Hz, 1 H), 6.69–6.63 (m, 1 H), 5.95–5.84 (m, 1 H), 5.19–5.08 (m, 2 H), 4.88–4.80 (m, 1 H), 4.77 (d, J = 15.5 Hz, 1 H), 4.44 (d, J = 16.0 Hz, 1 H), 3.79 (s, 3 H), 1.24 (d, J = 7.0 Hz, 3 H); ¹³C NMR (125 MHz, CDCl₃, 60 °C) δ 172.1, 155.8, 144.0, 138.6, 135.4, 130.2, 128.4, 127.30, 127.26, 126.9, 123.6, 122.4, 118.6, 116.3, 115.8, 115.0, 114.9, 55.7, 49.7, 18.0, one aliphatic carbon signal is incidentally equivalent; IR (film) 3354, 1626 cm⁻¹. MS (ESI) 387.2067 (387.2067 calcd for C₂₅H₂₆N₂O₂, [M + H]⁺).

The above *N*-benzyl-*N*-(but-3-en-2-yl)-2-(4-methoxyphenylamino)benzamide (1.49 g, 2.0 mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (95:5 hexanes:ethyl acetate) afforded 701 mg (49%) of the title compound as a viscous, colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.10 (s, br, 1 H), 7.35–7.05 (m, 8 H), 7.01 (d, J = 8.8 Hz, 2 H),

6.85 (d, J = 8.8 Hz, 2 H), 6.69 (dt, J = 2.0, 7.2 Hz, 1 H), 6.03–5.91 (m, 1 H), 5.23 (d, J = 10.4 Hz, 1 H), 5.11 (d, J = 17.2 Hz, 1 H), 3.80 (s, 3 H), 3.74 (d, J = 12.8 Hz, 1 H), 3.65–3.55 (m, 2 H), 3.53–3.46 (m, 1 H), 3.38 (quint, J = 6.4 Hz, 1 H), 1.22 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 145.2, 139.6, 138.4, 136.0, 131.1, 129.1, 128.3, 128.1, 127.0, 123.7, 121.3, 118.0, 116.9, 114.5, 112.9, 55.6, 55.1, 53.61, 53.57, 14.5; IR (film) 3240, 1599 cm⁻¹. MS (ESI) 373.2276 (373.2274 calcd for $C_{25}H_{28}N_2O$, $[M + H]^+$).

2-{[Benzyl(but-3-en-2-yl)amino]methyl}-*N***-phenylaniline (14e).** 2-(Phenylamino)benzoic acid (995 mg, 4.7 mmol) was coupled with *N*-benzylbut-3-enyl-2-amine (748 mg, 4.6 mmol) for 22 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded 1.52 g (92%) of *N*-benzyl-*N*-(but-3-en-2-yl)-2-(phenylamino)benzamide as a viscous, yellow oil. 1 H NMR (400 MHz, CDCl₃, 60 °C) δ 7.31 (d, J = 8.0 Hz, 1 H), 7.28–7.13 (m, 8 H), 7.02 (d, J = 8.4 Hz, 2 H), 6.93 (t, J = 7.6 Hz, 1 H), 6.88–6.79 (m, 2 H), 5.91–5.78 (m, 1 H), 5.15–5.04 (m, 2 H), 4.85–4.72 (m, 2 H), 4.41 (d, J = 15.6 Hz, 1 H), 1.20 (d, J = 6.8 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃, 60 °C) δ 171.7, 142.6, 141.8, 138.8, 138.4, 130.0, 129.3, 128.4, 127.2, 126.9, 126.6, 125.6, 121.4, 120.0, 118.8, 117.8, 116.3, 55.6, 46.7, 17.9; IR (film) 3377, 1624 cm⁻¹. MS (ESI) 357.1962 (357.1961 calcd for $C_{24}H_{24}N_{2}O_{2}$, $[M + H]^{+}$).

The above *N*-benzyl-*N*-(but-3-en-2-yl)-2-(phenylamino)benzamide (5.34 g, 15 mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded 3.17 g (62%) of the title compound as a viscous, light yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, br, 1 H), 7.35 (d, J = 8.0 Hz, 1 H), 7.33–7.01 (m, 9 H), 7.05 (d, J = 8.4 Hz, 2 H), 6.88 (dt, J = 0.8, 7.6 Hz, 1 H), 6.77 (t, J = 7.2 Hz, 1 H), 6.03–5.91 (m, 1 H), 5.22 (d, J = 10.4 Hz, 1 H), 5.11 (d, J = 17.2 Hz, 1 H), 3.76 (d, J = 13.2 Hz, 1 H), 3.65–3.54 (m, 2 H), 3.49 (d, J = 13.2 Hz, 1 H), 3.37 (quint, J = 6.8 Hz, 1 H), 1.22 (d, J = 6.4 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 142.9, 139.5, 138.3, 131.2, 129.2, 129.1, 128.4, 128.0, 127.0, 125.0, 120.2, 119.2, 117.8, 117.0, 114.6, 55.2, 53.7, 53.5, 14.5; IR (film) 3253, 1593 cm⁻¹. MS (ESI) 343.2171 (343.2169 calcd for C₂₄H₂₆N₂, [M + H]⁺).

General Procedure 4: Pd-Catalyzed Synthesis of 1,4-Benzodiazepines. A flame-dried Schlenk tube was cooled under a stream of nitrogen and charged with PdCl₂(MeCN)₂ (2 mol %), cyclohexyldiphenylphosphine (4 mol %), NaOtBu (2.0 equiv), and aryl bromide (2.0 equiv). The tube was purged with nitrogen and a solution of the amine substrate (1.0 equiv) in xylenes (5 mL/mmol amine) was added. The mixture was heated to 135 °C with stirring until the starting material had been consumed as judged by TLC analysis (18–24 h; the reaction times were not minimized). The reaction mixture was cooled to room temperature, quenched with saturated aqueous NH₄Cl (2 mL) and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2 × 5 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was then purified by flash chromatography on silica gel.

