Supporting Information

Disproportionation of DipyrrolyIquinoxaline Radical Anions via the Internal Protons of the Pyrrole Moieties

Shunichi Fukuzumi, ${ }^{*, ~}{ }^{\dagger, \ddagger}$ Kentaro Mase, ${ }^{\dagger}$ Kei Ohkubo, ${ }^{\dagger}$ Zhen Fu, ${ }^{\S}$ Elizabeth Karnas, ${ }^{\dagger, \perp}$ Jonathan L. Sessler, ${ }^{*, \perp, \#}$ and Karl M. Kadish ${ }^{\star, \S}$
${ }^{\dagger}$ Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
* Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
${ }^{\S}$ The University of Texas, Austin, Texas 78712-0165, USA
${ }^{\perp}$ Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
\# Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
E-mail: fukuzumi@chem.eng.osaka-u.ac.jp sessler@mail.utexas.edu kkadish@uh.edu

Experimental Details

Chemicals. Acetonitrile was distilled over CaH_{2}. Tetra- n-butylammonium perchlorate $\left(\mathrm{Bu}_{4} \mathrm{NClO}_{4}\right)$ was purchased from Sigma Chemical Co. or Fluka Chemika Co., recrystallized from ethanol and dried under vacuum at $40^{\circ} \mathrm{C}$ for at least one week prior to use. Cobaltocene $\left(\mathrm{CoCp}_{2}\right)$, tetrabutylammonium hydroxide $\left(\mathrm{Bu}_{4} \mathrm{NOH}, 37 \%\right.$ in MeOH) and quinoxaline (6) were purchased commercially and used as received without further purification. 2,3-Dipyrrol-2'-yl-6,7-dinitroquinoxaline $\left(\mathbf{1 H}_{2}\right),{ }^{\text {S1 }}$ 2,3-dipyrrol-2'-yl-6-nitroquinoxaline $\left(\mathbf{2 H}_{2}\right)^{\mathrm{S} 1}$ and 2,3-dipyrrol-2'- ylquinoxaline $\left(\mathbf{3 H}_{2}\right)^{\mathrm{S} 1}$, 6,7 -dinitroquinoxaline $(4)^{\mathrm{S} 2}$ and 6 -nitroquinoxaline $(5)^{\mathrm{S} 2}$ were synthesized as according literature. $\mathrm{CD}_{3} \mathrm{CN}$ and DMSO- d_{6} were purchased from Cambridge Isotope Laboratories, Co.Ltd.

Abstract

Absorption Spectral Measurements. UV-vis absorption spectra and spectral changes were recorded on a Hewlett Packard 8453 diode array spectrophotometer using 1 cm cuvette. ${ }^{1} \mathrm{H}$ NMR spectra of synthesized chemicals and reaction products were recorded on a JEOL AL300 (300 MHz) spectrometer. The chemical shifts are expressed in ppm relative to tetramethylsilane (TMS).

Electrochemistry. Cyclic voltammograms were obtained with an EG\&G Princeton Applied Research (PAR) 173 potentiostat/galvanostat. A homemade three-electrode cell was used and consisted of a platinum button or glassy carbon working electrode, a platinum counter electrode and a homemade saturated calomel reference electrode (SCE). The SCE was separated from the bulk of the solution by a fritted glass bridge of low porosity which contained the solvent/supporting electrolyte mixture. UV-visible spectroelectrochemical experiments were performed with a home-built thin-layer cell that had a light transparent platinum net working electrode. ${ }^{53}$ Potentials were applied and monitored with an EG\&G PAR Model 173 potentiostat. Time-resolved UV-visible spectra were recorded with a Hewlett-Packard Model 8453 diode array spectrophotometer.

EPR Measurements. EPR spectra of $\mathbf{1 H}_{2}{ }^{--}$and 4^{--}were recorded on a JEOL JES-RE1XE spectrometer. The magnitude of modulation was chosen to optimize the resolution and signal-to-noise $(\mathrm{S} / \mathrm{N})$ ratio of the observed spectra under non-saturating microwave power conditions. The g values and hyperfine coupling constants were
calibrated using an Mn^{2+} marker.

