Supporting Information

Time transient electrochemical monitoring of tetraalkylammonium polybromide solid particle formation: observation of ionic liquid-to-solid transition

Yejin Choi^{†,a}, Jiseon Hwang^{†,a}, Kyungmi Kim^b, Saibal Jana^c, Sang Uck Lee^{*,c}, Junghyun Chae^{*,b}, and Jinho Chang^{*,a}

^a Department of Chemistry and Research Institute for Natural Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea

^bDepartment of Chemistry, Sungshin Women's University, 55, Dobong-ro, 76ga-gil Gangbukgu, Seoul 01133 Republic of Korea

^cDepartment of Bionano Technology, Department of Chemical and Molecular Engineering, Hanyang University, Ansan 15588, Republic of Korea

Corresponding author: jhcechem@hanyang.ac.kr

[†] These authors contributed equally to this work.

Table of Contents

Synthesis and Characterization of QBrs and TBrs	4
Note S1.	4
Synthetic mechanism for N-Methyl-N-ethylpyrrolidinium bromide (MEPBr)	
Note S2.	4
Synthetic mechanism for N-Methyl-N-ethyl-morpholinium bromide (MEMBr)	
Note S3.	5
Synthetic mechanism for 1-Ethylpyridinium bromide (EPyBr)	
Note S4.	5
Synthetic mechanism for Tetrapropylammonium bromide (TProABr)	
Note S5.	6
Synthetic mechanism for Tetrapentylammonium bromide (TPABr)	7
The next second of presidented TDADs, on a Dt macro disk electrode with a radius of 1 mm after a notantial	/
of 1.5 V was applied for 1000 s in a 0.5 M H ₂ SO ₄ aqueous solution with $C_{\text{TBABr}} = 50 \text{ mM}$.	
Figure S2.	8
The Raman spectra measured from TBABr3 formed electrochemically on a Pt macro disk electrode	
described in Figure S1 (black) and purchased from Sigma-Aldich (red).	0
Figure S3. The Photographs of synthesized polybromides as a function of equiv. Bra	9
Figure S4.	10
The Raman spectra obtained from TBr_{2n+1} , which were chemically synthesized by adding Br_2 to TBr	
aqueous solutions to have different ratios of $C_{Br_2(aq)}$ to $C_{Br^-(aq)}$.	
Figure S5.	11
2D axial symmetric domain of the simulation for Figure 3.	10
Figure S6.	12
The linear sweep voltammograms (LSVs, black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of MEPBr (32, 42, 52, and 62 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ .	
Figure S7.	13
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of MEPBr (72, 82, 92, and 102 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ .	
Figure S8.	14
The LSVs (black) measured in 0.5 M H_2SO_4 aqueous solutions containing various concentrations of MEMBr (52, 62, 72, 82, 92, and 102 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ .	15
The LSVs (black) measured in 0.5 M H-SO, aqueous solutions containing various concentrations of EDvDr	15
(42, 52, 62, and 72 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ .	16
The LSVs (black) measured in 0.5 M H-SO, aqueous solutions containing various concentrations of EDvPr	10
The LS vs (black) measured in 0.5 Wi 112504 aqueous solutions containing various concentrations of EPyBr	

(82, 92, and 102 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S11.	17
The LSVs (black) measured in 0.5 M H_2SO_4 aqueous solutions containing various concentrations of TProABr (20, 30, 40, 50, and 60 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S12.	18
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of TProABr (70, 80, 90, and 100 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S13.	19
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of TBABr (10, 20, 30, 40, and 50 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S14.	20
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of TBABr (60, 70, 80, 90, and 100 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ .	21
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of TPABr (10, 20, 30, 40, and 50 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S16 .	21
The LSVs (black) measured in 0.5 M H ₂ SO ₄ aqueous solutions containing various concentrations of TPABr (60, 70, 80, and 90 mM), and the corresponding simulation results (red) based on the <i>Cloud</i> model for the estimation of k_{et} -Br ⁻ /Br ₂ . Figure S17.	23
The photographs of (a) TBABr and (b) TBABr ₃ after the dynamic vapor sorption (DVS) analysis, which is depicted in (c); the graph describes change in mass (%) of TBABr (black) and TBABr ₃ (red) powder as humidity changes (blue line) from 0 to 90 %.	24
The CA measured in 10 mM TBABr solution at 1.2 V for 300 s.	
Figure S19.	25
(a) Three dimensional, (b) the corresponding cross-sectional domain of the simulation, and (c) simulated, normalized steady-state voltammograms under the different conditions. IP adsorbed on different UME edge sites.	
Figure S20.	26
The randomly chosen individual current spikes from a CA measured in a $0.5 \text{ M H}_2\text{SO}_4$ aqueous solution containing 50 mM TBABr at a constantly applied potential of 1.2 V for 60 s. The purpose of fitting the bulk electrolysis model to the individual current spikes is to estimate the corresponding radius of an adsorbed hemispherical <i>H</i> -TBABr ₃ droplet. Figure S21.	27
DFT-optimized structures for the solvent-separated ion pairs of IL cations with H…Br distance in Å.	
Table S1.	28
Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentration of the chemical species using finite element analysis (Figure S5). Table S2.	29
Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentrations of chemical species using finite element analysis (Figure 5). Table S3.	30