4-Benzyl-1-phenyl-2-(3,4,5-trimethoxybenzyl)methyl]-2,3,4,5-tetrahydro-1*H*-

benzo[*e*][1,4]diazepine (17). General Procedure 4 was used for the coupling of 2-{[allyl(benzyl)amino]methyl}-*N*-phenylaniline (50 mg, 0.15 mmol) with 5-bromo-1,2,3-trimethoxybenzene (75 mg, 0.30 mmol) to afford 60 mg (79%) of the title compound as a foamy, white solid with a wide m.p. range 51–64 °C. ¹H NMR (500 MHz, CDCl₃) δ 7.41–7.36 (m, 2 H), 7.33 (t, J = 8.0 Hz, 2 H), 7.29–7.21 (m, 2 H), 7.18–7.12 (m, 4 H), 7.05 (d, J = 8.0 Hz, 1 H), 6.77–6.71 (m, 3 H), 6.40 (s, 2 H), 4.49 (m, 1 H), 3.81 (s, 3 H), 3.73 (s, 6 H), 3.72–3.63 (m, 2 H), 3.60 (d, J = 14.0 Hz, 1 H), 3.41 (d, J = 13.0 Hz, 1 H), 2.81–2.67 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 153.0, 148.5, 143.7, 139.3, 137.1, 136.3, 135.5, 130.4, 129.7, 129.1, 128.4, 128.3, 127.8, 127.0, 125.6, 118.2, 115.4, 106.1, 62.6, 60.8, 58.9, 57.9, 57.7, 56.0, 39.0; IR (film) 1591 cm⁻¹. MS (ESI) 495.2637 (495.2648 calcd for C₃₂H₃₄N₂O₃, [M + H]⁺).

4-Benzyl-2-(biphenyl-4-ylmethyl)-1-phenyl-2,3,4,5-tetrahydro-1*H*-benzo[*e*][1,4]diazepine

(18). General Procedure 4 was used for the coupling of 2-{[allyl(benzyl)amino]methyl}-*N*-phenylaniline (51 mg, 0.15 mmol) with 4-bromobiphenyl (71 mg, 0.30 mmol) to afford 65 mg (88%) of the title compound as a foamy, white solid with a wide m.p. range 50–66 °C. ¹H NMR

(400 MHz, CDCl₃) δ 7.58–7.53 (m, 2 H), 7.47–7.13 (m, 17 H), 7.06 (d, J = 7.6 Hz, 1 H), 6.79–6.72 (m, 3 H), 4.55–4.47 (m, 1 H), 3.67–3.59 (m, 3 H), 3.44 (d, J = 12.8 Hz, 1 H), 2.90–2.71 (m, 4 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 143.8, 141.0, 139.3, 139.0, 138.9, 137.0, 130.4, 129.6, 129.5, 129.2, 128.9, 128.7, 128.3, 128.0, 127.04, 127.03, 126.9, 125.6, 118.2, 115.5, 62.7, 59.0, 58.0, 56.8, 37.3, one aromatic carbon signal is incidentally equivalent; IR (film) 1593 cm⁻¹. MS (ESI) 481.2645 (481.2638 calcd for $C_{35}H_{32}N_2$, $[M + H]^+$).

4-Benzyl-2-(2-ethylbenzyl)-1-(4-methoxyphenyl)-2,3,4,5-tetrahydro-1*H*-

benzo[*e*][1,4]diazepine (19). General Procedure 4 was used for the coupling of 2-{[allyl(benzyl)amino]methyl}-*N*-(4-methoxyphenyl)aniline (49 mg, 0.14 mmol) with 1-bromo-2-ethylbenzene (39 μL, 0.28 mmol) to afford 60 mg (94%) of the title compound as a viscous, colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.42–7.38 (m, 2 H), 7.34 (t, J = 7.5 Hz, 2 H), 7.31–7.26 (m, 1 H), 7.20–7.01 (m, 7 H), 6.94 (d, J = 8.0 Hz, 1 H), 6.77–6.73 (m, 2 H), 6.72–6.67 (m, 2 H), 4.36–4.30 (m, 1 H), 3.75 (s, 3 H), 3.68 (d, J = 14.0 Hz, 2 H), 3.59 (d, J = 13.5 Hz, 1 H), 3.40 (d, J = 13.0 Hz, 1 H), 2.83 (d, J = 7.0 H, 2 H), 2.77–2.55 (m, 4 H), 1.15 (t, J = 7.5 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 152.9, 145.4, 143.0, 142.3, 139.3, 137.6, 136.0, 130.2, 130.1, 128.8, 128.30, 128.27, 127.8, 127.0, 126.3, 125.7, 124.3, 118.8, 114.6, 62.7, 59.2, 59.1, 57.6, 55.6, 34.5, 25.4, 15.3, one aromatic carbon signal is incidentally equivalent; IR (film) 1507 cm⁻¹. MS (ESI) 463.2735 (463.2749 calcd for $C_{32}H_{34}N_2O$, [M + H] $^+$).

