Time transient electrochemical monitoring of tetraalkylammonium polybromide solid particle formation: observation of ionic liquid-to-solid transition

Yejin Choi ${ }^{\dagger, \mathrm{a},}$, Jiseon Hwang ${ }^{\dagger, \mathrm{a}}$, Kyungmi Kim $^{\mathrm{b}}$, Saibal Jana ${ }^{\mathrm{c}}$, Sang Uck Lee ${ }^{*, c}$, Junghyun Chae ${ }^{*, b}$, and Jinho Chang ${ }^{*, a}$
${ }^{\text {a }}$ Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
${ }^{\mathrm{b}}$ Department of Chemistry, Sungshin Women's University, 55, Dobong-ro, 76ga-gil Gangbukgu, Seoul 01133 Republic of Korea
${ }^{\text {c }}$ Department of Bionano Technology, Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea
Corresponding author: jhcechem@hanyang.ac.kr
${ }^{\dagger}$ These authors contributed equally to this work.

Table of Contents

Synthesis and Characterization of QBrs and TBrs 4
Note S1. 4
Synthetic mechanism for N-Methyl- N-ethylpyrrolidinium bromide (MEPBr)
Note $\mathbf{S 2}$. 4
Synthetic mechanism for N-Methyl- N-ethyl-morpholinium bromide (MEMBr)
Note S 3. 5
Synthetic mechanism for 1-Ethylpyridinium bromide (EPyBr)
Note $\mathbf{S 4}$. 5
Synthetic mechanism for Tetrapropylammonium bromide (TProABr)
Note $\mathbf{S 5}$. 6
Synthetic mechanism for Tetrapentylammonium bromide (TPABr)
Figure S1. 7
The photograph of precipitated TBABr_{3} on a Pt macro disk electrode with a radius of 1 mm after a potential of 1.5 V was applied for 1000 s in a $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution with $C_{\mathrm{TBABr}}=50 \mathrm{mM}$.
Figure S2. 8
The Raman spectra measured from TBABr_{3} formed electrochemically on a Pt macro disk electrode described in Figure S1 (black) and purchased from Sigma-Aldich (red).
Figure S3. 9
The Photographs of synthesized polybromides as a function of equiv. Br_{2}.
Figure S4.10
The Raman spectra obtained from $\mathrm{TBr}_{2 \mathrm{n}+1}$, which were chemically synthesized by adding Br_{2} to TBr aqueous solutions to have different ratios of $C_{B r_{2}(a q)}$ to $C_{B r^{-}(a q)}$.
Figure $\mathbf{S 5}$. 11
2D axial symmetric domain of the simulation for Figure 3.
Figure S6. 12
The linear sweep voltammograms (LSVs, black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containingvarious concentrations of $\operatorname{MEPBr}(32,42,52$, and 62 mM$)$, and the corresponding simulation results (red)based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.
Figure 57 13The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of MEPBr($72,82,92$, and 102 mM), and the corresponding simulation results (red) based on the Cloud model for theestimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.
Figure S8.14
The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of$\operatorname{MEMBr}(52,62,72,82,92$, and 102 mM), and the corresponding simulation results (red) based on theCloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.
Figure S9.15
The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of EPyBr($42,52,62$, and 72 mM), and the corresponding simulation results (red) based on the Cloud model for theestimation of $k_{\mathrm{et}^{-}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.
Figure S10.16The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of EPyBr
(82,92 , and 102 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}^{2}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S11.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of TProABr $(20,30,40,50$, and 60 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S12.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TProABr}(70,80,90$, and 100 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S13.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TBABr}(10,20,30,40$, and 50 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S14.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TBABr}(60,70,80,90$, and 100 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S15.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of TPABr ($10,20,30,40$, and 50 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S16.

The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of TPABr ($60,70,80$, and 90 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S17.

The photographs of (a) TBABr and (b) TBABr_{3} after the dynamic vapor sorption (DVS) analysis, which is depicted in (c); the graph describes change in mass (\%) of TBABr (black) and TBABr_{3} (red) powder as humidity changes (blue line) from 0 to 90%.

Figure S18.

The CA measured in 10 mM TBABr solution at 1.2 V for 300 s .

Figure S19. 25

(a) Three dimensional, (b) the corresponding cross-sectional domain of the simulation, and (c) simulated,
normalized steady-state voltammograms under the different conditions. IP adsorbed on different UME edge
sites.

Figure S20.

The randomly chosen individual current spikes from a CA measured in a $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution containing 50 mM TBABr at a constantly applied potential of 1.2 V for 60 s . The purpose of fitting the bulk electrolysis model to the individual current spikes is to estimate the corresponding radius of an adsorbed hemispherical $H-\mathrm{TBABr}_{3}$ droplet.

Figure S21.

DFT-optimized structures for the solvent-separated ion pairs of IL cations with $\mathrm{H} \cdots \mathrm{Br}$ distance in \AA.
Table S1.

Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and
initial concentration of the chemical species using finite element analysis (Figure S5).

Table S2.

Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentrations of chemical species using finite element analysis (Figure 5).
Table S3.

The tabulated Cartesian coordinates of the optimized geometries associated with Figure S21.

Synthesis and Characterization of QBrs and TBrs

Note S1. Synthetic mechanism for \boldsymbol{N}-Methyl- N -ethyl pyrrolidinium bromide (MEPBr)

[CAS No. 69227-51-6]
1-Methylpyrrolidine ($8.5 \mathrm{~g}, 100 \mathrm{mmol}$), bromoethane ($8.9 \mathrm{~mL}, 120 \mathrm{mmol}$) and ethyl acetate $(20 \mathrm{~mL})$ were added to a 100 mL round bottom flask. The mixture was stirred at room temperature for 6 h . The solid product was filtered, washed with ethyl acetate three times, and dried in a vacuum to yield a white solid ($18.6 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 3.52$ - 3.35 (m, 6H), 2.97 (d, $J=2.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.07$ (dd, $J=5.3,4.0 \mathrm{~Hz}, 4 \mathrm{H}), 1.31-1.24$ (m, 3H); ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 63.26,58.63,47.31,21.49,9.40 ;$ MS (EI) $\mathrm{m} / \mathrm{z}=114\left(\mathrm{M}^{+}\right)$.