The tabulated Cartesian coordinates of the optimized geometries associated with Figure S21.

Synthesis and Characterization of QBrs and TBrs

Note S1. Synthetic mechanism for *N*-Methyl-*N*-ethyl pyrrolidinium bromide (MEPBr)

1-Methylpyrrolidine (8.5 g, 100 mmol), bromoethane (8.9 mL, 120 mmol) and ethyl acetate (20 mL) were added to a 100 mL round bottom flask. The mixture was stirred at room temperature for 6 h. The solid product was filtered, washed with ethyl acetate three times, and dried in a vacuum to yield a white solid (18.6 g, 96%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.52 – 3.35 (m, 6H), 2.97 (d, *J* = 2.0 Hz, 3H), 2.07 (dd, *J* = 5.3, 4.0 Hz, 4H), 1.31 – 1.24 (m, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 63.26, 58.63, 47.31, 21.49, 9.40; MS (EI) m/z = 114 (M⁺).

Note S2. Synthetic mechanism for N-Methyl-N-ethyl-morpholinium bromide (MEMBr)

4-Methylmorpholine (17.5 mL, 160 mmol), bromoethane (23.5 mL, 320 mmol), ethyl acetate (20 mL) were added to a 100 mL round bottom flask, and the reaction mixture refluxed at 40 °C

for 72 h. After it cooled to room temperature, the solid product was filtered, washed three times with ethyl acetate, and dried in a vacuum to yield a white solid (24.3 g, 72%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.92 (t, *J* = 9.1 Hz, 4H), 3.52 (dd, *J* = 14.6, 7.3 Hz, 2H), 3.44 – 3.36 (m, 4H), 3.10 (d, *J* = 5.9 Hz, 3H), 1.25 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 60.25, 59.70, 58.84, 45.79, 7.37; MS (EI) *m/z* = 130 (M⁺).

Note S3. Synthetic mechanism for 1-Ethylpyridinium bromide (EPyBr)

To a solution of pyridine (40.3 mL, 500 mmol) in ethyl acetate (40 mL), bromoethane (74 mL, 1.0 mol) was added dropwise in ice-bath. The mixture was stirred at 30 °C for 72 h. The solid product was filtered, washed three times with ethyl acetate, and dried in a vacuum to yield a white solid (59 g, 63%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 9.11 (d, *J* = 5.8 Hz, 2H), 8.60 (t, *J* = 7.8 Hz, 1H), 8.16 (t, *J* = 6.9 Hz, 2H), 4.63 (q, *J* = 7.3 Hz, 2H), 1.54 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 146.09, 145.25, 128.76, 57.02, 17.05; MS (EI) *m/z* = 108.1 (M⁺).

Note S4. Synthetic mechanism for Tetrapropylammonium bromide (TProABr)

Tripropylamine (15.0 mL, 80 mmol), 1-bromopropane (11.0 mL, 120 mmol), and ethanol (50 mL) were added to a 250 mL round bottom flask, and the reaction mixture was refluxed at 80 °C

for 48 h. After cooling to room temperature, the reaction mixture was concentrated to give a crude solid product. The crude product was washed with EtOAc and dried in a vacuum to yield a white solid (11.8 g, 55%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.18 – 3.08 (m, 8H), 1.72 – 1.49 (m, 8H), 0.87 (t, *J* = 7.3 Hz, 12H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 59.75 (s), 15.31 (s), 11.00 (s); MS (EI) *m/z* = 186.2 (M⁺).