4-Benzyl-1-(3,5-dichlorophenyl)-2-[4-(trifluoromethyl)benzyl]-2,3,4,5-tetrahydro-1*H*-

benzo[*e*][1,4]diazepine (20). General Procedure 4 was used for the coupling of *N*-{2-[(allyl<benzyl>amino)methyl]phenyl}-3,5-dichloroaniline (53 mg, 0.13 mmol) with 1-bromo-4-(trifluoromethyl)benzene (38 μL, 0.27 mmol) to afford 53 mg (74%) of the title compound as a viscous, colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 8.0 Hz, 2 H), 7.38–7.24 (m, 7 H), 7.21 (d, J = 6.5 Hz, 1 H), 7.16 (d, J = 8.0 Hz, 2 H), 6.97 (d, J = 7.0 Hz, 1 H), 6.69 (t, J = 2.0 Hz, 1 H), 6.48 (d, J = 1.0 Hz, 2 H), 4.45–4.35 (m, 1 H), 3.67 (d, J = 13.0 Hz, 1 H), 3.60 (d, J = 13.0 Hz, 2 H), 3.38 (d, J = 13 Hz, 1 H), 2.85–2.65 (m, 4 H); 13 C NMR (100 MHz, CDCl₃) δ 149.7, 143.1, 141.2, 138.8, 135.6, 130.8, 130.0, 129.4, 128.9, 128.5, 128.43, 128.40, 127.4, 127.3, 125.33, 125.29, 124.2 (q, J = 272 Hz), 117.5, 112.2, 62.9, 59.2, 57.2, 37.6, 29.7; 19 F NMR (376 MHz, CDCl₃) δ –62.4 (m); IR (film) 1580 cm $^{-1}$. MS (ESI) 541.1432 (541.1425 calcd for C_{30} H₂₅Cl₂ F_{3} N₂, $[M + H]^+$).

4-Benzyl-1-(3,5-dichlorophenyl)-2-[3-(trifluoromethyl)benzyl]-2,3,4,5-tetrahydro-1H-

benzo[*e*][1,4]diazepine (21). General Procedure 4 was used for the coupling of *N*-{2-[(allyl<benzyl>amino)methyl]phenyl}-3,5-dichloroaniline (53 mg, 0.13 mmol) with 1-bromo-3-(trifluoromethyl)benzene (38 μL, 0.27 mmol) to afford 56 mg (78%) of the title compound as a viscous, colorless film. 1 H NMR (400 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz, 1 H), 7.38–7.22 (m, 10 H), 7.19 (d, J = 6.8 Hz, 1 H), 6.92 (d, J = 6.8 Hz, 1 H), 6.63 (t, J = 1.6 Hz, 1 H), 6.47 (d, J = 1.2 Hz, 2 H), 4.41 (m, 1 H), 3.64 (s, 2 H), 3.60 (d, J = 13.2 Hz, 1 H), 3.36 (d, J = 13.2 Hz, 1 H), 2.85–2.67 (m, 4 H); 13 C NMR (100 MHz, CDCl₃) δ 149.8, 141.2, 139.8, 138.7, 137.5, 135.6, 132.3, 130.8, 130.5, 130.1, 128.8, 128.4, 127.33, 127.26, 126.20, 126.16, 124.1 (q, J = 272 Hz), 123.3, 123.2, 117.5, 112.3, 62.9, 58.9, 57.4, 37.5, 29.7; 19 F NMR (376 MHz, CDCl₃) δ -62.6 (m); IR (film) 1580 cm $^{-1}$. MS (ESI) 541.1429 (541.1425 calcd for C₃₀H₂₅Cl₂F₃N₂, [M + H] $^+$).

(\pm)-(2R,3S)-4-Benzyl-2-(biphenyl-4-methyl)-1-(4-methoxyphenyl)-3-methyl-2,3,4,5tetrahydro-1H-benzo[e][1,4]diazepine (15). General Procedure 4 was used for the coupling of

2-{[benzyl(but-3-en-2-yl)amino]methyl}-N-(4-methoxyphenyl)aniline (52 mg, 0.14 mmol) with 4-bromobiphenyl (64 mg, 0.28 mmol) to afford 48 mg (65%) of the title compound as a viscous, colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.60 (d, J = 7.5 Hz, 2 H), 7.52 (d, J = 7.5 Hz, 2 H), 7.48–7.18 (m, 11 H), 7.12–7.04 (m, 2 H), 6.89 (d, J = 8.0 Hz, 1 H), 6.63 (d, J = 9.0 Hz, 2 H), 6.47 (d, J = 9.0 Hz, 2 H), 4.41 (td, J = 2.3, 11.0 Hz, 1 H), 3.85–3.65 (m, 7 H), 3.48 (dq, J = 2.0, 6.8 Hz, 1 H), 2.97 (d, J = 13.5 Hz, 1 H), 2.50 (dd, J = 10.5, 14.0 Hz, 1 H), 1.42 (d, J = 7.0 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 152.8, 145.0, 143.4, 141.0, 140.8, 140.0, 138.8, 137.0, 130.8, 129.7, 129.5, 128.7, 128.5, 128.3, 127.9, 127.0, 126.98, 126.95, 126.8, 124.3, 119.0, 114.4, 67.5, 61.2, 57.1, 55.6, 52.4, 33.8, 19.2; IR (film) 1504 cm $^{-1}$. MS (ESI) 525.2909 (525.2900 calcd for C_{37} H₃₆N₂O, $[M + H]^+$).