Calculations. Theoretical calculations of the properties of molecules were performed using Density-Functional Theory (DFT) with the UB3LYP density-functional and the $6-31 \mathrm{G}(\mathrm{d})$ basis set. ${ }^{\text {S4 }}$ All calculations were performed using Gaussian 09 , revision A. $02 .{ }^{\text {s5 }}$ Graphical outputs of the computational results were generated with the Gauss View software program (ver. 3.09) developed by Semichem, Inc. ${ }^{\text {S6 }}$
(S1) (a) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler, J. L. J. Am. Chem. Soc. 1999, 121, 10438. (b) Anzenbacher, P. Jr., Try, A. C.; Miyaji, H.; Jursíková, K.; Lynch, V. M.; Marquez, M.; Sessler, J. L. J. Am. Chem. Soc. 2000, 122, 10268.
(S2) Fisons Pest Control Ltd. Quinoxaline fungicides. 1963, 26, dpp. BE 631044 19631104.
(S3) Lin, X. Q.; Kadish. K. M. Anal. Chem. 1985, 57, 1498.
(S4) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(S5) Gaussian 09, Revision A.02, Gaussian, Inc.: Wallingford CT, 2004.
(S6) Dennington II, R.; Keith, T.; Millam, J.; Eppinnett, K.; Hovell, W. L.; Gilliland, R. Gaussview; Semichem, Inc.,: Shawnee Mission, KS,. 2003.

Figure S1. Cyclic voltammogram and differential pulse voltammogram of $1 \mathrm{H}_{2}$ in deaerated MeCN containing $\mathrm{Bu}_{4} \mathrm{NPF}_{6}(0.10 \mathrm{M})$ at 298 K ; scan rate: $0.1 \mathrm{~V} \mathrm{~s}^{-1}$.

Figure S2. Cyclic voltammogram of (a) $\mathbf{2} \mathrm{H}_{2}$ and (b) $\mathbf{2 \mathrm { H } ^ { - }}$ produced by the reaction of $\mathbf{2} \mathrm{H}_{2}$ with $\mathrm{Bu}_{4} \mathrm{NOH}$ in MeCN containing $\mathrm{Bu}_{4} \mathrm{NClO}_{4}(0.10 \mathrm{M})$ at 298 K ; scan rate: 100 mV s .

Scheme S1. Reaction scheme for electrochemical reduction of $\mathbf{1 H _ { 2 }}$

Figure S3. Second-order plots for disproportionation of $\mathbf{1 H}_{2}{ }^{--}$produced in electron transfer from $\mathrm{CoCp}_{2}\left(2.5 \times 10^{-5} \mathrm{M}\right)$ to $1 \mathrm{H}_{2}\left(2.5 \times 10^{-5} \mathrm{M}\right)$ in deaerated MeCN at various temperatures (273-333 K).

Figure S4. Second-order plots for the disproportionation of $\mathbf{1 H}_{2}{ }^{-}\left(5.0 \times 10^{-5} \mathrm{M}\right)$ in the presence of $\mathrm{H}_{2} \mathrm{O}\left(5.0 \times 10^{-4} \mathrm{M}\right)$ and $\mathrm{D}_{2} \mathrm{O}\left(5.0 \times 10^{-4} \mathrm{M}\right)$ in deaerated MeCN at 298 K .
(a) $1 \mathrm{H}_{2}$

(b) $21 \mathrm{H}_{2}+2 \mathrm{CoCp}_{2} \longrightarrow 1 \mathrm{H}^{-}+1 \mathrm{H}_{3}^{-}+2 \mathrm{CoCp}_{2}^{+}$

$1 \mathrm{H}^{-}$

(c) $\mathbf{1 \mathrm { H } _ { 2 }}+\mathrm{Bu}_{4} \mathrm{NOH} \longrightarrow \mathbf{1} \mathbf{H}^{-}+\mathrm{Bu}_{4} \mathrm{~N}^{+}+\mathrm{H}_{2} \mathrm{O}$

