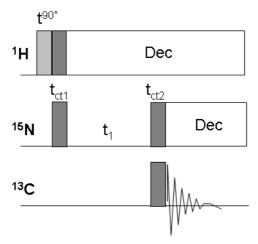
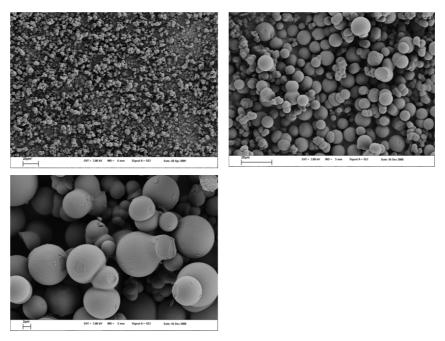
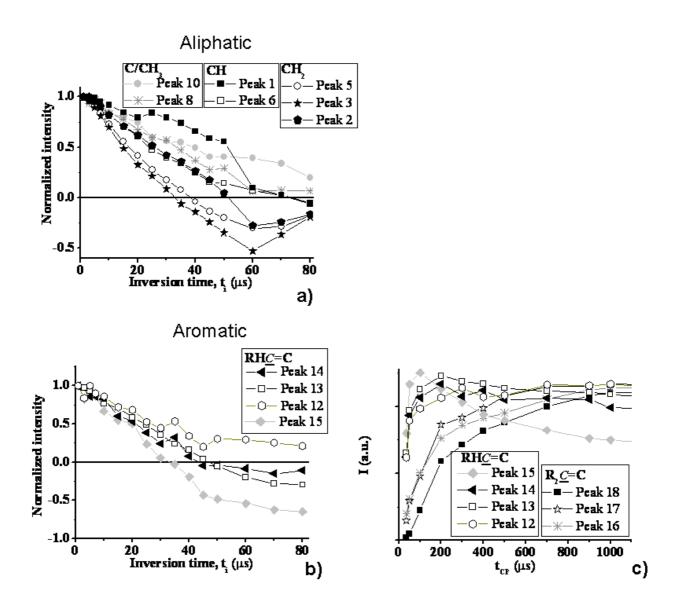
Supplementary Material

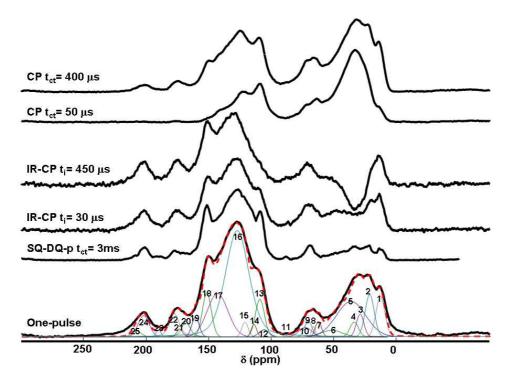

Structural Insights on Nitrogen-containing Hydrothermal Carbon using Solid-State MAS ¹³C and ¹⁵N NMR

Niki Baccile¹*, Guillaume Laurent¹, Cristina Coelho¹, Florence Babonneau¹, Li Zhao², Maria-Magdalena Titirici²


1-UPMC Univ Paris 06 and CNRS, UMR 7574, Chimie de la Matière Condensée de Paris, F-

75005, Paris, France


2-Max-Planck Institute for Colloids, Research Campus Golm, D-14424 Potsdam, Germany


Sup Mat Figure 1 - Scheme of the double cross polarization $^{15}N\{^{1}H\}$ and $^{13}C\{^{15}N\}$ pulse sequence employed for the 2D $^{15}N-^{13}C$ experiment.

Sup Mat Figure 2 - SEM images of the nitrogen-containing hydrothermal carbon particles obtained from the glucose/glycine mixture

Sup Mat Figure 3 - *HC glu-C13-N15-gly*: evolution (normalized) of the ¹³C IRCP (a,b) and CP (c) and integrated intensities of selected peaks IRCP characteristics of the aliphatic (10-70 ppm) and aromatic (100-160 ppm) regions. Refer to Supp Mat Table 1 for the attribution of peaks. The variation I(*t_i*) in IRCP can be interpreted as follows: I> 0 (C or CH₃); I→0 (CH); I→ -1/3 (CH₂).

Sup Mat Figure 4 - *HC glu-C13-N15-gly*, from top to bottom. CP spectra obtained at t_c = 400 and 50 µs; IR-CP experiments performed at inne, t_i = 450 and 30 µs; SQ-DQ projection obtained for a ${}^{13}C{}^{1}H{}$ t_c= 3 ms; one-pulse spectrum.

Peak	δ (ppm)	Attribution
1	12.9	CH_3
2	21.4	CH/CH ₂
3	29.0	CH_2
4	33.8	-
5	36.3	CH_2
б	51.7	CH
7	62.4	CH_2
8	66.5	СН
9	70.6	C-NH
10	73.0	С
11	88.2	C or CH ₃
12	106.7	C=CH
13	109.3	C=CH ₂
14	114.1	C=CH
15	121.3	C=CH
16	127.5	C=C; C=N
17	143.2	C=C; C=N
18	151.8	C=C
19	160.9	COOH
20	168.6	СООН
21	173.6	СООН
22	177.8	СООН
23	190.5	C=O
24	202.4	C=O
25	207.2	C=O

Supp Mat Table 1 – Chemical shift listing and attribution of the peaks from 1 to 24 listed in Error! Reference source not found.a.