Note S2. Synthetic mechanism for N-Methyl- N-ethyl-morpholinium bromide (MEMBr)

[CAS No. CAS 65756-41-4]
4-Methylmorpholine ($17.5 \mathrm{~mL}, 160 \mathrm{mmol}$), bromoethane ($23.5 \mathrm{~mL}, 320 \mathrm{mmol}$), ethyl acetate $(20 \mathrm{~mL})$ were added to a 100 mL round bottom flask, and the reaction mixture refluxed at $40{ }^{\circ} \mathrm{C}$ for 72 h . After it cooled to room temperature, the solid product was filtered, washed three times with ethyl acetate, and dried in a vacuum to yield a white solid ($24.3 \mathrm{~g}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 3.92(\mathrm{t}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.52(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.36(\mathrm{~m}$, $4 \mathrm{H}), 3.10(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO $\left.-d_{6}\right) \delta 60.25$, 59.70, 58.84, 45.79, 7.37; MS (EI) $m / z=130\left(\mathrm{M}^{+}\right)$.

Note S3. Synthetic mechanism for 1-Ethylpyridinium bromide (EPyBr)

[CAS No. 1906-79-2]
To a solution of pyridine ($40.3 \mathrm{~mL}, 500 \mathrm{mmol}$) in ethyl acetate $(40 \mathrm{~mL})$, bromoethane (74 $\mathrm{mL}, 1.0 \mathrm{~mol}$) was added dropwise in ice-bath. The mixture was stirred at $30{ }^{\circ} \mathrm{C}$ for 72 h . The solid product was filtered, washed three times with ethyl acetate, and dried in a vacuum to yield a white solid ($59 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 9.11(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.60(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 146.09,145.25,128.76,57.02,17.05 ; \mathrm{MS}(\mathrm{EI}) m / z=108.1\left(\mathrm{M}^{+}\right)$.

Note S4. Synthetic mechanism for Tetrapropylammonium bromide (TProABr)

[CAS No. 1941-30-6]
Tripropylamine ($15.0 \mathrm{~mL}, 80 \mathrm{mmol}$), 1-bromopropane ($11.0 \mathrm{~mL}, 120 \mathrm{mmol}$), and ethanol (50 mL) were added to a 250 mL round bottom flask, and the reaction mixture was refluxed at $80{ }^{\circ} \mathrm{C}$ for 48 h . After cooling to room temperature, the reaction mixture was concentrated to give a crude solid product. The crude product was washed with EtOAc and dried in a vacuum to yield a white solid (11.8 g, 55\%). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 3.18-3.08(\mathrm{~m}, 8 \mathrm{H}), 1.72-1.49$ $(\mathrm{m}, 8 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 12 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 59.75(\mathrm{~s}), 15.31(\mathrm{~s}), 11.00$ (s); MS (EI) $m / z=186.2\left(\mathrm{M}^{+}\right)$.

Note S5. Synthetic mechanism for Tetrapentylammonium bromide (TPABr)

[CAS No. 866-97-7]
1-Bromopentane ($10 \mathrm{~mL}, 80 \mathrm{mmol}$), tripentylamine (46 mL 160 mmol), and ethanol (50 mL) were added to a 250 mL round bottom flask, and the reaction mixture was refluxed at $80{ }^{\circ} \mathrm{C}$ for 72 h . After cooling to room temperature, the reaction mixture was concentrated to give a crude solid product. The crude product was washed with EtOAc and dried in a vacuum to yield a white solid ($13.4 \mathrm{~g}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 3.23-3.10(\mathrm{~m}, 8 \mathrm{H}), 1.66-1.48$ $(\mathrm{m}, 8 \mathrm{H}), 1.48-1.15(\mathrm{~m}, 16 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ $58.15(\mathrm{~s}), 28.40(\mathrm{~s}), 22.03(\mathrm{~s}), 21.28(\mathrm{~s}), 14.18(\mathrm{~s}) ; \mathrm{MS}(\mathrm{EI}) m / z=298.3\left(\mathrm{M}^{+}\right)$.

Figure S1. The photograph of precipitated TBABr_{3} on a Pt macro disk electrode with a radius of 1 mm after a potential of 1.5 V was applied for 1000 s in a $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution with $C_{\mathrm{TBABr}}=50 \mathrm{mM}$.

Figure S2. The Raman spectra measured from TBABr_{3} formed electrochemically on a Pt macro disk electrode described in Figure S1 (black) and purchased from Sigma-Aldich (red).

Figure S3. The photographs of synthesized polybromides as a function of equiv. Br_{2}.

Figure S4. The Raman spectra obtained from $\mathrm{TBr}_{2 n+1}$, which were chemically synthesized by adding Br_{2} to TBr aqueous solutions to have different ratios of $C_{B r_{2}(a q)}$ to $C_{B r^{-}(a q)}$.

Figure S5. 2D axial symmetric domain of the simulation for Figure 3.

Figure S6. The linear sweep voltammograms (LSVs, black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{MEPBr}(32,42,52$, and 62 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\text {ett }}$ $\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S7. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{MEPBr}(72,82,92$, and 102 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $\mathrm{ket}^{-\mathrm{Br}^{-} / \mathrm{Br}_{2} \text {. }}$

Figure S8. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{MEMBr}(52,62,72,82,92$, and 102 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S9. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{EPyBr}(42,52,62$, and 72 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $\mathrm{ket}^{-1} \mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S10. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{EPyBr}(82,92$, and 102 mM), and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}^{-}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S11. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TProABr}(20,30,40,50$, and 60 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S12. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TProABr}(70,80,90$, and 100 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}^{2}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S13. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TBABr}(10,20,30,40$, and 50 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S14. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TBABr}(60,70,80,90$, and 100 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $\mathrm{ket} \mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S15. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\operatorname{TPABr}(10,20,30,40$, and 50 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S16. The LSVs (black) measured in $0.5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solutions containing various concentrations of $\mathrm{TPABr}(60,70,80$, and 90 mM$)$, and the corresponding simulation results (red) based on the Cloud model for the estimation of $k_{\mathrm{et}^{2}}-\mathrm{Br}^{-} / \mathrm{Br}_{2}$.