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathbf{1} \mathrm{H}_{2}$ (a-e in black), (b) $\mathbf{1} \mathrm{H}^{-}$(a-d in red) and $\mathbf{1} \mathrm{H}_{3}{ }^{-}$(a-i in blue) produced by electron-transfer reduction of $1 \mathrm{H}_{2}(5.0 \mathrm{mM})$ with $\mathrm{CoCp}_{2}(5.0 \mathrm{mM})$ and (c) $1 \mathrm{H}^{-}$produced by deprotonation of $1 \mathrm{H}_{2}(5.0 \mathrm{mM})$ with $\mathrm{Bu} u_{4} \mathrm{NOH}(5.0 \mathrm{mM})$ in deaerated $\mathrm{CD}_{3} \mathrm{CN}$. The signals of b, k and $\mathrm{j} \mathrm{N}-\mathrm{H}$ protons of $\mathrm{H}_{3}{ }^{-}$are too broad to observe due to the small amout of $\mathrm{H}_{2} \mathrm{O}$ present in $\mathrm{CD}_{3} \mathrm{CN}$. Asterisk $\left({ }^{*}\right)$ denote the signals of CoCp^{+}and decomposed products.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathbf{1} \mathrm{H}_{2}$ (a-e in black), (b) $\mathbf{1} \mathrm{H}^{-}$(a-e in red) and $\mathbf{1 H}_{3}{ }^{-}$(a-k in blue) produced by the electron-transfer reduction of $\mathbf{1} \mathrm{H}_{2}(5.0 \mathrm{mM})$ with $\mathrm{CoCp}_{2}(5.0 \mathrm{mM})$ and (c) $\mathbf{1} \mathrm{H}^{-}$(a-e in red) produced by deprotonation of $\mathrm{H}_{2}(5.0 \mathrm{mM})$ with $\mathrm{Bu}_{4} \mathrm{NOH}(5.0 \mathrm{mM})(\mathrm{d}) \mathrm{HH}_{3}{ }^{-}(\mathrm{a}-\mathrm{k}$ in blue) produced by the electron-transfer reduction of $\mathbf{1 H}_{2}(5.0 \mathrm{mM})$ with $\mathrm{CoCp}_{2}(4.0 \mathrm{mM})$ in the presence of trifluoroacetic acid $(2.0 \mathrm{mM})$ in deaerated DMSO- d_{6}. The signals of $1 \mathrm{H}_{2}$ as a starting material are shown with black labels. Asterisk $\left({ }^{*}\right)$ denote the signals of $\mathrm{CoCp}_{2}{ }^{+}$and decomposed product.

${ }^{1}$ H NMR Assignments

a) $\operatorname{In} \mathrm{CD}_{3} \mathrm{CN}$

$1 \mathrm{H}_{2}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.24-6.29(2 \mathrm{H}, \mathrm{m}$, pyrrole H$), 6.97-7.03(2 \mathrm{H}$, m , pyrrole H$), 7.10-7.16(2 \mathrm{H}, \mathrm{m}$, pyrrole H$), 8.36(2 \mathrm{H}, \mathrm{s}$, quinoxaline H$), 10.40(2 \mathrm{H}$, br, s, pyrrole NH)
$1 \mathrm{H}^{-}:{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.28-6.32(2 \mathrm{H}, \mathrm{dd}, J=3.7,2.2 \mathrm{~Hz}$, pyrrole H), $7.15-7.20(2 \mathrm{H}, \mathrm{dd}, J=2.2,1.5 \mathrm{~Hz}$, pyrrole H), $7.44-7.50(2 \mathrm{H}, \mathrm{dd}, J=3.7,1.5 \mathrm{~Hz}$, pyrrole H$), 8.05(2 \mathrm{H}, \mathrm{br}$, s, quinoxaline H$)$
$1_{\mathrm{H}_{3}}$: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 6.08-6.13(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}$, pyrrole H), $6.15-$ $6.19(1 \mathrm{H}, \mathrm{t}, J=2.4 \mathrm{~Hz}$, pyrrole H), $6.20-6.28(1 \mathrm{H}, \mathrm{br}, \mathrm{m}$, pyrrole H$), 6.35-6.40$ $(1 \mathrm{H}, \mathrm{br}, \mathrm{m}$, pyrrole H$), 6.51(1 \mathrm{H}, \mathrm{s}$, quinoxaline H$), 6.86-6.90(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.8 \mathrm{~Hz}$, pyrrole H$), 6.91-6.95(1 \mathrm{H}, \mathrm{dd}, J=2.4,1.8 \mathrm{~Hz}$, pyrrole H$), 7.83(1 \mathrm{H}, \mathrm{s}$, quinoxaline H$)$