Note S5. Synthetic mechanism for Tetrapentylammonium bromide (TPABr)

[CAS No. 866-97-7]

1-Bromopentane (10 mL, 80 mmol), tripentylamine (46 mL 160 mmol), and ethanol (50 mL) were added to a 250 mL round bottom flask, and the reaction mixture was refluxed at 80 °C for 72 h. After cooling to room temperature, the reaction mixture was concentrated to give a crude solid product. The crude product was washed with EtOAc and dried in a vacuum to yield a white solid (13.4 g, 50%). ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.23 – 3.10 (m, 8H), 1.66 – 1.48 (m, 8H), 1.48 – 1.15 (m, 16H), 0.87 (t, *J* = 7.2 Hz, 12H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 58.15 (s), 28.40 (s), 22.03 (s), 21.28 (s), 14.18 (s); MS (EI) *m/z* = 298.3 (M⁺).

Figure S1. The photograph of precipitated TBABr₃ on a Pt macro disk electrode with a radius of 1 mm after a potential of 1.5 V was applied for 1000 s in a 0.5 M H₂SO₄ aqueous solution with $C_{\text{TBABr}} = 50$ mM.

Figure S2. The Raman spectra measured from TBABr₃ formed electrochemically on a Pt macro disk electrode described in Figure S1 (black) and purchased from Sigma-Aldich (red).

Figure S3. The photographs of synthesized polybromides as a function of equiv. Br₂.

Figure S4. The Raman spectra obtained from TBr_{2n+1} , which were chemically synthesized by adding Br₂ to TBr aqueous solutions to have different ratios of $C_{Br_2(aq)}$ to $C_{Br^-(aq)}$.

Figure S5. 2D axial symmetric domain of the simulation for Figure 3.

Figure S6. The linear sweep voltammograms (LSVs, black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of MEPBr (32, 42, 52, and 62 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S7. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of MEPBr (72, 82, 92, and 102 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S8. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of MEMBr (52, 62, 72, 82, 92, and 102 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S9. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of EPyBr (42, 52, 62, and 72 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S10. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of EPyBr (82, 92, and 102 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S11. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TProABr (20, 30, 40, 50, and 60 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S12. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TProABr (70, 80, 90, and 100 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S13. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TBABr (10, 20, 30, 40, and 50 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S14. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TBABr (60, 70, 80, 90, and 100 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S15. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TPABr (10, 20, 30, 40, and 50 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S16. The LSVs (black) measured in 0.5 M H₂SO₄ aqueous solutions containing various concentrations of TPABr (60, 70, 80, and 90 mM), and the corresponding simulation results (red) based on the *Cloud* model for the estimation of k_{et} -Br⁻/Br₂.

Figure S17. The photographs of (a) TBABr and (b) TBABr₃ after the dynamic vapor sorption (DVS) analysis, which is depicted in (c); the graph describes change in mass (%) of TBABr (black) and TBABr₃ (red) powder as humidity changes (blue line) from 0 to 90 %.

Figure S18. The CA measured in 10 mM TBABr solution at 1.2 V for 300 s.

Figure S19. (a) Three dimensional, (b) the corresponding cross-sectional domain of the simulation, and (c) simulated, normalized steady-state voltammograms under the different conditions. IP adsorbed on different UME edge sites.

Figure S20. (a-h) The randomly chosen individual current spikes from a CA measured in a 0.5 M H_2SO_4 aqueous solution containing 50 mM TBABr at a constantly applied potential of 1.2 V for 60 s. The purpose of fitting the bulk electrolysis model to the individual current spikes is to estimate the corresponding radius of an adsorbed hemispherical *H*-TBABr₃ droplet.

Figure S21. DFT-optimized structures for the solvent-separated ion pairs of IL cations with $H \cdots Br$ distance in Å.

Tables

Table S1. Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentration of the chemical species using finite element analysis (Figure S5).