Figure S17. The photographs of (a) TBABr and (b) TBABr_{3} after the dynamic vapor sorption (DVS) analysis, which is depicted in (c); the graph describes change in mass (\%) of TBABr (black) and TBABr_{3} (red) powder as humidity changes (blue line) from 0 to 90%.

Figure S18. The CA measured in 10 mM TBABr solution at 1.2 V for 300 s .
(a)

(b)

(c)

Figure S19. (a) Three dimensional, (b) the corresponding cross-sectional domain of the simulation, and (c) simulated, normalized steady-state voltammograms under the different conditions. IP adsorbed on different UME edge sites.

Figure S20. (a-h) The randomly chosen individual current spikes from a CA measured in a 0.5 $\mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous solution containing 50 mM TBABr at a constantly applied potential of 1.2 V for 60 s . The purpose of fitting the bulk electrolysis model to the individual current spikes is to estimate the corresponding radius of an adsorbed hemispherical $H-\mathrm{TBABr}_{3}$ droplet.

$[\mathrm{MEP}]^{+} \|[\mathrm{Br}]^{-}$

$[\mathrm{MEP}]^{+} \|\left[\mathrm{Br}_{3}\right]^{-}$

$[\text { MEM }]^{+}| |[B r]^{-}$

$[\mathrm{MEM}]^{+}| |\left[\mathrm{Br}_{3}\right]^{-}$

$[\mathrm{Epy}]^{+} \|[\mathrm{Br}]^{-}$

$[\text { TEA }]^{+} \|[B r]^{-}$

$[\text { TEA }]^{+} \|\left[\mathrm{Br}_{3}\right]^{-}$

$\left[\right.$ Tpro] ${ }^{+}| | \mathrm{Br}^{-}$

$[\text { Tpro }]^{+} \|\left[\mathrm{Br}_{3}\right]^{-}$

$[\text { TBA }]^{+} \|[\mathrm{Br}]^{-}$

$[T B A]^{+} \|\left[B r_{3}\right]^{-}$

$[\mathrm{TPA}]^{+}| | \mathrm{Br}^{-}$

$[T P A]^{+} \|\left[\mathrm{Br}_{3}\right]^{-}$

Figure S21. DFT-optimized structures for the solvent-separated ion pairs of IL cations with $\mathrm{H} \cdots \mathrm{Br}$ distance in \AA.

Tables

Table S1. Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentration of the chemical species using finite element analysis (Figure S5).

Reactions in $a q$. phase	Parameters			
	$k_{\text {et }}$ on Pt UME	$k_{\text {et }}$ on Cloud	$E_{\text {eq }}$	α
$\mathrm{Br} \cdot+\mathrm{e}^{-} \leftrightharpoons \mathrm{Br}^{-}$	variable (cm / s)	0.1 (cm/s)	0.76 (V)	0.5
$2 \mathrm{Br} \rightarrow \mathrm{Br}_{2}$		$\mathrm{M}^{-1} \mathrm{~s}^{-1}$)		
$\mathrm{Br}_{2}+\mathrm{e}^{-} \leftrightharpoons \mathrm{Br}_{2}{ }^{-}$.	$0.1(\mathrm{~cm} / \mathrm{s})$	$0.1(\mathrm{~cm} / \mathrm{s})$	0.72 V	0.5
$H_{\text {Cloud }}$	0.56 (V)			
$d_{\text {UME-Cloud }}$	variable			

The relevant time-dependent diffusion equations
(1) $\frac{\partial C_{B r}}{\partial t}=D_{B r} \cdot\left[\frac{\partial^{2} C_{B r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r}}{\partial r}+\frac{\partial^{2} C_{B r}}{\partial z^{2}}\right]-\frac{1}{2} k_{f 1} C_{B r}{ }^{2}$
(2) $\frac{\partial C_{B r}{ }^{-}}{\partial t}=D_{B r}{ }^{-}\left[\frac{\partial^{2} C_{B r}{ }^{-}}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r}{ }^{-}}{\partial r}+\frac{\partial^{2} C_{B r}{ }^{-}}{\partial z^{2}}\right]$
(3) $\frac{\partial C_{B r_{2}}}{\partial t}=D_{B r_{2}}\left[\frac{\partial^{2} C_{B r_{2}}}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r_{2}}}{\partial t}+\frac{\partial^{2} C_{B r_{2}}}{\partial z^{2}}\right]+\frac{1}{2} k_{f 1} C_{B r}{ }^{2}$
(4) $\frac{\partial C_{B r_{2}-}}{\partial t}=D_{B r_{2}-}{ }^{-\cdot}\left[\frac{\partial^{2} C_{B r_{2}}-\cdot}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r_{2}-}}{\partial t}+\frac{\partial^{2} C_{B r_{2}-}-}{\partial z^{2}}\right]$

The initial condition, completing the definition of the problem
$\mathrm{t}=0$, all r, z; $C_{B r}=0, \quad=$ variable,$C_{B r_{2}, B r_{2}}{ }^{-\cdot}=0$,
$D_{B r, B r^{-}}=1.58 \times 10^{-5}, D_{B r_{2}}=1.18 \times 10^{-5}, D_{B r_{2}}=1.00 \times 10^{-5} \mathrm{~cm}^{2} / \mathrm{s}$

Table S2. Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentrations of chemical species using finite element analysis (Figure 5).

