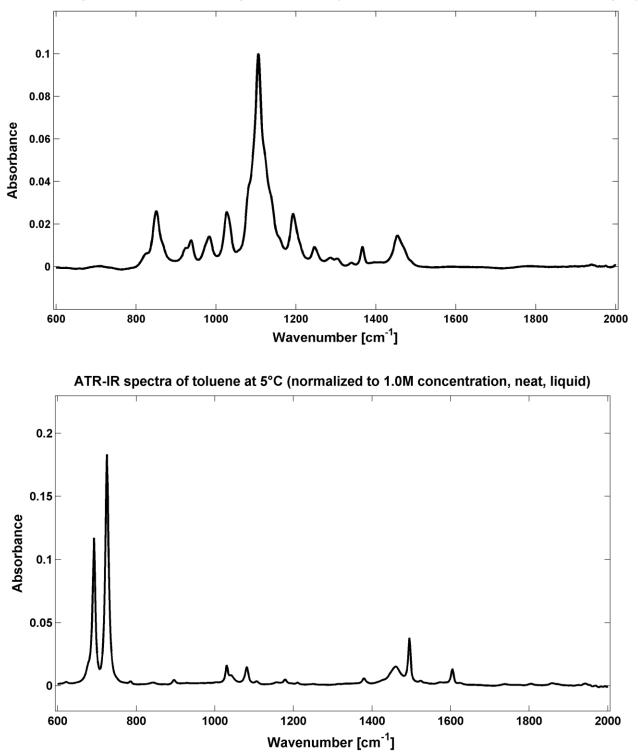
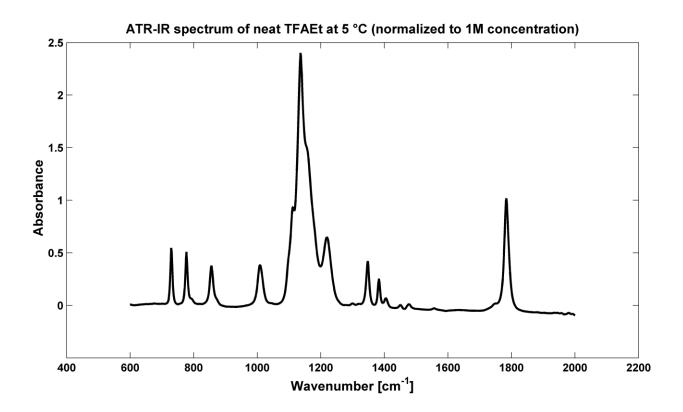

## S.1 Optimization results

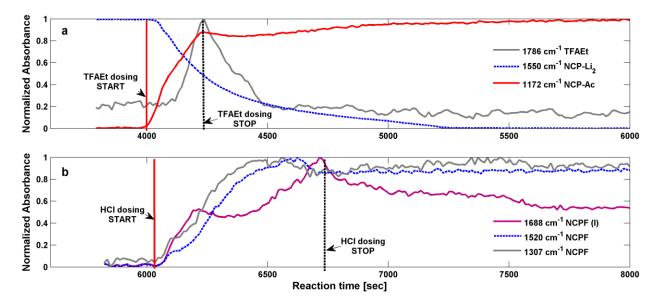





Waiting time between BuLi and TFAEt dosing [min]


### S.2: reference spectra




# ATR UV/vis spectrum of N-(4-chlorophenyl)-pivalamide (NCP),



ATR-IR spectrum of 1,2-dimethoxyethane at 5°C (normalized to 1.0M concentration, neat, liquid)



S.3 IR absorbance profiles recorded during fluoroacetylation (a) and hydrolysis (b) latter indicating the NCPF product formation:



### S.4 Sample Matlab code for fitting first order reaction model for the fluoroacetylation step:

#### Model:

 $[\text{NCP-Li}_2] = [\text{NCP-Li}_2]_0 \cdot e^{-k \cdot t} = > \text{Abs}_{\text{NCP-Li}_2} = (\text{baseline}) + \text{Abs}_{\text{NCP-Li}_2,0} \cdot e^{-k \cdot t}$ 

Where:

- k is the apparent rate constant
- [NCP-Li<sub>2</sub>] is the NCP-Li<sub>2</sub> concentration at t seconds after the start of TFAEt dosing,
- $[NCP-Li_2]_0$  is the (initial) NCP-Li\_2 concentration, at the start of TFAEt dosing,
- Abs<sub>NCP-Li<sub>2</sub></sub> is the absorbance related to NCP-Li<sub>2</sub>, measured at time t at IR-bands IIb, III, V, VI and IX (Table 1)
- Abs<sub>NCP-Li<sub>2</sub>,0</sub> is the (initial) absorbance related to NCP-Li<sub>2</sub>, measured at IR-bands IIb, III, V, VI and IX (Table 1), at the start of TFAEt dosing,