Reactions in aq.		Para	meters	
phase	$k_{\rm et}$ on Pt UME	ket on Cloud	$E_{ m eq}$	α
$Br \cdot + e^- \rightleftharpoons Br^-$	variable (cm/s)	0.1 (cm/s)	0.76 (V)	0.5
$2Br^{\cdot} \rightarrow Br_2$	$k_{f1} = 50$	$00 (M^{-1}s^{-1})$		
$Br_2 + e^- \rightleftharpoons Br_2^-$	0.1 (cm/s)	0.1 (cm/s)	0.72 V	0.5
H _{Cloud}		0.5	6 (V)	
$d_{\text{UME-Cloud}}$		var	riable	
	The relevant time-depe	endent diffusion equat	ions	
(1) $\frac{\partial C_{Br}}{\partial t} = D_{Br} \cdot \left[\frac{\partial^2 C_{I}}{\partial r} \right]$	$\frac{Br\cdot}{2} + \frac{1}{r}\frac{\partial C_{Br\cdot}}{\partial r} + \frac{\partial^2 C_{Br\cdot}}{\partial z^2} -$	$\frac{1}{2}k_{f1}C_{Br}.^2$		
(2) $\frac{\partial C_{Br}}{\partial t} = D_{Br} \left[\frac{\partial^2}{\partial t} \right]$	$\frac{C_{Br}}{\partial r^2} + \frac{1}{r} \frac{\partial C_{Br}}{\partial r} + \frac{\partial^2 C_{Br}}{\partial z^2} \right]$			
(3) $\frac{\partial C_{Br_2}}{\partial t} = D_{Br_2} \left[\frac{\partial^2 C_B}{\partial t} \right]$	$\frac{C_{Br_2}}{r^2} + \frac{1}{r} \frac{\partial C_{Br_2}}{\partial t} + \frac{\partial^2 C_{Br_2}}{\partial z^2} \right]$	$+\frac{1}{2}k_{f1}C_{Br}^{2}$		
(4) $\frac{\partial C_{Br_2}}{\partial t} = D_{Br_2}$	$\frac{\partial^2 C_{Br_2} \cdots}{\partial r^2} + \frac{1}{r} \frac{\partial C_{Br_2} \cdots}{\partial t} + \frac{\partial^2 C_{Br_2} \cdots}{\partial t} + \partial^2 C_{Br$	$\frac{\partial^2 C_{Br_2} - \cdot}{\partial z^2}$		
The in	itial condition, complet	ting the definition of the	he problem	

t = 0, all r, z; $C_{Br} = 0$, = variable, $C_{Br_2,Br_2} = 0$, $D_{Br,Br} = 1.58 \ge 10^{-5}$, $D_{Br_2} = 1.18 \ge 10^{-5}$, $D_{Br_2} = 1.00 \ge 10^{-5}$ cm²/s

Table S2. Reactions, corresponding parameters, relevant time-dependent diffusion and chemical equations, and initial concentrations of chemical species using finite element analysis (Figure 5).

Reactions in aq. Phase	Parameters
$1/2Br + e^- \Rightarrow Br^-$	$k_{et} = 0.1 \text{ cm/s}$ $E_{eq} 0.9 \text{ V}, \alpha = 0.5$

The relevant time-dependent diffusion equations

(1)
$$\frac{\partial C_{Br}}{\partial t} = D_{Br} \cdot \left[\frac{\partial^2 C_{Br}}{\partial r^2} + \frac{1}{r} \frac{\partial C_{Br}}{\partial r} + \frac{\partial^2 C_{Br}}{\partial z^2} \right]$$

(2)
$$\frac{\partial C_{Br}}{\partial t} = D_{Br} - \left[\frac{\partial^2 C_{Br}}{\partial r^2} + \frac{1}{r} \frac{\partial C_{Br}}{\partial r} + \frac{\partial^2 C_{Br}}{\partial z^2} \right]$$

The initial condition, completing the definition of the problem

t = 0, all r, z;
$$C_{Br} = 0, C_{Br} = 50 \times 10^{-3} M, D_{Br} = 1.58 \times 10^{-5}$$