(±)-3-{benzyl[2-(phenylamino)benzyl]amino}butan-2-one (16). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-phenylaniline (49 mg, 0.14 mmol) with 1-bromo-3,5-dichlorobenzene (66 mg, 0.29 mmol) to afford 8.7 mg (12%) of the title compound as a viscous, colorless film. 1 H NMR (500 MHz, CDCl₃) δ 7.82 (s, br, 1 H), 7.37–7.31 (m, 3 H), 7.30–7.11 (m, 7 H), 7.09–7.04 (m, 2 H), 6.90 (tt, J = 1.0, 7.5 Hz, 1 H), 6.77 (td, J = 7.5, 1.5 Hz, 1 H), 3.89 (d, J = 13.0 Hz, 1 H), 3.72 (d, J = 13.0 Hz, 1 H), 3.53 (d, J = 13.0 Hz, 1 H), 3.44 (q, J = 7.0 Hz, 1 H), 3.42 (d, J = 13.5 Hz, 1 H), 2.15 (s, 3 H), 1.28 (d, J = 7 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 209.6, 143.3, 142.6, 138.7, 131.5, 129.13, 129.11, 128.6,

128.5, 127.5, 124.3, 120.7, 119.2, 118.3, 115.0, 62.8, 54.6, 53.9, 27.9, 8.1; IR (film) 1714, 1593 cm⁻¹. MS (ESI) 359.2117 (359.2118 calcd for $C_{24}H_{26}N_2O$, $[M + H]^+$).

(\pm) -(2R,3S)-4-Benzyl-2-[(6-methoxynaphthalen-2-yl)methyl]-3-methyl-1-phenyl-2,3,4,5-

tetrahydro-1*H***-benzo**[*e*][1,4]diazepine (22). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-phenylaniline (50 mg, 0.15 mmol) with 2-bromo-6-methoxynaphthalene (70 mg, 0.28 mmol) to afford 59 mg (81%) of the title compound as a foamy, light yellow solid with a wide m.p. range 51–69 °C. This material contained ca. 8% of ketone **16**, which could not be separated by chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 1 H), 7.61 (d, J = 9.6 Hz, 1 H), 7.43–7.15 (m, 9 H), 7.12–7.07 (m, 3 H), 7.06–7.00 (m, 2 H), 6.86 (dd, J = 2.0, 7.2 Hz, 1 H), 6.63 (t, J = 7.2 Hz, 1 H), 6.54 (d, J = 8.0 Hz, 2 H), 4.68 (dt, J = 2.0, 10.8 Hz, 1 H), 3.90 (s, 3 H), 3.80 (d, J = 14.0 Hz, 1 H), 3.73–3.63 (m, 3 H), 3.58 (dd, J = 2.4, 6.8 Hz, 1 H), 3.07 (dd, J = 2.0, 15.2 Hz, 1 H), 2.54 (dd, J = 10.8, 15.2 Hz, 1 H), 1.46 (d, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 148.8, 143.4, 140.8, 138.4, 135.2, 133.1, 131.1, 130.9, 129.0, 128.9, 128.4, 128.3, 127.8, 127.7, 127.3, 126.8, 126.7, 125.6, 118.6, 117.7, 115.3, 110.0, 105.6, 64.6, 60.8, 56.8, 55.3, 52.1, 33.6, 19.1; IR (film) 1605, 1592 cm⁻¹. MS (ESI) 499.2741 (499.2749 calcd for C₃₅H₃₄N₂O, [M + H]⁺).

(\pm) -4-[(2R,3S)-4-Benzyl-1-(4-methoxyphenyl)-3-methyl(-2,3,4,5-tetrahydro-1H-

benzo[*e*][1,4]diazepin-2-yl)methyl]-*N*,*N*-dimethylaniline (23). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-(4-methoxyphenyl)aniline (52 mg, 0.14 mmol) with 4-bromo-*N*,*N*-dimethylaniline (56 mg, 0.28 mmol) to afford 55 mg (81%) of the title compound as a viscous, colorless film. This material contained ca. 8% of ketone 16, which could not be separated by chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.16 (m, 6 H), 7.11–6.99 (m, 4 H), 6.90 (d, J = 7.6 Hz, 1 H), 6.69 (d, J = 8.4 Hz, 2 H), 6.63 (d, J = 9.2 Hz, 2 H), 6.47 (d, J = 9.2 Hz, 2 H), 4.32 (td, J = 2.0, 10.4 Hz, 1 H), 3.81–3.67 (m, 6 H), 3.64 (d, J = 14.0 Hz, 1 H), 3.51–3.41 (m, 1 H), 2.91 (s, 6 H), 2.83 (dd, J = 2.0, 14.8 Hz, 1 H), 2.33 (dd, J = 10.8, 14.8 Hz, 1 H), 1.38 (d, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 152.6, 149.1, 145.3, 143.6, 140.9, 136.9, 130.8, 129.7, 129.6, 128.8, 128.5, 128.2, 127.8, 126.7, 124.0, 119.1, 114.4, 113.0, 67.7, 61.2, 57.0, 55.6, 52.1, 40.9, 33.1, 19.1; IR (film) 1506 cm⁻¹. MS (ESI) 492.3014 (492.3009 calcd for C₃₃H₃₇N₃O, [M + H]⁺).

(\pm) -(2R,3S)-4-benzyl-2-(3,5-dichlorobenzyl)-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-

benzo[e][1,4]diazepine (24). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-phenylaniline (49 0.14 mmol) with 1-bromo-3.5mg, dichlorobenzene (66 mg, 0.29 mmol) to afford 44 mg (63%) of the title compound as a viscous, colorless film. ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.33 (m, 4 H), 7.32–7.22 (m, 2 H), 7.21–7.03 (m, 5 H), 7.01-6.97 (m, 2 H), 6.85 (dd, J = 1.2, 7.6 Hz, 1 H), 6.70 (t, J = 7.2 Hz, 1 H), 6.55 (d, J = 1.2, 7.6 Hz, 1 H), 6.70 (t, J = 7.2 Hz, 1 H), 6.55 (d, J = 1.2, 7.6 Hz, 1 H), 6.70 (t, J = 7.2 Hz, 1 H),= 8.0 Hz, 2 H), 4.52 (td, J = 2.4, 11.6 Hz, 1 H), 3.69 (s, 2 H), 3.63–3.57 (m, 2 H), 3.50 (dq, J =2.4, 6.8 Hz, 1 H), 2.90 (dd, J = 2.4, 15.2 Hz, 1 H), 2.41 (dd, J = 11.2, 15.2 Hz, 1 H), 1.41 (d, J =7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.5, 143.7, 142.9, 140.5, 138.3, 134.5, 131.0, 130.8, 129.2, 128.33, 128.30, 127.5, 126.9, 126.3, 125.9, 118.2, 115.4, 64.5, 60.6, 57.0, 52.7, 33.2, 19.1; IR (film) 1592 cm⁻¹. MS (ESI) 487.1698 (487.1708 calcd for $C_{30}H_{28}Cl_2N_2$, [M + $\mathrm{H}]^{+}$).