Reactions in aq. Phase
Parameters
$1 / 2 \mathrm{Br} \cdot+\mathrm{e}^{-} \leftrightharpoons \mathrm{Br}^{-} \quad \begin{array}{ll} & \mathrm{k}_{\mathrm{et}}=0.1 \mathrm{~cm} / \mathrm{s} \\ & \mathrm{E}_{\text {eq }} 0.9 \mathrm{~V}, \alpha=0.5\end{array}$

The relevant time-dependent diffusion equations
(1) $\frac{\partial C_{B r .}}{\partial t}=D_{B r \cdot} \cdot\left[\frac{\partial^{2} C_{B r}}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r} .}{\partial r}+\frac{\partial^{2} C_{B r} .}{\partial z^{2}}\right]$
(2) $\frac{\partial C_{B r^{-}}}{\partial t}=D_{B r}{ }^{-}\left[\frac{\partial^{2} C_{B r^{-}}}{\partial r^{2}}+\frac{1}{r} \frac{\partial C_{B r^{-}}}{\partial r}+\frac{\partial^{2} C_{B r^{-}}}{\partial z^{2}}\right]$

The initial condition, completing the definition of the problem

$$
\mathrm{t}=0, \text { all r, } \mathrm{z} ; C_{B r .}=0, C_{B r^{-}}=50 \times 10^{-3} M, D_{B r ; B r^{-}}=1.58 \times 10^{-5}
$$

Table S3. The tabulated Cartesian coordinates of the optimized geometries associated with Figure S21.

[ME	${ }^{+} \\|[\mathrm{Br}]^{-}$	$[\mathrm{MEP}]^{+} \\|\left[\mathrm{Br}_{3}\right]^{-}$					
C	-1.101704	-0.291425	1.066920	C	-1.957739	-1.799544	1.158100
N	-1.597483	0.271320	-0.232244	C	-1.521831	-0.342583	1.246288
C	-1.110369	-0.736667	-1.235302	N	-1.519414	0.134420	-0.175862
C	-1.276991	-2.093998	-0.552525	C	-0.922920	-1.030457	-0.914028
C	-1.380995	-1.782963	0.956938	C	-1.515860	-2.268320	-0.247117
C	-1.016341	1.616420	-0.537651	C	-0.673121	1.353455	-0.372830
C	-1.426753	2.694773	0.439019	C	-1.184184	2.578287	0.349256
C	-3.082044	0.314597	-0.251754	C	-2.907715	0.369363	-0.652022
Br	2.545677	0.199526	-0.380497	O	1.844402	-2.247935	1.305986
H	-1.676476	-0.610175	-2.151131	Br	2.961777	0.498267	-1.241498
H	-0.062266	-0.508832	-1.405531	H	-1.144946	-0.921076	-1.969177
H	-0.033520	-0.087718	1.094330	H	0.150574	-0.975896	-0.757119
H	-1.603253	0.203342	1.889063	H	-0.497032	-0.253188	1.597526
H	-0.662321	-2.339434	1.546630	H	-2.171017	0.289509	1.838762
H	-2.373674	-2.014027	1.329194	H	-1.490177	-2.372490	1.952175
H	-0.418737	-2.717537	-0.780288	H	-3.032876	-1.885177	1.272009
H	-2.166536	-2.605512	-0.903604	H	-0.761488	-3.045530	-0.196939
H	-1.340255	1.856991	-1.546431	H	-2.359580	-2.651133	-0.810225
H	0.061787	1.475468	-0.533246	H	-0.629735	1.514853	-1.446394
H	-3.434295	0.868562	0.609212	H	0.317015	1.089247	-0.014866
H	-3.393435	0.797525	-1.171726	H	-3.398559	1.063199	0.018446
H	-3.465148	-0.698175	-0.219078	H	-2.855036	0.776464	-1.655891
H	-0.914779	3.609261	0.150313	H	-3.442759	-0.572763	-0.662336
H	-2.494961	2.888375	0.416226	H	-0.457041	3.372292	0.198279
H	-1.127430	2.451226	1.454823	H	-2.138269	2.919112	-0.040614
H	2.183130	-1.768969	0.740017	H	-1.272832	2.404567	1.418274
O	2.030256	-2.611669	1.213522	H	2.067401	-1.305767	1.297639
H	1.381952	-3.077747	0.679035	H	0.901586	-2.283237	1.488642
				Br	2.849653	1.014498	1.353430
				Br	2.996272	-0.005320	-3.673083
$\underset{\substack{\text { [MEM } \\ \\ 29}}{ }{ }^{\text {\| }}$ [Br$]^{-}$				$[\mathrm{MEM}]^{+} \\|\left[\mathrm{Br}_{3}\right]^{-}$			
				31			
C	-4.092369	-1.473305	0.797060	O	-3.415770	-2.760470	0.227522
C	-3.328115	-0.313780	0.204124	C	-3.995305	-1.533877	0.659447
N	-1.858590	-0.379228	0.506765	C	-3.223534	-0.353548	0.117217
C	-1.366049	-1.733207	0.092334	N	-1.769818	-0.395416	0.493503
C	-2.191069	-2.839282	0.708441	C	-1.226919	-1.742281	0.118047
O	-3.564246	-2.717699	0.348705	C	-2.070065	-2.861969	0.679237
C	-1.197396	0.691005	-0.326624	C	-1.077692	0.681865	-0.303775
C	0.298614	0.796351	-0.144886	C	0.395031	0.841615	-0.007477
C	-1.597475	-0.120739	1.947653	C	-1.596541	-0.124178	1.946678
H	-2.207423	-0.769882	2.559207	O	-4.557290	-3.329692	-2.304284
H	-1.689976	1.616535	-0.041646	Br	-2.123496	-0.773521	-3.769547
H	-1.447706	0.454524	-1.357701	H	-2.246379	-0.766402	2.523452
H	-0.551141	-0.311095	2.150586	H	-1.620939	1.595971	-0.082191
H	-1.845449	0.915835	2.148815	H	-1.234102	0.423351	-1.346287
H	-0.330595	-1.826980	0.398573	H	-0.564877	-0.313914	2.214370