IMED)]+ [Ɗ"]-			IMED)]+ [D _m]-		
	J∥[DI]						
28	3			30)		
~				~			
С	-1.101/04	-0.291425	1.066920	С	-1.957739	-1.799544	1.158100
Ν	-1.597483	0.271320	-0.232244	С	-1.521831	-0.342583	1.246288
С	-1.110369	-0.736667	-1.235302	Ν	-1.519414	0.134420	-0.175862
С	-1.276991	-2.093998	-0.552525	С	-0.922920	-1.030457	-0.914028
С	-1.380995	-1.782963	0.956938	С	-1.515860	-2.268320	-0.247117
С	-1.016341	1.616420	-0.537651	С	-0.673121	1.353455	-0.372830
С	-1.426753	2.694773	0.439019	С	-1.184184	2.578287	0.349256
С	-3.082044	0.314597	-0.251754	С	-2.907715	0.369363	-0.652022
Br	2.545677	0.199526	-0.380497	0	1.844402	-2.247935	1.305986
Н	-1.676476	-0.610175	-2.151131	Br	2.961777	0.498267	-1.241498
Н	-0.062266	-0 508832	-1 405531	Н	-1 144946	-0.921076	-1 969177
Н	-0.033520	-0.087718	1 094330	Н	0 1 5 0 5 7 4	-0.975896	-0 757119
н	-1 603253	0.007710	1 889063	н	-0.497032	-0 253188	1 597526
и П	0.662321	2 2 2 0 / 2 /	1.546630	и П	-0.477032	0.280500	1.838762
11	-0.002321	-2.339434	1.340030	11	-2.1/101/	0.289309	1.050175
п	-2.3/30/4	-2.014027	1.529194	п	-1.4901//	-2.3/2490	1.932173
п	-0.418/3/	-2./1/55/	-0.780288	П	-3.032870	-1.8851//	1.2/2009
Н	-2.166536	-2.605512	-0.903604	Н	-0./61488	-3.045530	-0.196939
H	-1.340255	1.856991	-1.546431	H	-2.359580	-2.651133	-0.810225
Н	0.061787	1.475468	-0.533246	Н	-0.629735	1.514853	-1.446394
Н	-3.434295	0.868562	0.609212	Н	0.317015	1.089247	-0.014866
Н	-3.393435	0.797525	-1.171726	Н	-3.398559	1.063199	0.018446
Н	-3.465148	-0.698175	-0.219078	Н	-2.855036	0.776464	-1.655891
Η	-0.914779	3.609261	0.150313	Н	-3.442759	-0.572763	-0.662336
Η	-2.494961	2.888375	0.416226	Н	-0.457041	3.372292	0.198279
Н	-1.127430	2.451226	1.454823	Н	-2.138269	2.919112	-0.040614
Н	2.183130	-1.768969	0.740017	Н	-1.272832	2.404567	1.418274
0	2.030256	-2.611669	1.213522	Н	2.067401	-1.305767	1.297639
Н	1.381952	-3.077747	0.679035	Н	0.901586	-2.283237	1.488642
				Br	2.849653	1.014498	1.353430
				Br	2.996272	-0.005320	-3.673083
IMEN	/[] ⁺ ∥ [Br] ⁻			IMEN	/] ⁺ ∥ [Br ₂] ⁻		
20))			31			
2,	, ,			51	L		
C	1 002360	1 473305	0 797060	0	3 415770	2 760470	0 227522
C	2 2 2 2 1 1 5	-1.4/3303	0.797000	C	2 005205	-2.700+70	0.227322
	-3.320113	-0.313760	0.204124	C	-3.993303	-1.3336//	0.039447
IN C	-1.838390	-0.3/9228	0.300703		-3.223334	-0.353548	0.11/21/
C	-1.300049	-1./33207	0.092334	IN C	-1./09818	-0.393410	0.493505
C	-2.191069	-2.839282	0.708441	C	-1.226919	-1./42281	0.11804/
Ö	-3.564246	-2.717699	0.348/05	C	-2.070065	-2.861969	0.679237
С	-1.197396	0.691005	-0.326624	С	-1.077692	0.681865	-0.303775
С	0.298614	0.796351	-0.144886	С	0.395031	0.841615	-0.007477
С	-1.597475	-0.120739	1.947653	С	-1.596541	-0.124178	1.946678
Н	-2.207423	-0.769882	2.559207	0	-4.557290	-3.329692	-2.304284
Η	-1.689976	1.616535	-0.041646	Br	-2.123496	-0.773521	-3.769547
Н	-1.447706	0.454524	-1.357701	Н	-2.246379	-0.766402	2.523452
Н	-0.551141	-0.311095	2.150586	Н	-1.620939	1.595971	-0.082191
Н	-1.845449	0.915835	2.148815	Н	-1.234102	0.423351	-1.346287
Н	-0.330595	-1.826980	0.398573	Н	-0.564877	-0.313914	2.214370

Table S3. The tabulated Cartesian coordinates of the optimized geometries associated with Figure S21.