b) In DMSO- $\boldsymbol{d}_{\mathbf{6}}$

$1 \mathrm{H}_{2}:{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 6.20-6.28(2 \mathrm{H}, \mathrm{m}$, pyrrole H), $6.68-6.77(2 \mathrm{H}$, m, pyrrole H), $7.15-7.22(2 \mathrm{H}, \mathrm{m}$, pyrrole H$), 8.50(2 \mathrm{H}, \mathrm{s}$, quinoxaline H$), 11.94(2 \mathrm{H}$, br, s, pyrrole NH)
$1 \mathrm{H}^{-}:{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 6.22(2 \mathrm{H}, \mathrm{m}$, pyrrole H), $7.17(2 \mathrm{H}, \mathrm{m}$, pyrrole H), $7.38(2 \mathrm{H}, \mathrm{m}$, pyrrole H$), 8.17(2 \mathrm{H}, \mathrm{s}$, quinoxaline H$), 20.20(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{NH})$
$\mathbf{1 H}_{3}{ }^{-}:{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 5.99(1 \mathrm{H}, \mathrm{m}$, pyrrole H$), 6.07(1 \mathrm{H}, \mathrm{m}$, pyrrole H), $6.47(1 \mathrm{H}, \mathrm{s}$, quinoxaline H$), 6.82(2 \mathrm{H}, \mathrm{m}$, pyrrole H$), 6.96(1 \mathrm{H}, \mathrm{m}$, pyrrole H$)$, $7.06(1 \mathrm{H}, \mathrm{m}$, pyrrole H$), 7.4(1 \mathrm{H}, \mathrm{br}, \mathrm{s}$, quinoxaline NH$), 7.81(1 \mathrm{H}, \mathrm{s}$, quinoxaline H$)$, 11.12 ($1 \mathrm{H}, \mathrm{br}, \mathrm{s}$, pyrrole NH), 11.36 ($1 \mathrm{H}, \mathrm{br}$, s, pyrrole NH).

The NMR spectra of $\mathbf{1 H}, \mathbf{1 H}^{-}$and $\mathbf{1 H}_{3}{ }^{-}$in DMSO- d_{6} are virtually the same as those in $\mathrm{CD}_{3} \mathrm{CN}$ although small shifts are observed due to the difference in the solvent and the hydrogen-bonded NH proton is only observed in DMSO- d_{6}. The NMR spectra of $\mathbf{1 H}_{3}{ }^{-}$ produced by the electron-transfer reduction of $1 \mathrm{H}_{2}$ with CoCp_{2} in the presence of trifluoroacetic acid (Figure S6d) are also vertually the same as those of $\mathrm{H}_{3}{ }^{-}$produced by disproportionation of $\mathrm{H}_{2}{ }^{-}$(Figure S 6 b), although small shifts are observed due to the presence of the trifluoroacetate anion.
a)

MOST STABLE
b)

(+0.12 $\mathrm{kcal} \mathrm{mol}^{-1}$)
c)

$\left(+4.36 \mathrm{kcal} \mathrm{mol}^{-1}\right)$

Figure S7. Optimized structures of $\mathbf{1 H}_{3}{ }^{-}$isomers as determined via DFT calculations carried out at the B3LYP/6-31G(d) level. Relative energies are given in parentheses.

