Electrochemical Lithium Intercalation in monoclinic Nb₁₂O₂₉

Yan Li, Chunwen Sun, and John B. Goodenough*

Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78721, United States Email: jgoodenough@mail.utexas.edu

Experimental

Synthesis of Nb₁₂O₂₉

Depending on the synthesis temperature, Nb₁₂O₂₉ can form two polymorphs with monoclinic and orthorhombic symmetry, respectively.^{S1,S2} They have the same basic structural unit, *i.e.* columns of $4\times3\times\infty$ corner-shared NbO_{6/2} octahedra, but exhibit different arrangements of these columns. Since phase-pure orthorhombic Nb₁₂O₂₉ is difficult to obtain and it is less conductive than the monoclinic phase,^{S2} we focus on the monoclinic Nb₁₂O₂₉ in this paper.

Monoclinic Nb₁₂O₂₉ samples were prepared from a stoichiometric mixture of H-Nb₂O₅ and Nb metal. H-Nb₂O₅ was first obtained by firing the commercially available Nb₂O₅ at 1100 °C for 24 h in air. The mixture of H-Nb₂O₅ and Nb metal was thoroughly ground in an agate mortar and then cold-pressed into pellets of ca. 3 mm in diameter under a 20 T loading force. These pellets were wrapped in molybdenum foil and heated at 1200 °C for 60 h in a vacuum furnace with pressures below 10⁻⁶ Torr. The details about preparation and characterizations of samples can be referred to the literature. ^{S2}

The Nb₁₂O₂₉ material was coated with carbon by dispersing the ground powder into a sucrose aqueous solution; the amount of carbon was about 5 wt.% of Nb₁₂O₂₉. The powder was calcined at 700 $^{\circ}$ C for 10 h in high vacuum with pressure below 10⁻⁶ Torr.

Characterization of materials

Powder x-ray diffraction (XRD) data were collected in the 20 range $10 - 90^{\circ}$ with a step size of 0.02° and a dwell time 10 s on a Philips X'pert diffractometer with Bragg-Brentano geometry and Cu K α radiation ($\lambda = 1.54056$ Å). The XRD pattern was refined with the Rietveld method and the FullProf program.^{S3} The sample morphology was examined with a scanning electron microscope (SEM, JEOL JSM-5610). Thermogravimetric analysis (TGA) on a *ca*. 30 mg powder sample was performed with a Perkin-Elmer Series 7 Thermal Analyzer at a heating rate of 1 °C min⁻¹ from 20 °C to 850 °C in air. Before *ex-situ* XRD measurement, the reacted electrode was taken out from the cell in a glove box and washed by anhydrous DMC. The electrode sheet was pasted on a sample holder and covered by a layer of Mylar film.

Electrode fabrication and electrochemical tests

The electrodes were fabricated by mixing 75 wt.% Nb₁₂O₂₉ powder with 20 wt.% acetylene black as a current conductor, and 5 wt.% polytetrafluoroethylene (PTFE) as a binder. The mixture was rolled into thin sheets and punched into circular disks 7.8 mm in diameter as electrodes. The typical electrode mass and thickness were 5-10 mg and 0.03-0.08 mm, respectively. Electrochemical performances were evaluated with a standard CR 2032 coin cell assembled in an argon-filled glove box. Lithium-metal foil was used as the counter and reference electrodes. 1 M LiPF₆ in 1:1 ethylene carbonate (EC) and diethyl carbonate (DEC) was used as the electrolyte. The sealed cells were aged for 12 h before discharge/charge to ensure full absorption of the electrolyte into the electrode. Galvanostatic cycling studies were carried out with a battery-testing system (Arbin BTS-2043).

Figure S1. SEM image of the as-obtained $Nb_{12}O_{29}$ sample.

Figure S2. TGA data of $Nb_{12}O_{29}$ measured in air up to 850°C.

Figure S3. (a) Charge-discharge curves of monoclinic $Nb_{12}O_{29}$ with carbon coating for the first 20 cycles between 2.5 and 1.0 V cycled at different current rates from 26.6 to 133, and 665 mA/g, and then back to 6.6 mA/g; (b) Differential capacity plots derived from the charge-discharge curves of the 1st, 5th, 10th and 20th cycles at corresponding currents.

Figure S4. *Ex-situ* XRD patterns of Nb₁₂O₂₉: (a) before discharge, (b) discharge to 1.75 V, and (c) discharge to 1.6 V during the 5th cycle at 6.6 mA/g.

Figure S5. Cavity types of available sites present in monoclinic $Nb_{12}O_{29}$ described by Cava *et al.*^{S4}

Reference

- (S1) Andersen, E. N.; Klimezuk, T.; Miller, V. L.; Zandbergen, H. W.; Cava, R. J. *Phys. Rev. B* 2005, 72, 033413.
- (S2) Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Zhou, H. D.; Wiebe, C. R.; Takami, T.; Fujii, T. *Phys. Rev. B* 2009, *80*, 134428.
- (S3) Rodríguez-Carvajal, J. Physica B 1993, 192, 55.
- (S4) Cava, R. J.; Murphy, D. W.; Zahurak, S. M. J. Electrochem. Soc. **1983**, 130, 2345.