Н	-1.440989	-1.765492	-0.993353	Н	-1.854413	0.914471	2.121843
Н	-2.098950	-2.858696	1.793935	Н	-0.211823	-1.815081	0.490548
Н	-1.838148	-3.784633	0.310842	Н	-1.225133	-1.784389	-0.968537
Н	-4 096642	-1 452196	1 885935	Н	-2.052605	-2.875253	1 768399
н	-5 117096	-1 413072	0.446627	н	-1 674465	-3 801769	0.310719
и П	2 411022	0.220606	0.991027	и П	4 055058	1 522406	1 746249
п	-3.411023	-0.330090	-0.001020	п	-4.033038	-1.323400	1.740240
п	-3.09/29/	0.031220	0.390366	П	-5.001065	-1.492113	0.234009
H	0.644430	1.568481	-0.828170	H	-3.261139	-0.359389	-0.969/54
H	0.577282	1.094885	0.860699	H	-3.628/92	0.581/51	0.490676
Н	0.810068	-0.125872	-0.404329	Н	0.771412	1.603342	-0.685847
Br	-2.310353	-0.619998	-3.688808	Н	0.575708	1.179819	1.007817
Н	-3.186959	-2.576754	-2.854266	Н	0.955382	-0.069425	-0.193165
0	-3.553251	-3.378479	-2.433160	Н	-4.568215	-2.477070	-2.758685
Н	-3.649222	-3.135347	-1.501098	Н	-4.070645	-3.169375	-1.482130
				Br	0.341504	-1.243417	-3.587130
				Br	-4.672334	-0.274630	-3.841565
[EPv]	⁺ [Br]⁻			[EPv]	$ ^{+} [Br_3]^{-}$		
22)			24	4		
С	-2.269876	2.068039	0.102172	С	-2.006349	-1.255693	-1.235842
Ν	-0.931335	2.091235	0.134284	С	-1.947975	-0.906559	0.092573
C	-0.212050	0.961163	0 165207	Ň	-2 833149	-0.044459	0.606851
C	0.212030	0.262334	0.150240	C	-3 772510	0.530025	-0.156687
C	-0.854051	-0.202334	0.130240	C	-3.772319	0.330023	1 490029
C	-2.219090	-0.311308	0.112085	C	-3.8/3403	0.210450	-1.469026
C	-2.942970	0.808413	0.089752	C	-2.985850	-0.092200	-2.030080
C	-0.229927	3.392359	0.226612	C	-2./1/3/1	0.350141	2.029118
С	0.067476	3.727119	1.671911	С	-1.828352	1.566086	2.173747
Br	-3.346153	5.541363	0.686499	Br	1.200357	0.700439	-0.535907
Н	-2.728591	-1.261709	0.100928	Br	-0.510760	2.299577	-1.429404
Н	-0.236811	-1.157100	0.168709	Br	2.934924	-1.004861	0.419875
Н	0.858076	1.079239	0.196939	Н	-3.049574	-0.955107	-3.079991
Н	-2.762098	3.031180	0.090753	Н	-4.644517	0.681360	-2.081118
Н	-4.019176	0.872277	0.063245	Н	-4.429035	1.224848	0.339732
Н	0.676422	3.302690	-0.360996	Н	-1.217930	-1.303965	0.778475
Н	-0.884591	4,134143	-0.216405	Н	-1.288839	-1.956822	-1.626081
н	0 692417	2 960736	2 124715	н	-3 723093	0 544858	2 383138
н	0.594565	4 676641	1 710579	и	-2 316166	-0.505727	2.505150
н	-0.856856	3 822620	2 235076	и	-2.210100	2 /16098	1 6/355/
и Ц	2 552920	3.022020	2.233970	11 11	1 744005	2.710070 1 81 <i>4677</i>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
П	-3.333630	2 197422	2.302993	п	-1./44093	1.0140//	3.220375
0	-3.03/093	3.18/422	2.939437	п	-0.835/35	1.300047	1.//002/
Н	-2.825240	2.707015	2.936/27	Н	1.146000	-1.266310	2.015461
				0	0.424197	-1.430421	2.641229
				Н	0.094389	-0.559378	2.879959
	1+ [D]-				1+ II [D.,]-		
	ן [םנ] ג				.j [D13] 5		
52	,			5.	<i>,</i>		
С	-1 162903	-1 849283	3 324085	C	-1 177666	-1 750357	3 387676
č	-1 791625	-1 019897	2 229156	č	-1 818360	-0.951396	2 276364
N	_0 826850	_0 457818	1 220750	N	-0.863167	_0 420057	1 230868
Ċ	-0.020039	-0.+57010	0 526062	C	0.182701	0.462500	1 866770
C	-0.004 / / 1	-1.333/33	0.320002		0.103/01	0.402300	1.000229
C	-0.91/248	-2.3/402/	-0.193380		-0.34/123	1.048208	2.03/002
U	-1.038337	0.333096	0.240094	U	-0.110238	-1.341319	0.309/34