(\pm)-(2*R*,3*S*)-4-Benzyl-2-(2,6-dimethylbenzyl)-1-(4-methoxyphenyl)-3-methyl-2,3,4,5tetrahydro-1*H*-benzo[e][1,4]diazepine (25). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-(4-methoxyphenyl)aniline (52 mg, 0.14 mmol) with 2-bromo-*meta*-xylene (37 μL, 0.28 mmol) to afford 58 mg (87%) of the title compound as a viscous, colorless film. 1 H NMR (500 MHz, CDCl₃) δ 7.40–7.32 (m, 4 H), 7.29–7.25 (m, 1 H), 7.08–7.03 (m, 1 H), 7.02–6.89 (m, 5 H), 6.69–6.65 (m, 2 H), 6.63–6.56 (m, 3 H), 4.48–4.42 (m, 1 H), 3.99 (d, J = 14.5 Hz, 1 H), 3.88 (d, J = 14.0 Hz, 1 H), 3.72 (s, 3 H), 3.57 (d, J = 14.0 Hz, 1 H), 3.53 (d, J = 14.5 Hz, 1 H), 3.24 (dq, J = 2.5, 7.0 Hz, 1 H), 3.02 (dq, J = 8.0, 14.5 Hz, 2 H), 2.16 (s, 6 H), 1.23 (d, J = 7.5 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 153.9, 146.7, 146.0, 142.9, 140.7, 137.2, 137.1, 132.8, 130.6, 128.6, 128.3, 127.8, 126.7, 126.5, 125.8, 122.5, 122.0, 114.4, 65.3, 60.9, 56.1, 55.5, 55.3, 29.9, 20.7, 19.2; IR (film) 1506 cm $^{-1}$. MS (ESI) 477.2905 (477.2900 calcd for $C_{33}H_{36}N_2O$, $[M+H]^+$).

tetrahydro-1*H*-benzo[*e*][1,4]diazepine (26). General Procedure 4 was used for the coupling of 2-{[benzyl(but-3-en-2-yl)amino]methyl}-*N*-(4-methoxyphenyl)aniline (52 mg, 0.14 mmol) with 2-bromo-1,3,5-triisopropylbenzene (71 μ L, 0.28 mmol) to afford 51 mg (64%) of the title compound as a viscous, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.34–7.22 (m, 5 H), 7.12 (td, J = 1.5, 8.0 Hz, 1 H), 7.05–7.01 (dd, J = 1.5, 7.5 Hz, 1 H), 6.95 (td, J = 1.0, 7.0 Hz, 1 H),

 (\pm) -(2R,3S)-4-Benzyl-1-(4-methoxyphenyl)-3-methyl-2-(2,4,6-triisopropylbenzyl)-2,3,4,5-

6.90 (s, 2 H), 6.78 (d, J = 7.5 Hz, 1 H), 6.73–6.68 (m, 2 H), 6.67–6.61 (m, 2 H), 4.16 (t, J = 5.0

Hz, 1 H), 4.03 (d, J = 14.0 Hz, 1 H), 3.78 - 3.70 (m, 4 H), 3.54 (dd, J = 10.5, 14.0 Hz, 2 H), 3.22 - 10.5

3.10 (m, 4 H), 2.90 (dd, J = 5.5, 15.0 Hz, 1 H), 2.89–2.81 (m, 1 H), 1.24 (d, J = 7.0 Hz, 6 H), 1.13 (d, J = 7.0 Hz, 3 H), 1.11 (d, J = 6.5 Hz, 6 H), 1.03 (d, J = 7.0 Hz, 6 H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 147.4, 147.2, 146.5, 142.9, 140.5, 132.7, 132.2, 130.6, 128.6, 128.2, 127.8, 126.7, 126.1, 122.6, 122.4, 120.8, 114.4, 67.5, 60.1, 56.0, 55.9, 55.5, 34.1, 29.2, 29.0, 24.6, 24.1, 23.8, 18.8; IR (film) 1507 cm⁻¹. MS (ESI) 575.4002 (575.3996 calcd for C₄₀H₅₀N₂O, [M + H]⁺).

General Procedure 5: Pd-Catalyzed Synthesis of 1,4-Benzodiazepin-5-ones. A flame-dried Schlenk tube was cooled under a stream of nitrogen and charged with Pd₂(dba)₃ (1 mol % complex, 2 mol % Pd) or Pd(dba)₂ (2 mol %), tris(4-fluorophenyl)phosphine (4 mol %), NaOtBu (2.0 equiv), and aryl bromide (2.0 equiv). The tube was purged with nitrogen and a solution of the amine substrate (1.0 equiv) in xylenes (5 mL/mmol amine) was added. The mixture was heated to 135 °C with stirring until the starting material had been consumed as judged by TLC analysis (18–24 h; the reaction times were not minimized). The reaction mixture was cooled to room temperature, quenched with saturated aqueous NH₄Cl (2 mL) and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2 × 5 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated *in vacuo*. The crude product was then purified by flash chromatography on silica gel.