H	-1.440989	-1.765492	-0.993353	H	-1.854413	0.914471	2.121843
H	-2.098950	-2.858696	1.793935	H	-0.211823	-1.815081	0.490548
H	-1.838148	-3.784633	0.310842	H	-1.225133	-1.784389	-0.968537
H	-4.096642	-1.452196	1.885935	H	-2.052605	-2.875253	1.768399
H	-5.117096	-1.413072	0.446627	H	-1.674465	-3.801769	0.310719
H	-3.411023	-0.330696	-0.881020	H	-4.055058	-1.523406	1.746248
H	-3.697297	0.631226	0.590566	H	-5.001065	-1.492113	0.254009
H	0.644430	1.568481	-0.828170	H	-3.261139	-0.359389	-0.969754
H	0.577282	1.094885	0.860699	H	-3.628792	0.581751	0.490676
H	0.810068	-0.125872	-0.404329	H	0.771412	1.603342	-0.685847
Br	-2.310353	-0.619998	-3.688808	H	0.575708	1.179819	1.007817
H	-3.186959	-2.576754	-2.854266	H	0.955382	-0.069425	-0.193165
O	-3.553251	-3.378479	-2.433160	H	-4.568215	-2.477070	-2.758685
H	-3.649222	-3.135347	-1.501098	H	-4.070645	-3.169375	-1.482130
				Br	0.341504	-1.243417	-3.587130
			Br	-4.672334	-0.274630	-3.841565	

$\begin{gathered} {[\mathrm{EPy}]^{+} \\|[\mathrm{Br}]^{-}} \\ 22 \end{gathered}$		$\underset{24}{[\mathrm{EPy}]^{+}} \\| \underline{\left[\mathrm{Br}_{3}\right]^{-}}$					
C	-2.269876	2.068039	0.102172	C	-2.006349	-1.255693	-1.235842
N	-0.931335	2.091235	0.134284	C	-1.947975	-0.906559	0.092573
C	-0.212050	0.961163	0.165207	N	-2.833149	-0.044459	0.606851
C	-0.834631	-0.262334	0.150240	C	-3.772519	0.530025	-0.156687
C	-2.219690	-0.311508	0.112683	C	-3.875463	0.216430	-1.489028
C	-2.942970	0.868413	0.089752	C	-2.983830	-0.692206	-2.036686
C	-0.229927	3.392359	0.226612	C	-2.717371	0.350141	2.029118
C	0.067476	3.727119	1.671911	C	-1.828352	1.566086	2.173747
Br	-3.346153	5.541363	0.686499	Br	1.200357	0.700439	-0.535907
H	-2.728591	-1.261709	0.100928	Br	-0.510760	2.299577	-1.429404
H	-0.236811	-1.157100	0.168709	Br	2.934924	-1.004861	0.419875
H	0.858076	1.079239	0.196939	H	-3.049574	-0.955107	-3.079991
H	-2.762098	3.031180	0.090753	H	-4.644517	0.681360	-2.081118
H	-4.019176	0.872277	0.063245	H	-4.429035	1.224848	0.339732
H	0.676422	3.302690	-0.360996	H	-1.217930	-1.303965	0.778475
H	-0.884591	4.134143	-0.216405	H	-1.288839	-1.956822	-1.626081
H	0.692417	2.960736	2.124715	H	-3.723093	0.544858	2.383138
H	0.594565	4.676641	1.710579	H	-2.316166	-0.505727	2.559114
H	-0.856856	3.822620	2.235976	H	-2.249504	2.416098	1.643554
H	-3.553830	3.905237	2.302995	H	-1.744095	1.814677	3.228373
O	-3.657093	3.187422	2.959457	H	-0.835733	1.366047	1.776627
H	-2.825240	2.707015	2.936727	H	1.146000	-1.266310	2.015461
				O	0.424197	-1.430421	2.641229
				H	0.094389	-0.559378	2.879959

$[\mathrm{TEA}]^{+} \\|[\mathrm{Br}]^{-}$ 33			$[\mathrm{TEA}]^{+} \\|\left[\mathrm{Br}_{3}\right]^{-}$ 35					
C	-1.162903	-1.849283	3.324085	C	-1.177666	-1.750357	3.387676	
C	-1.791625	-1.019897	2.229156	C	-1.818360	-0.951396	2.276364	
N	-0.826859	-0.457818	1.220759	N	-0.863167	-0.420957	1.239868	
C	-0.064771	-1.555735	0.526062	C	0.183701	0.462500	1.866229	
C	-0.917248	-2.574027	-0.193580	C	-0.347123	1.648268	2.637062	
C	-1.658359	0.333096	0.246694	C	-0.110238	-1.541519	0.569734	

C	-0.886429	0.988524	-0.874886	C	-0.965488	-2.559860	-0.147996
C	0.210949	0.408915	1.884275	C	-1.699605	0.344513	0.248518
C	-0.333435	1.591297	2.650620	C	-0.935930	0.951785	-0.906310
O	2.821534	0.556485	-1.028753	Br	3.600087	-1.461522	1.832199
H	0.786933	-0.246351	2.526436	O	2.891972	0.513366	-0.871337
H	0.881813	0.731692	1.097013	H	0.777311	-0.180860	2.504900
H	-2.320105	-0.169728	2.645213	H	0.822807	0.788477	1.054624
H	-2.507168	-1.606168	1.663884	H	-2.338826	-0.087545	2.673471
H	0.612674	-1.062662	-0.160820	H	-2.542215	-1.551699	1.737665
H	0.553388	-2.022612	1.283578	H	0.579196	-1.067426	-0.119559
H	-2.397231	-0.355853	-0.146662	H	0.482630	-2.010874	1.345155
H	-2.183806	1.075973	0.836079	H	-2.449303	-0.350927	-0.110434
H	-0.478390	-1.270891	3.937379	H	-2.209721	1.112983	0.817425
H	-1.970261	-2.196725	3.964224	H	-0.465015	-1.163843	3.960269
H	-0.647683	-2.722812	2.935807	H	-1.974836	-2.053708	4.061711
H	-0.386824	0.263204	-1.511554	H	-0.692743	-2.650891	3.022208
H	-1.607031	1.524464	-1.487801	H	-0.452720	0.200339	-1.524563
H	-0.162066	1.711751	-0.509654	H	-1.661099	1.473056	-1.526436
H	-0.977646	1.291833	3.472162	H	-0.198838	1.679998	-0.579135
H	0.521480	2.113646	3.073808	H	-0.946910	1.350606	3.491918
H	-0.865585	2.290982	2.012740	H	0.516641	2.192749	3.011234
H	-0.236639	-3.284126	-0.657549	H	-0.920208	2.326593	2.012225
H	-1.561418	-3.127531	0.483261	H	-0.287756	-3.293775	-0.578931
H	-1.519359	-2.130470	-0.981171	H	-1.637709	-3.085485	0.523701
H	1.871271	0.697043	-1.031096	H	-1.537386	-2.120930	-0.960235
H	3.004152	-0.000219	-0.242878	H	1.942021	0.594142	-0.993628
Br	3.559218	-1.303218	1.573854	H	3.002271	-0.069068	-0.105620
				Br	2.958160	-3.457728	0.244769
			Br	2.317000	-5.342629	-1.260262	