С	-0.886429	0.988524	-0.874886	С	-0.965488	-2.559860	-0.147996	
С	0.210949	0.408915	1.884275	С	-1.699605	0.344513	0.248518	
С	-0.333435	1.591297	2.650620	С	-0.935930	0.951785	-0.906310	
0	2.821534	0.556485	-1.028753	Br	3.600087	-1.461522	1.832199	
Н	0.786933	-0.246351	2.526436	0	2.891972	0.513366	-0.871337	
Н	0.881813	0.731692	1.097013	Н	0.777311	-0.180860	2.504900	
Н	-2.320105	-0.169728	2.645213	Н	0.822807	0.788477	1.054624	
Н	-2.507168	-1.606168	1.663884	Н	-2.338826	-0.087545	2.673471	
Н	0.612674	-1.062662	-0.160820	Н	-2.542215	-1.551699	1.737665	
Н	0.553388	-2.022612	1.283578	Н	0.579196	-1.067426	-0.119559	
Н	-2.397231	-0.355853	-0.146662	Н	0.482630	-2.010874	1.345155	
Н	-2.183806	1.075973	0.836079	Н	-2.449303	-0.350927	-0.110434	
Н	-0.478390	-1.270891	3.937379	Н	-2.209721	1.112983	0.817425	
Н	-1.970261	-2.196725	3.964224	Н	-0.465015	-1.163843	3.960269	
Н	-0.647683	-2.722812	2.935807	Н	-1.974836	-2.053708	4.061711	
Η	-0.386824	0.263204	-1.511554	Н	-0.692743	-2.650891	3.022208	
Η	-1.607031	1.524464	-1.487801	Н	-0.452720	0.200339	-1.524563	
Η	-0.162066	1.711751	-0.509654	Н	-1.661099	1.473056	-1.526436	
Η	-0.977646	1.291833	3.472162	Н	-0.198838	1.679998	-0.579135	
Н	0.521480	2.113646	3.073808	Н	-0.946910	1.350606	3.491918	
Н	-0.865585	2.290982	2.012740	Н	0.516641	2.192749	3.011234	
Н	-0.236639	-3.284126	-0.657549	Н	-0.920208	2.326593	2.012225	
Н	-1.561418	-3.127531	0.483261	Н	-0.287756	-3.293775	-0.578931	
Н	-1.519359	-2.130470	-0.981171	Н	-1.637709	-3.085485	0.523701	
Н	1.871271	0.697043	-1.031096	Н	-1.537386	-2.120930	-0.960235	
Н	3.004152	-0.000219	-0.242878	Н	1.942021	0.594142	-0.993628	
Br	3.559218	-1.303218	1.573854	Н	3.002271	-0.069068	-0.105620	
				Br	2.958160	-3.457728	0.244769	
				Br	2.317000	-5.342629	-1.260262	
[TPro	$[Br]^{-} \parallel [Br]^{-}$			[TPro	$[Br_3]^-$			
43	5			47	7			
С	-1.179947	-1.832186	3.352245	С	-1.336377	-1.783341	3.411284	
С	-1.794601	-1.022848	2.230585	С	-1.889708	-0.919275	2.297988	
Ν	-0.829684	-0.459389	1.223399	Ν	-0.895842	-0.452439	1.268485	
С	0.208608	0.405228	1.886929	С	-1.684325	0.331970	0.253203	
С	-0.314347	1.609610	2.638378	С	-0.887198	0.924031	-0.889770	
С	-0.066806	-1.557065	0.529310	С	0.176977	0.397531	1.896703	
С	-0.902198	-2.593426	-0.190340	С	-0.281983	1.671746	2.572883	
С	-1.660268	0.333068	0.250764	С	-0.183953	-1.616635	0.628574	
C	0.002150	0.001107	0 992027	C	1 075500	2 (1402)	0.024494	