2-([1,1'-Biphenyl]-4-ylmethyl)-4-benzyl-1-phenyl-3,4-dihydro-1*H*-benzo[*e*][1,4]diazepin-

5(2*H***)-one (30).** General Procedure 5 was used for the coupling of *N*-allyl-*N*-benzyl-2-(phenylamino)benzamide (40 mg, 0.12 mmol) with 4-bromobiphenyl (52 mg, 0.22 mmol) to afford 44 mg (76%) of the title compound as a white solid with a wide m.p. range 67–85 °C. 1 H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 1.5, 7.5 Hz, 1 H), 7.62–7.58 (m, 2 H), 7.55–7.40 (m, 6 H), 7.39–7.34 (m, 1 H), 7.32–7.20 (m, 3 H), 7.19–7.01 (m, 7 H), 6.77 (t, J = 7.5 Hz, 1 H), 6.52 (d, J = 8 Hz, 2 H), 5.10 (d, J = 14.5 Hz, 1 H), 4.15 (d, J = 14.5 Hz, 1 H), 3.99–3.89 (m, 1 H), 3.27 (dd, J = 11.5, 15.5 Hz, 1 H), 3.22–3.09 (m, 2 H), 2.44 (dd, J = 10.0, 14.0 Hz, 1 H); 13 C NMR (125 MHz, CDCl₃) δ 169.5, 148.3, 140.6, 139.8, 139.6, 137.0, 136.4, 136.2, 132.3, 130.4, 130.3, 129.03, 129.02, 128.8, 128.6, 128.4, 127.5, 127.4, 127.3, 127.1, 127.0, 118.3, 113.7, 62.9, 51.3, 50.1, 36.4; IR (film) 1648 cm⁻¹. MS (ESI) 495.2423 (495.2431 calcd for C₃₅H₃₀N₂O, [M + H] $^+$).

tert-Butyl-4-[(4-benzyl-5-oxo-1-phenyl-2,3,4,5-tetrahydro-1H-benzo[e][1,4]diazepin-2-

yl)methyl]benzoate (32). General Procedure 5 was used for the coupling of N-allyl-N-benzyl-2-(phenylamino)benzamide (36 mg, 0.10 mmol) with *tert*-butyl 4-bromobenzoate (40 μ L, 0.20 mmol) to afford 39 mg (72%) of the title compound as a foamy white solid with a wide m.p.

range 68–85 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93–7.86 (m, 3 H), 7.52 (dt, J = 2.0, 7.6 Hz, 1 H), 7.42 (dt, J = 1.2, 7.6 Hz, 1 H), 7.29–7.20 (m, 2 H), 7.17–7.08 (m, 4 H), 7.07–6.98 (m, 4 H), 6.77 (t, J = 7.2 Hz, 1 H), 6.47 (d, J = 8.0 Hz, 2 H), 5.14 (d, J = 14.4 Hz, 1 H), 4.06 (d, J = 14.4 Hz, 1 H), 3.94–3.82 (m, 1 H), 3.30–3.10 (m, 2 H), 3.04 (dd, J = 5.2, 15.2 Hz, 1 H), 2.44 (dd, J = 6.0, 14.0 Hz, 1 H), 1.61 (s, 9 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.4, 165.5, 148.2, 142.1, 139.6, 136.9, 136.2, 132.3, 130.5, 130.4, 130.3, 129.9, 129.1, 128.7, 128.5, 128.4, 127.5, 127.2, 118.4, 113.6, 81.1, 62.7, 51.3, 50.2, 36.8, 28.2; IR (film) 1711, 1649 cm⁻¹. MS (ESI) 541.2465 (541.2462 calcd for C₃₄H₃₄N₂O₃, [M + Na]⁺).

2-(4-Benzoylbenzyl)-4-benzyl-1-phenyl-3,4-dihydro-1*H*-benzo[*e*][1,4]diazepin-5(2*H*)-one

(33). General Procedure 5 was used for the coupling of *N*-allyl-*N*-benzyl-2-(phenylamino)benzamide (34 mg, 0.10 mmol) with 4-bromobenzophenone (52 mg, 0.20 mmol) to afford 33 mg (64%) of the title compound as a viscous, colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 7.89 (dd, J = 1.5, 7.5 Hz, 1 H), 7.81–7.76 (m, 2 H), 7.72 (d, J = 8 Hz, 2 H), 7.64–7.59 (m, 1 H), 7.56–7.48 (m, 3 H), 7.47–7.41 (m, 2 H), 7.28–7.21 (m, 1 H), 7.16–7.10 (m, 6 H), 7.04 (d, J = 7.5 Hz, 2 H), 6.78 (t, J = 7.5 Hz, 1 H), 6.48 (d, J = 7.5 Hz, 2 H), 5.15 (d, J = 14.5 Hz, 1 H), 4.13 (d, J = 14.5 Hz, 1 H), 3.98–3.90 (m, 1 H), 3.27 (dd, J = 11.5, 15.5 Hz, 1 H), 3.19 (dd, J = 4.5, 14.0 Hz, 1 H), 3.09 (dd, J = 5.0, 15.0 Hz, 1 H), 2.50 (dd, J = 9.5, 14.0 Hz, 1 H); ¹³C NMR

(100 MHz, CDCl₃) δ 196.2, 169.5, 148.2, 142.3, 139.5, 137.5, 136.8, 136.2, 136.1, 132.5, 132.4, 130.6, 130.4, 130.3, 130.0, 129.1, 128.7, 128.6, 128.4, 128.3, 127.6, 127.2, 118.4, 113.6, 62.7, 51.3, 50.2, 36.9; IR (film) 1649, 1603 cm⁻¹. MS (ESI) 523.2377 (523.2380 calcd for $C_{36}H_{30}N_2O_2$, $[M+H]^+$).