Figure S8. (a) Titration of $\mathbf{1 H}_{2}(0.50 \mathrm{mM})$ with $\mathrm{Bu}_{4} \mathrm{NOH}$ in MeCN at 298 K . The black line shows the titration up to 1 equiv of $\mathrm{Bu}_{4} \mathrm{NOH}$ to produce $\mathrm{1H}^{-}$and red line shows the titration from 1 equiv to 2 equiv of $\mathrm{Bu}_{4} \mathrm{NOH}$ to produce $\mathbf{1}^{2-}$. (b) Plots of absorbance at 330 and 553 nm vs $\left[\mathrm{Bu}_{4} \mathrm{NOH}\right] /\left[\mathrm{H}_{2}\right]$.

Figure S9. UV-vis absorption spectra of $4\left(5.0 \times 10^{-5} \mathrm{M}\right.$, black), and $\mathbf{4}^{--}$(blue) produced by electron-transfer reduction of $4\left(5.0 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{CoCp}_{2}\left(5.0 \times 10^{-5} \mathrm{M}\right)$, and 4^{-}with $\mathrm{CF}_{3} \mathrm{COOH}\left(5.0 \times 10^{-5} \mathrm{M}\right)(\mathrm{red})$ in deaerated MeCN at 298 K .

Figure S10. UV-vis absorption spectral changes in electrolysis of (a) $1 \mathrm{H}_{2}\left(3.3 \times 10^{-4}\right.$ M), (b) $2 \mathrm{H}_{2}\left(3.1 \times 10^{-4} \mathrm{M}\right)$ and (c) $3 \mathrm{H}_{2}\left(9.2 \times 10^{-4} \mathrm{M}\right)$ in the presence of $\mathrm{Bu}_{4} \mathrm{NClO}_{4}$ $(0.20 \mathrm{M})$ in MeCN at applied potentials of -0.80 V (vs SCE) for $347 \mathrm{~s},-0.96 \mathrm{~V}$ for 310 s and -1.70 V for 180 s , respectively.

Figure S11. UV-vis absorption spectral change of (a) $2 \mathrm{H}_{2}\left(1.7 \times 10^{-5} \mathrm{M}\right)$ and (b) $\mathbf{3} \mathrm{H}_{2}$ $\left(2.0 \times 10^{-5} \mathrm{M}\right)$ in MeCN titrated with $\mathrm{Bu}_{4} \mathrm{NOH}\left(1.0 \times 10^{-2} \mathrm{M}\right)$.

Table S1. Equilibrium Constants between $\mathbf{1 H}_{\mathbf{2}}{ }^{-\boldsymbol{}}$ and $\mathbf{1 H} \mathbf{H}^{-} / \mathbf{H}_{\mathbf{3}}{ }^{-}$in $\mathbf{M e C N}$ at Various Temperatures

$T, \mathrm{~K}$	$\left[\mathbf{1 H}_{2}{ }^{-}\right], \mathrm{mM}$	K
243	3.7×10^{-1}	0.48
258	3.2×10^{-1}	0.78
273	2.0×10^{-1}	2.8
288	1.0×10^{-1}	13
303	4.5×10^{-2}	87
318	1.9×10^{-2}	5.4×10^{2}

K values were determined by EPR spectra calibrated by DPPH.

Table S2. Rate Constants for the Disproportionation of $\mathbf{1 H}_{\mathbf{2}}{ }^{\mathbf{-}}$ in MeCN at Various Temperatures

$T, \mathrm{~K}$	$k, \mathrm{M}^{-1} \mathrm{~s}^{-1}$
273	1.1×10^{2}
288	2.5×10^{2}
303	4.6×10^{2}
318	1.0×10^{3}
333	1.8×10^{3}

k values were determined by using $\Delta \varepsilon_{553}=1.8 \times 10^{4} \mathrm{M}^{-1} \mathrm{~cm}^{-1}$.