$\begin{gathered} {[\mathrm{TPro}]^{+} \\|[\mathrm{Br}]^{-}} \\ 45 \end{gathered}$		$[\mathrm{TPro}]^{+} \\|\left[\mathrm{Br}_{3}\right]^{-}$					
C	-1.179947	-1.832186	3.352245	C	-1.336377	-1.783341	3.411284
C	-1.794601	-1.022848	2.230585	C	-1.889708	-0.919275	2.297988
N	-0.829684	-0.459389	1.223399	N	-0.895842	-0.452439	1.268485
C	0.208608	0.405228	1.886929	C	-1.684325	0.331970	0.253203
C	-0.314347	1.609610	2.638378	C	-0.887198	0.924031	-0.889770
C	-0.066806	-1.557065	0.529310	C	0.176977	0.397531	1.896703
C	-0.902198	-2.593426	-0.190340	C	-0.281983	1.671746	2.572883
C	-1.660268	0.333068	0.250764	C	-0.183953	-1.616635	0.628574
C	-0.903159	0.991106	-0.882927	C	-1.075588	-2.644936	-0.034484
O	2.808039	0.536214	-1.044195	Br	3.540905	-3.086330	-0.104483
Br	3.571555	-1.312451	1.556484	Br	3.424831	-4.675275	-2.022831
H	0.771996	-0.246868	2.544960	Br	3.643530	-1.389121	1.904990
H	0.893086	0.715140	1.104687	O	2.795186	0.714196	-0.654390
H	-2.342443	-0.177387	2.634216	H	0.694327	-0.239821	2.605141
H	-2.496353	-1.630098	1.667984	H	0.877950	0.632547	1.104069
H	0.606455	-1.066258	-0.164955	H	-2.341865	-0.022356	2.707896
H	0.558703	-2.021061	1.284198	H	-2.659749	-1.456685	1.754136
H	-2.405757	-0.350850	-0.141908	H	0.504451	-1.191877	-0.094998
H	-2.180393	1.082443	0.838771	H	0.413712	-2.075549	1.409938
H	-0.507429	-1.216136	3.944094	H	-2.444680	-0.340971	-0.128302
C	-2.302200	-2.355541	4.240029	H	-2.190600	1.117194	0.805698
H	-0.609046	-2.668327	2.955919	H	-0.567873	-1.251683	3.966869

H	-0.397557	0.244436	-1.491906	C	-2.481507	-2.145227	4.349324
C	-1.893908	1.761086	-1.746908	H	-0.894576	-2.691953	3.009566
H	-0.153270	1.677779	-0.495311	H	-0.385556	0.141441	-1.455341
H	-1.010447	1.308001	3.417508	C	-1.844823	1.673750	-1.807791
C	0.871959	2.331207	3.266422	H	-0.130405	1.610888	-0.517655
H	-0.835165	2.287395	1.966107	H	-0.973203	1.456136	3.384056
C	0.042581	-3.572532	-0.877084	C	0.950771	2.377140	3.126431
H	-1.535604	-3.132356	0.510334	H	-0.784597	2.326814	1.865491
H	-1.543981	-2.127042	-0.934014	C	-0.196813	-3.719290	-0.662387
H	1.859421	0.687176	-1.033307	H	-1.742418	-3.100308	0.693939
H	2.996976	-0.017197	-0.257257	H	-1.686548	-2.183237	-0.806270
H	-0.516864	-4.343542	-1.399735	H	1.935149	0.456075	-0.998916
H	0.671152	-3.056317	-1.600554	H	3.000757	0.061763	0.031671
H	0.691798	-4.056284	-0.149445	H	-0.809125	-4.478470	-1.142085
H	0.542929	3.217809	3.801444	H	0.467263	-3.291148	-1.409669
H	1.390187	1.681109	3.969017	H	0.424201	-4.202781	0.088778
H	1.583910	2.638560	2.502140	H	-2.125060	-2.766531	5.166223
H	-1.383159	2.242086	-2.576481	H	-2.929567	-1.248409	4.773146
H	-2.651111	1.093413	-2.153785	H	-3.257009	-2.693148	3.817328
H	-2.396740	2.530443	-1.163933	H	-1.306626	2.115137	-2.642030
H	-1.897909	-2.930876	5.068278	H	-2.601166	1.000772	-2.207160
H	-2.884840	-1.532350	4.649675	H	-2.350616	2.471867	-1.267707
H	-2.973892	-2.998124	3.673933	H	0.674486	3.308024	3.613749
				H	1.459756	1.748001	3.854481
				H	1.653392	2.605258	2.326426

$\mathrm{[TBA}^{+} \\|[\mathrm{Br}]^{-}$	$\mathrm{TTBA}^{+} \\|\left[\mathrm{Br}_{3}\right]^{-}$
57	59