#### Matlab:

1. Define objective function:

```
function ObjectiveFunction = fit_simp(x,X,Y)
A=x(1);
B=x(2);
C=x(3);
ObjectiveFunction = A + B.*exp(C.*X) - Y;
```

### 2. Fit and visualize data:

```
% Initialize coefficients of the function fit_simp:
X0=[mean(irmat2(i,:)) (max(irmat2(i,:))-min(irmat2(i,:))) -
2/(max(t) - min(t))]';
% Calculate the new coefficients using LSQNONLIN:
options = optimset('Largescale','off');
x=lsqnonlin(@fit_simp,X0,[],[],options,X,Y);
% Plot the original and experimental data.
y_new=fit_simp(x,X,Y)+Y;
plot(X,Y,'or',X,y_new,'b')
%Apparent first order rate constant:
k=-x(3);
```

#### S.5 Yield calculation from the GC/FID data via internal standard method

|             | Solution #1   |                     | Solution #2   |                     | Solution #3   |                     |
|-------------|---------------|---------------------|---------------|---------------------|---------------|---------------------|
|             | mass<br>[mg]* | Area (GC)<br>[pA·s] | mass<br>[mg]* | Area (GC)<br>[pA·s] | mass<br>[mg]* | Area (GC)<br>[pA·s] |
| NCP         | 174           | 6784                | 520           | 16762               | 345           | 11408               |
| NCPF        | 503           | 10501               | 200           | 4219                | 331           | 6955                |
| Dibenzyl    | 104           | 5284                | 41            | 2106                | 19            | 948                 |
| Solution #4 |               |                     | Solution #5   |                     |               |                     |
|             | mass<br>[mg]* | Area (GC)<br>[pA·s] | mass<br>[mg]* | Area (GC<br>[pA⋅s]  | C)            |                     |
| NCP         | 0             | 1334                | 489           | 15581               |               |                     |
| NCPF        | 497           | 10950               | 0             | 0                   |               |                     |
| Dibenzyl    | 49.8          | 2659                | 23            | 1172                |               |                     |

Five standard solutions of NCP and NCPF in 10 mL DME/Toluene (V/V=15/7) mixture were measured using GC/FID for calibration, the solutions were:

\* added weight, the NCPF standard contains about 10% NCP

S.5/a determination of NCP content of the NCPF standard via standard addition.

As seen from the GC/FID results for solution #4 (no added NCP), the NCPF standard contains a significant amount of NCP. Therefore the amount of NCP impurity has to be determined, based on the standard addition method (equations 1.1 - 1.3).

For a choosen solution "i":

$$\frac{A_{\text{NCP, i}}}{A_{\text{NCPF, i}}} = \frac{y_{\text{NCP}}}{y_{\text{NCPF}}} \cdot \frac{c_{\text{NCP, i}}}{c_{\text{NCPF, i}}} = y_{\text{rel}} \cdot \frac{M_{\text{NCPF}} \cdot m_{\text{NCP, i}}^{\text{total}}}{M_{\text{NCP}} \cdot m_{\text{NCPF, i}}^{\text{total}}} = y_{\text{rel}} \cdot \frac{M_{\text{NCPF}} \cdot (m_{\text{NCP, i}} + r \cdot m_{\text{NCPF, i}})}{M_{\text{NCPF, i}}(1-r)} \quad 1.1$$

For an other choosen solution "j":

$$\frac{A_{\text{NCP,}j}}{A_{\text{NCPF,}j}} = y_{\text{rel}} \cdot \frac{M_{\text{NCPF}} \cdot (m_{\text{NCP,}j} + r \cdot m_{\text{NCPF,}j})}{M_{\text{NCP}} \cdot m_{\text{NCPF,}j} (1-r)} \quad 1.2$$

Where:

- A<sub>xxx</sub> is the corresponding area measured with GC
- $m_{xxx}^{total}$  is the total weight of the corresponding species in the solution
- m<sub>xxx</sub> is the added weight of the corresponding species
- M<sub>xxx</sub> is the molecular weight of the corresponding species
- y<sub>xxx</sub> is the sensitivity of the GC system to the corresponding species
- y<sub>rel</sub> is the relative sensitivity of the GC system to NCP versus NCPF
- r is the weight percentage of NCP in the NCPF standard

If  $L = \frac{A_{\text{NCP, i}}}{A_{\text{NCPF, i}}} \cdot \frac{A_{\text{NCPF, j}}}{A_{\text{NCP, j}}}$ , after division of equation 1.1 by equation 1.2:

$$\mathbf{r} = \frac{\mathbf{m}_{\text{NCP, i}} \cdot \mathbf{m}_{\text{NCPF, j}} - \mathbf{L} \cdot \mathbf{m}_{\text{NCPF, i}} \cdot \mathbf{m}_{\text{NCP, j}}}{\mathbf{L} \cdot \mathbf{m}_{\text{NCPF, i}} \cdot \mathbf{m}_{\text{NCPF, i}} - \mathbf{m}_{\text{NCPF, i}} \cdot \mathbf{m}_{\text{NCPF, j}}}$$
1.3