(\pm) -(2R,3R)-3-(4-benzoylphenyl)-4-benzyl-2-methyl-1-phenyl-3,4-dihydro-1H-

benzo[*e*][1,4]diazepin-5(2*H*)-one (S1). General Procedure 5 was used for the coupling of *N*-allyl-*N*-benzyl-2-(phenylamino)benzamide (34 mg, 0.10 mmol) with 4-bromobenzophenone (52 mg, 0.20 mmol) to afford 5 mg (9%) of the title compound as an off-white film in ca. 80% purity. The structure and relative stereochemistry of 31 was assigned based on analogy to S1. 1 H NMR (400 MHz, CDCl₃) δ 8.21 (dd, J = 1.6, 8.0 Hz, 1 H), 7.86 (d, J = 8.4 Hz, 2 H), 7.84–7.79 (m, 2 H), 7.64–7.58 (m, 1 H), 7.54–7.43 (m, 3 H), 7.39 (d, J = 8.4 Hz, 2 H), 7.29–7.21 (m, 1 H), 7.16–7.09 (m, 3 H), 7.00–6.94 (m, 2 H), 6.85 (t, J = 7.6 Hz, 2 H), 6.79 (d, J = 7.6 Hz, 2 H), 6.63 (d, J = 7.2 Hz, 2 H), 5.21 (d, J = 15.2 Hz, 1 H), 4.79 (d, J = 10.4 Hz, 1 H), 3.40–3.31 (m, 1 H), 2.45 (d, J = 14.8 Hz, 1 H), 1.46 (d, J = 6.8 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 196.2, 161.7, 147.8, 146.7, 142.4, 137.5, 136.6, 135.6, 132.9, 132.5, 130.7, 130.0, 129.2, 128.7, 128.4, 128.3, 128.1, 127.8, 127.1, 124.1, 123.4, 123.3, 122.9, 121.3, 79.8, 48.9, 43.8, 18.2; IR (film) 1653, 1603 cm⁻¹. MS (ESI) 523.2371 (523.2380 calcd for C₃₆H₃₀N₂O₂, [M + H]⁺).

4-Benzyl-1-(3,5-dichlorophenyl)-2-(pyridine-3-ylmethyl)-3,4-dihydro-1*H*-

benzo[*e*][1,4]diazepin-5(2*H*)-one (34). General Procedure 5 was used for the coupling of *N*-allyl-*N*-benzyl-2-(3,5-dichlorophenylamino)benzamide (35 mg, 0.09 mmol) with 3-bromopyridine (17 μL, 0.17 mmol) to afford 32 mg (78%) of the title compound as a white solid, m.p. 153–155 °C. ¹H NMR (500 MHz, CDCl₃) δ 8.52 (dd, J = 1.5, 4.5 Hz, 1 H), 8.30 (d, J = 2.0 Hz, 1 H), 7.90 (dd, J = 2.0, 8.0 Hz, 1 H), 7.58 (dt, J = 1.5, 7.5 Hz, 1 H), 7.51 (dt, J = 1.5, 7.5 Hz, 1 H), 7.34–7.27 (m, 2 H), 7.26–7.21 (m, 1 H), 7.20–7.15 (m, 3 H), 7.05–7.01 (m, 2 H), 6.72 (t, J = 1.5 Hz, 1 H), 6.10 (s, 2 H), 5.33 (d, J = 14.5 Hz, 1 H), 3.93 (d, J = 14.5 Hz, 1 H), 3.62–3.54 (m, 1 H), 3.25 (dd, J = 11.5, 15.0 Hz, 1 H), 3.09 (dd, J = 5.5, 15.5 Hz, 1 H), 2.89 (dd, J = 5.0, 14.0 Hz, 1 H), 2.42 (dd, J = 9.0, 14.0 Hz, 1 H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 150.0, 149.8, 148.6, 137.4, 136.9, 136.0, 135.4, 132.8, 132.2, 130.8, 130.1, 128.9, 128.5, 128.4, 128.0, 123.6, 118.1, 111.4, 62.9, 51.0, 50.1, 34.1; IR (film) 1643 cm⁻¹. MS (ESI) 488.1292 (488.1291 calcd for C₂₈H₂₃Cl₂N₃O, [M + H]⁺).

4-Benzyl-1-(3,5-dichlorophenyl)-2-[2-(trifluoromethyl)benzyl]-3,4-dihydro-1*H*-

benzo[*e*][1,4]diazepin-5(2*H*)-one (35). General Procedure 5 was used for the coupling of *N*-allyl-*N*-benzyl-2-(3,5-dichlorophenylamino)benzamide (36 mg, 0.09 mmol) with 1-bromo-2-(trifluoromethyl)benzene (23 μL, 0.17 mmol) to afford 25 mg (50%) of the title compound as a white solid, m.p. 235–237 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 1.6, 7.6 Hz, 1 H), 7.69–7.60 (m, 2 H), 7.54 (t, J = 7.6 Hz, 1 H), 7.38 (quint, J = 7.6 Hz, 2 H), 7.32–7.23 (m, 2 H), 7.19–7.09 (m, 3 H), 7.08–7.02 (m, 2 H), 6.62 (t, J = 1.6 Hz, 1 H), 5.81 (d, J = 2.0 Hz, 2 H), 5.39 (d, J = 14.4 Hz, 1 H), 3.90 (d, J = 14.0 Hz, 1 H), 3.83–3.73 (m, 1 H), 3.28 (dd, J = 11.6, 15.2 Hz, 1 H), 3.09 (dd, J = 4.8, 14.8 Hz, 1 H), 2.85 (dd, J = 7.2, 14.4 Hz, 1 H), 2.75–2.64 (m, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ –59.0 (m); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 150.5, 137.3, 136.9, 136.5, 135.6, 135.1, 132.9, 132.1, 131.6, 130.9, 130.5, 128.8, 128.6, 128.5, 127.9, 127.2, 126.6, 126.5, 124.3 (q, J = 275 Hz), 117.8, 111.4, 63.4, 51.5, 50.3, 33.6; IR (film) 1646 cm⁻¹. MS (ESI) 577.1023 (577.1032 calcd for C₃₀H₂₃Cl₂F₃N₂O, [M + Na]⁺).