H	-0.124849	-5.802726	0.425086	H	-2.986168	3.437724	2.137248
C	-0.008638	-5.035742	-0.337252	C	-1.901879	3.465921	2.052990
C	-0.054954	-3.642761	0.269601	C	-1.373336	2.206542	1.386213
C	0.108209	-2.560924	-0.793391	C	0.145358	2.234647	1.258173
C	0.042093	-1.206981	-0.121845	C	0.608524	0.964416	0.578959
N	0.246773	-0.013197	-1.017462	N	2.097401	0.831824	0.386417
C	0.077832	1.196999	-0.136660	C	2.307045	-0.494579	-0.293999
C	0.201779	2.538691	-0.823815	C	3.737230	-0.866130	-0.617099
C	0.052675	3.641773	0.218774	C	3.739314	-2.213396	-1.332044
C	0.170452	5.022254	-0.406921	C	5.148970	-2.654578	-1.691162
H	0.062572	5.805235	0.340225	H	5.143768	-3.615014	-2.201444
C	-0.745217	-0.006615	-2.147528	C	2.823665	0.889141	1.704123
C	-2.201719	0.023434	-1.738183	C	2.401373	-0.134461	2.735577
C	-3.072097	0.016478	-2.989875	C	3.254673	0.039868	3.987204
C	-4.551458	0.049946	-2.641027	C	2.868528	-0.957179	5.067992
H	-5.168528	0.043248	-3.536650	H	3.478046	-0.828540	5.959576
C	1.610643	-0.037307	-1.654302	C	2.646861	1.962490	-0.442321
C	2.785311	-0.046336	-0.699122	C	2.075843	2.093953	-1.837354
C	4.083006	-0.060939	-1.499470	C	2.718077	3.287676	-2.534757
C	5.297699	-0.073233	-0.585233	C	2.175031	3.461986	-3.944073
H	6.222855	-0.082345	-1.156846	H	2.636176	4.311002	-4.443343
Br	-1.451338	0.056932	3.141252	O	-0.136431	-0.554589	-3.061715
O	1.845674	-0.044643	3.071275	Br	-0.797181	-2.722371	-0.515091
H	-0.888392	1.094593	0.344569	Br	-2.784718	-1.022718	-0.213133
H	0.823583	1.105542	0.644593	Br	-4.659536	0.597964	0.062448
H	-0.505695	0.858767	-2.756767	H	1.858732	-1.240563	0.352179

H	-0.535891	-0.892800	-2.737882	H	1.716338	-0.462110	-1.202234
H	0.798244	-1.135415	0.651277	H	3.877919	0.779054	1.472522
H	-0.915032	-1.063447	0.367296	H	2.675196	1.892924	2.088155
H	1.632803	-0.918033	-2.287431	H	0.164409	0.879060	-0.407603
H	1.657283	0.832824	-2.300881	H	0.298616	0.092756	1.145690
H	-2.423211	0.917518	-1.157738	H	2.467852	2.868798	0.126082
H	-2.451640	-0.843291	-1.128531	H	3.720232	1.809737	-0.487592
H	2.758828	-0.925690	-0.057069	H	2.531200	-1.147171	2.357727
H	2.775681	0.836410	-0.061340	H	1.353784	-0.006448	3.002463
H	-0.570885	2.662661	-1.580787	H	0.997490	2.245833	-1.803881
H	1.169957	2.642843	-1.311117	H	2.272183	1.198076	-2.424183
H	-0.684690	-2.669669	-1.531588	H	4.336299	-0.943730	0.288545
H	1.061536	-2.704911	-1.299362	H	4.198338	-0.122665	-1.264919
H	2.137044	-0.039322	2.155794	H	0.584401	2.327419	2.250173
H	0.867029	-0.014287	3.038646	H	0.434817	3.110442	0.679891
H	0.734534	-3.533658	1.013420	H	-0.030952	0.322035	-2.680636
H	-1.002407	-3.494423	0.787736	H	-0.358260	-1.129346	-2.313662
H	-0.913530	3.539007	0.712722	H	-1.819495	2.092723	0.399235
H	0.816735	3.514103	0.985895	H	-1.672261	1.328388	1.958068
H	4.094892	-0.938042	-2.146382	H	4.305008	-0.084849	3.724314
H	4.113576	0.814846	-2.147550	H	3.137594	1.057020	4.361072
H	-2.816562	0.877204	-3.607934	H	2.531922	4.188136	-1.949703
H	-2.848209	-0.874971	-3.575739	H	3.798116	3.144518	-2.566868
H	-0.805378	-5.162285	-1.068601	H	3.267561	-2.958981	-0.691758
H	0.940972	-5.202576	-0.843290	H	3.130986	-2.139106	-2.233980
H	5.303775	0.807298	0.055322	H	-1.486463	3.576296	3.053645
H	5.286327	-0.953887	0.055076	H	-1.629559	4.349803	1.477927
H	1.140022	5.144072	-0.887404	H	1.824593	-0.831208	5.350680
H	-0.599314	5.167813	-1.163222	H	2.999337	-1.978021	4.712535
H	-4.822611	-0.814131	-2.036435	H	5.623818	-1.925669	-2.346038
H	-4.791100	0.946418	-2.071409	H	5.761062	-2.750475	-0.795690
				H	2.366863	2.571973	-4.541419
					H	1.098680	3.625653