Considering all the  $\binom{5}{2} = 10$  combinations, we received that there is  $100 \cdot r = 8.3 \pm 1 \% w/w$ 

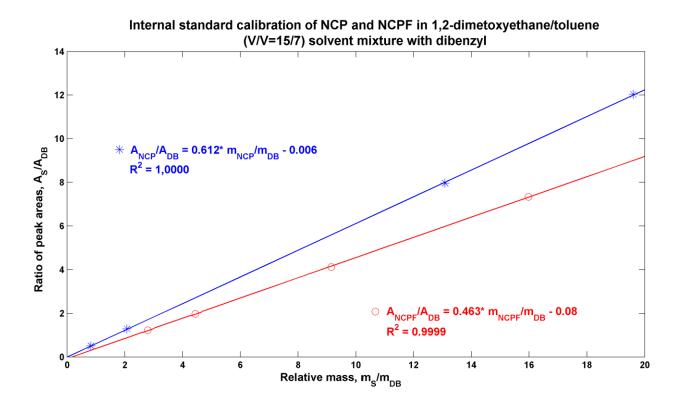
<u>NCP content in the NCPF standard</u> (68% confidence level). Since there are no other significant impurities, purity of the NCPF used for internal standard calibration is  $100 \cdot (1-r) = 91.7 \pm 1$  %.

S.5/b Determination of the response factor y\* of NCPF and NCP versus dibenzyl for the internal standard calibration

For a choosen solution "i":

$$\frac{\mathbf{A}_{\mathrm{S,i}}}{\mathbf{A}_{\mathrm{DB,i}}} = \mathbf{y}_{\mathrm{S}} \cdot \frac{\mathbf{M}_{\mathrm{DB}} \cdot \mathbf{m}_{\mathrm{S,i}}}{\mathbf{M}_{\mathrm{S}} \cdot \mathbf{m}_{\mathrm{DB,i}}}$$
 1.4

Where:


- y<sub>S</sub> is the response factor of species S (NCPF or NCP) versus dibenzyl
- A<sub>DB</sub> is the peak area corresponding to dibenzyl
- M<sub>DB</sub> is the molecular weight of dibenzyl
- $M_{DB}$  is the molecular weight of species S (NCPF or NCP)
- $m_S$  is the total weight of species S in the solution (in case of NCPF  $m_{NCPF, \text{ total}} = (1-r) \cdot m_{NCPF}$ , in case of NCP,  $m_{NCP, \text{ total}} = m_{NCP} + r \cdot m_{NCPF}$ )

For convenience, we incorporate the molecular weights into the response factor, thus we can calculate with weights:

$$\mathbf{y}_{\mathrm{S}}^{*} = \mathbf{y}_{\mathrm{S}} \cdot \frac{\mathbf{M}_{\mathrm{DB}}}{\mathbf{M}_{\mathrm{S}}}$$
 1.5

As shown below,  $y_s^*$  values can be determined as slopes of the  $A_s/A_{DB} = y_s^* mS/m_{DB} + b$  functions. The corresponding values to NCP and NCPF:

 $y_{NCPF}^* = 0.463$  and  $y_{NCP}^* = 0.612$ 



S.5/c Calculation of the yield and the remaining NCP content

The mass of species S (NCP or NCPF) in the reaction mixture, after hydrolysis and neutralization:

$$\mathbf{m}_{\mathrm{S}} = \frac{\mathbf{A}_{\mathrm{S}} \cdot \mathbf{m}_{\mathrm{DB}}}{\mathbf{y}_{\mathrm{S}}^* \mathbf{A}_{\mathrm{DB}}}$$
 1.6

Example GC result:

Measurement ID: GT\_110310, measurement date: 11.03.2010

Conditions: reagent amounts BuLi/BuLi/TFAET/HCl = 2.15/0.15/1.3/2.25 NCP equivalents, [NCP] = 0.22M, solvent: DME/Toluene (V/V = 15/7), waiting times after dosing steps: 60/10/30/10 min,  $f_{BuLi}/f_{TFAEt}/f_{HCl} = 1.0/0.2/0.2$  mL/min,  $T_{react} = 5$  °C, stirrer speed: 600 rpm.

| Species  | Retention time<br>[min] | Area [pA*s] | Weight<br>[mg] | Y (mol/mol initial<br>NCP) |
|----------|-------------------------|-------------|----------------|----------------------------|
| Dibenzyl | 8.852                   | 1527        | 100.6          |                            |
| NCPF     | 9.294                   | 10422       | 1483*          | 96.45                      |
| NCP      | 9.71                    | 308         | 33.2*          | 3.13                       |

\* calculated according to equation 1.6