2-(4-Benzoylbenzyl)-4-octyl-1-phenyl-3,4-dihydro-1*H***-benzo**[*e*][1,4]diazepin-5(2*H*)-one (36). General Procedure 5 was used for the coupling of *N*-allyl-*N*-octyl-2-(phenylamino)benzamide

(35 mg, 0.10 mmol) with 4-bromobenzophenone (52 mg, 0.20 mmol) to afford 36 mg (69%) of the title compound as a viscous, colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.86–7.78 (m, 4 H), 7.61 (dt, J = 1.5, 7 Hz, 1 H), 7.55–7.47 (m, 3 H), 7.44–7.38 (m, 3 H), 7.28–7.24 (m, 2 H), 7.19–7.12 (m, 2 H), 6.77 (t, J = 7.0 Hz, 1 H), 6.65 (d, J = 8.0 Hz, 2 H), 4.54–4.40 (m, 1 H), 3.62–3.53 (m, 1 H), 3.43–3.20 (m, 3 H), 3.15 (dd, J = 5.5, 15.5 Hz, 1 H), 2.66 (dd, J = 9.0, 13.5 Hz, 1 H), 1.50–1.00 (m, 12 H), 0.83 (t, J = 7.5 Hz, 3 H); 13 C NMR (100 MHz, CDCl₃) δ 196.2, 169.3, 148.3, 142.5, 139.5, 137.5, 136.6, 136.3, 132.5, 132.1, 130.8, 130.4, 130.01, 129.98, 129.1, 128.9, 128.3, 127.1, 118.6, 113.7, 63.5, 52.1, 47.1, 37.2, 31.7, 29.4, 29.1, 28.7, 26.6, 22.6, 14.1; IR (film) 1649, 1602 cm $^{-1}$. MS (ESI) 545.3166 (545.3163 calcd for $C_{37}H_{40}N_2O_2$, $[M + H]^+$).

4-Octyl-2-(phenanthren-9-ylmethyl)-1-phenyl-3,4-dihydro-1*H***-benzo**[*e*][1,4]diazepin-5(2*H*)**-one** (37). General Procedure 5 was used for the coupling of *N*-allyl-*N*-octyl-2-(phenylamino)benzamide (38 mg, 0.10 mmol) with 9-bromophenanthrene (50 mg, 0.19 mmol) to afford 41 mg (74%) of the title compound as a viscous, colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.85–8.76 (m, 1 H), 8.69 (d, J = 8.4 Hz, 1 H), 8.22–8.16 (m, 1 H), 7.87–7.80 (m, 3 H), 7.77–7.79 (m, 2 H), 7.69–7.55 (m, 4 H), 7.46 (dt, J = 1.2, 7.6 Hz, 1 H), 7.37 (dd, J = 0.8, 8 Hz, 1 H), 7.15–7.07 (m, 2 H), 6.73 (t, J = 7.6 Hz, 1 H), 6.66 (d, J = 8.4 Hz, 1 H), 4.87–4.77 (m, 1 H), 3.72 (dd, J = 5.2, 14.8 Hz, 1 H), 3.58–3.46 (m, 1 H), 3.40 (dd, J = 11.6, 14.8 Hz, 1 H), 3.20–2.97 (m, 3 H), 1.42–0.95 (m, 12 H), 0.82 (t, J = 6.8 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ 169.3, 148.8, 139.6, 137.1, 132.2, 131.8, 131.5, 131.1, 130.9, 130.6, 130.4, 129.9, 129.2, 128.2, 127.8,

127.3, 127.0, 126.9, 126.7, 126.6, 123.9, 123.6, 122.5, 118.3, 113.6, 62.4, 52.6, 47.0, 34.5, 31.7, 29.3, 29.0, 28.6, 26.5, 22.6, 14.1; IR (film) 1646 cm⁻¹. MS (ESI) 541.3217 (541.3213 calcd for $C_{38}H_{40}N_2O$, $[M + H]^+$).

Assignment of Stereochemistry

The stereochemistry of 15 was assigned on the basis of nOe correlations as shown below. In addition, the measured value of $J_{ab} = 2.0$ Hz correlates well with the calculated value of 1.5 Hz for a *cis*-arrangement of these protons. The stereochemistry of other disubstituted products was assigned based on analogy to 15.

Calculated Values for
$$J_{ab}$$

Bn

CH₃

PMP

H_b

Ph

Calcd $J_{ab} = 1.5 \text{ Hz}$

Calculated Values for J_{ab}

Bn

CH₃

PMP

Ph

Calcd $J_{ab} = 9.5 \text{ Hz}$

The *trans*-stereochemistry of **S1** was assigned on the basis of the measured value of $J_{ab} = 10.4$ Hz. The stereochemistry of **31** was assigned based on analogy to **S1**.

References

¹ Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Tetrahedron 2006, 62, 11100.

² Wolfe, J. P.; Buchwald, S, L. Tetrahedron Lett. 1997, 38, 6359.

³ Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2007, 129, 14172.

⁴ Mukherjee, S.; List, B. J. Am. Chem. Soc. **2007**, 129, 11336.

⁵ Manku, S.; Wang, F.; Hall, D. G. J. Comb. Chem., **2003**, *5*, 379.