$\left.{ }^{[\mathrm{TPA}}\right]^{+}| |[\mathrm{Br}]^{-}$
69

C	3.429571	-1.114473	-2.238758	C	-3.323618	-3.646363	-1.228777
C	2.371168	-0.874997	-1.168571	C	-2.373458	-2.576984	-0.702466
C	1.097875	-0.395566	-1.832016	C	-2.563039	-1.308132	-1.505061
N	-0.016189	-0.006213	-0.899127	N	-1.750757	-0.120281	-1.059121
C	-1.176258	0.389088	-1.771755	C	-0.280897	-0.447597	-1.005928
C	-2.432274	0.822586	-1.046098	C	0.343928	-0.845839	-2.325189
C	-3.520595	1.129942	-2.067772	C	1.782946	-1.289482	-2.092362
C	-0.381726	-1.145073	0.014812	C	-2.028304	0.973676	-2.053790
C	-0.900226	-2.394328	-0.662276	C	-1.346001	2.295783	-1.778487
C	-1.178493	-3.449150	0.402585	C	-1.701268	3.285465	-2.881226
C	0.400963	1.127617	0.000121	C	-2.127911	0.301158	0.335605
C	0.931348	2.364555	-0.690954	C	-3.568090	0.710480	0.551668
C	1.199419	3.433255	0.363041	C	-3.729070	1.152539	2.002348
O	-2.299852	0.864108	2.763510	O	0.327181	2.785316	1.418032
Br	0.707812	-0.209352	3.541611	Br	0.597798	-0.279666	2.920197
H	0.505656	-1.360090	0.598987	Br	2.836744	-0.076105	1.562149
H	-1.119416	-0.755765	0.707910	Br	4.958770	0.155575	0.263798
H	0.697894	-1.168143	-2.480851	H	-1.866690	-0.527328	0.983683

H	1.294575	0.478635	-2.444285	H	-1.468727	1.123833	0.586913
H	-0.471679	1.375584	0.592938	H	-3.599491	-0.989495	-1.470626
H	1.136243	0.721916	0.686763	H	-2.308274	-1.481192	-2.545256
H	-0.817415	1.188593	-2.411784	H	0.212038	0.431354	-0.601953
H	-1.384413	-0.469519	-2.401632	H	-0.176038	-1.241495	-0.274109
H	2.196863	-1.803329	-0.627409	H	-1.726060	0.585807	-3.020847
H	2.743926	-0.138189	-0.459231	H	-3.105756	1.102242	-2.071953
H	-2.248376	1.715899	-0.451292	H	-2.580842	-2.408388	0.352723
H	-2.787052	0.038155	-0.378832	H	-1.351340	-2.940690	-0.790497
H	-0.171962	-2.786859	-1.369988	H	-0.263496	2.174967	-1.747125
H	-1.821097	-2.189551	-1.205777	H	-1.668354	2.705027	-0.822554
H	1.858515	2.147756	-1.218594	H	-4.246745	-0.117267	0.355093
H	0.215275	2.751351	-1.414102	H	-3.842337	1.536017	-0.102787
H	-2.388953	0.850920	1.807002	H	-0.205437	-1.664780	-2.786085
H	-1.392399	0.544066	2.949937	H	0.338034	-0.006893	-3.019344
C	1.752494	4.714631	-0.240432	H	0.381069	2.637129	0.469165
H	0.273251	3.653344	0.897081	H	0.460709	1.912475	1.816424
H	1.905174	3.045574	1.099887	C	2.482420	-1.655776	-3.392076
C	-1.727584	-4.737065	-0.190845	H	2.338756	-0.496260	-1.590812
H	-0.257738	-3.664324	0.947563	H	1.791461	-2.148183	-1.418383
H	-1.890689	-3.051365	1.128045	C	-3.170829	-4.963223	-0.483631
C	-4.805863	1.603149	-1.407162	H	-4.352294	-3.293953	-1.136803
H	-3.164013	1.896304	-2.758141	H	-3.135459	-3.807025	-2.291727
H	-3.724291	0.236451	-2.660370	C	-1.058341	4.644915	-2.653610
C	4.732790	-1.634474	-1.652158	H	-1.379581	2.887722	-3.845127
H	3.050698	-1.830065	-2.970611	H	-2.785584	3.400591	-2.929015
H	3.619185	-0.182321	-2.773674	C	-5.150955	1.586884	2.320153
C	2.014890	5.774574	0.818489	H	-3.443926	0.332344	2.663745
H	2.676255	4.488427	-0.773724	H	-3.042818	1.976700	2.206931
H	1.046124	5.095343	-0.978783	C	3.900683	-2.151800	-3.154748
H	2.414118	6.686694	0.380260	H	1.902980	-2.422361	-3.908060
H	1.095400	6.027154	1.344637	H	2.500052	-0.781769	-4.044186
H	2.731293	5.411643	1.554280	H	4.407180	-2.376623	-4.091002
C	-5.892232	1.910163	-2.426333	H	4.482699	-1.402833	-2.619999
H	-5.153915	0.836580	-0.714072	H	3.893647	-3.057303	-2.549100
H	-4.593880	2.492956	-0.813569	C	-4.121180	-6.028974	-1.007368
H	-6.806350	2.250007	-1.944396	H	-2.140691	-5.308225	-0.577028
H	-5.563906	2.688322	-3.114018	H	-3.352607	-4.794828	0.578252
H	-6.129967	1.024046	-3.013315	H	-4.002829	-6.967393	-0.470037
C	-1.998578	-5.785646	0.877079	H	-5.155924	-5.706619	-0.900008
H	-2.647117	-4.516117	-0.733602	H	-3.938556	-6.219955	-2.063926
H	-1.015799	-5.125884	-0.919711	C	-5.302564	2.017329	3.771079
H	-2.395212	-6.701943	0.445220	H	-5.429549	2.408064	1.659106
H	-1.083174	-6.033496	1.412501	H	-5.832129	0.762911	2.105277
H	-2.720187	-5.414795	1.603772	H	-6.321427	2.329035	3.990749
C	5.787685	-1.863478	-2.723776	H	-5.048029	1.198352	4.442470
H	5.102100	-0.920683	-0.915183	H	-4.638565	2.851067	3.995268
H	4.537737	-2.565871	-1.119903	C	-1.419700	5.638085	-3.747152
H	6.714838	-2.239780	-2.296915	H	-1.375227	5.030060	-1.683884
H	5.436455	-2.586385	-3.458867	H	0.024306	4.522833	-2.606470
H	6.009879	-0.935183	-3.248045	H	-0.950400	6.604836	-3.578269
				H	-1.096780	5.271713	-4.720600
				H	-2.497571	5.789200	-3.787571

