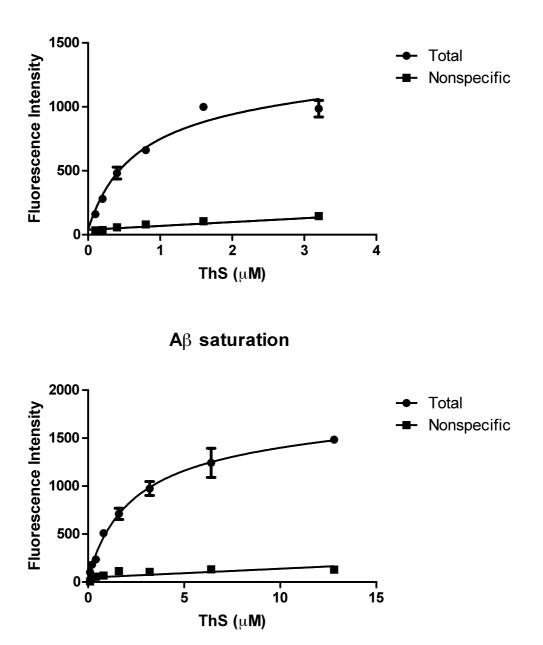
Supporting information for

Rhodanine and thiohydantoin derivatives for detecting tau pathology

in Alzheimer's brains

Masahiro Ono,^{*,†} Shun Hayashi,[†]Kenji Matsumura,[†]Hiroyuki Kimura,[†]Yoko Okamoto,[‡]


Masafumi Ihara,[‡] Ryosuke Takahashi,[‡] Hiroshi Mori,[£] Hideo Saji,^{*,†}

[†]Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan. [‡]Graduate School of Medicine, Kyoto University, [£]Department of Neuroscience, Osaka City University Medical School, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585.

1

Saturation assay with thioflavin-S using recombinant tau and $A\beta_{1\text{--}42}$ aggregates

The 441-aa isoform of human tau was expressed from a cDNA clone in Escherichia *coli* and purified as described previously(1). Tau aggregates were prepared by incubating tau protein (1 mg/mL in MES buffer, pH 6.8) at 37°C for 8 days with gentle and constant shaking in the presence of 0.1 mg/mL heparin(2). A solid form of A β_{1-42} was purchased from Peptide Institute (Osaka, Japan). Aggregation was achieved by gently dissolving the peptide (0.25 mg/mL) in phosphate buffered-saline solution (pH 7.4). The solutions were incubated at 37 °C for 42 h with gentle and constant shaking. The binding experiments were carried out in Protein LoBind Tubes (Eppendorf). A mixture of tau aggregates (final conc., 0.2 μ M) or A β_{1-42} aggregates (final conc., 2.2 μ M) were incubated at room temperature for 30 min in the presence of ThS (final conc., 0.2-15 μ M), dispensed to MULTI WELL PLATE (0.4 mL \times 96 wells flatbottom, SUMITOMO BAKELITE CO., LTD, Japan), and subjected to fluorescence spectroscopy ($\lambda_{ex} = 440$ nm; $\lambda_{em} = 510$ nm). The fluorescence intensity ($\lambda_{ex} = 440$ nm; $\lambda_{em} = 510 \text{ nm}$) was plotted and K_d values of thioflavin-S for recombinant tau and $A\beta_{1-42}$ aggregates were calculated from saturation curves using GraphPad Prism software (Graph Pad software, San Diego, CA) (Figure S1). The K_d value for tau and A β aggregates were 0.63 and 2.2 μ M, respectively.

Tau saturation

Figure S1. Binding of ThS to tau aggregates (upper panel) and A β aggregates (lower panel).

References

1. Han, D., Qureshi, H. Y., Lu, Y., and Paudel, H. K. (2009) Familial FTDP-17 missense mutations inhibit microtubule assembly-promoting activity of tau by increasing phosphorylation at Ser202 in vitro, *J Biol Chem* 284, 13422-13433.

 Okamura, N., Suemoto, T., Furumoto, S., Suzuki, M., Shimadzu, H., Akatsu, H., Yamamoto, T., Fujiwara, H., Nemoto, M., Maruyama, M., Arai, H., Yanai, K., Sawada, T., and Kudo, Y. (2005) Quinoline and benzimidazole derivatives: candidate probes for *in vivo* imaging of tau pathology in Alzheimer's disease, *J Neurosci 25*, 10857-10862.