С	-1.179947	-1.832186	3.352245	С	-1.336377	-1.783341	3.411284	
С	-1.794601	-1.022848	2.230585	С	-1.889708	-0.919275	2.297988	
Ν	-0.829684	-0.459389	1.223399	Ν	-0.895842	-0.452439	1.268485	
С	0.208608	0.405228	1.886929	С	-1.684325	0.331970	0.253203	
С	-0.314347	1.609610	2.638378	С	-0.887198	0.924031	-0.889770	
С	-0.066806	-1.557065	0.529310	С	0.176977	0.397531	1.896703	
С	-0.902198	-2.593426	-0.190340	С	-0.281983	1.671746	2.572883	
С	-1.660268	0.333068	0.250764	С	-0.183953	-1.616635	0.628574	
С	-0.903159	0.991106	-0.882927	С	-1.075588	-2.644936	-0.034484	
0	2.808039	0.536214	-1.044195	Br	3.540905	-3.086330	-0.104483	
Br	3.571555	-1.312451	1.556484	Br	3.424831	-4.675275	-2.022831	
Н	0.771996	-0.246868	2.544960	Br	3.643530	-1.389121	1.904990	
Н	0.893086	0.715140	1.104687	0	2.795186	0.714196	-0.654390	
Н	-2.342443	-0.177387	2.634216	Η	0.694327	-0.239821	2.605141	
Н	-2.496353	-1.630098	1.667984	Н	0.877950	0.632547	1.104069	
Н	0.606455	-1.066258	-0.164955	Η	-2.341865	-0.022356	2.707896	
Н	0.558703	-2.021061	1.284198	Н	-2.659749	-1.456685	1.754136	
Н	-2.405757	-0.350850	-0.141908	Η	0.504451	-1.191877	-0.094998	
Н	-2.180393	1.082443	0.838771	Η	0.413712	-2.075549	1.409938	
Η	-0.507429	-1.216136	3.944094	Η	-2.444680	-0.340971	-0.128302	
С	-2.302200	-2.355541	4.240029	Η	-2.190600	1.117194	0.805698	
Н	-0.609046	-2.668327	2.955919	Н	-0.567873	-1.251683	3.966869	

Н	-0.397557	0.244436	-1.491906	С	-2.481507	-2.145227	4.349324	
С	-1.893908	1.761086	-1.746908	Н	-0.894576	-2.691953	3.009566	
Н	-0.153270	1.677779	-0.495311	Н	-0.385556	0.141441	-1.455341	
Н	-1.010447	1.308001	3.417508	С	-1.844823	1.673750	-1.807791	
С	0.871959	2.331207	3.266422	Η	-0.130405	1.610888	-0.517655	
Н	-0.835165	2.287395	1.966107	Н	-0.973203	1.456136	3.384056	
С	0.042581	-3.572532	-0.877084	С	0.950771	2.377140	3.126431	
Н	-1.535604	-3.132356	0.510334	Н	-0.784597	2.326814	1.865491	
Н	-1.543981	-2.127042	-0.934014	С	-0.196813	-3.719290	-0.662387	
Н	1.859421	0.687176	-1.033307	Η	-1.742418	-3.100308	0.693939	
Н	2.996976	-0.017197	-0.257257	Η	-1.686548	-2.183237	-0.806270	
Н	-0.516864	-4.343542	-1.399735	Н	1.935149	0.456075	-0.998916	
Н	0.671152	-3.056317	-1.600554	Н	3.000757	0.061763	0.031671	
Н	0.691798	-4.056284	-0.149445	Н	-0.809125	-4.478470	-1.142085	
Н	0.542929	3.217809	3.801444	Η	0.467263	-3.291148	-1.409669	
Н	1.390187	1.681109	3.969017	Н	0.424201	-4.202781	0.088778	
Н	1.583910	2.638560	2.502140	Н	-2.125060	-2.766531	5.166223	
Н	-1.383159	2.242086	-2.576481	Н	-2.929567	-1.248409	4.773146	
Η	-2.651111	1.093413	-2.153785	Η	-3.257009	-2.693148	3.817328	
Н	-2.396740	2.530443	-1.163933	Н	-1.306626	2.115137	-2.642030	
Н	-1.897909	-2.930876	5.068278	Н	-2.601166	1.000772	-2.207160	
Н	-2.884840	-1.532350	4.649675	Н	-2.350616	2.471867	-1.267707	
Н	-2.973892	-2.998124	3.673933	Н	0.674486	3.308024	3.613749	
				Η	1.459756	1.748001	3.854481	
				Н	1.653392	2.605258	2.326426	

[TBA	$[BA]^+ \parallel [Br]^ [TBA]^+ \parallel [Br_3]^-$						
57 59							
Н	-0.124849	-5.802726	0.425086	Н	-2.986168	3.437724	2.137248
С	-0.008638	-5.035742	-0.337252	С	-1.901879	3.465921	2.052990
С	-0.054954	-3.642761	0.269601	С	-1.373336	2.206542	1.386213
С	0.108209	-2.560924	-0.793391	С	0.145358	2.234647	1.258173
С	0.042093	-1.206981	-0.121845	С	0.608524	0.964416	0.578959
Ν	0.246773	-0.013197	-1.017462	Ν	2.097401	0.831824	0.386417
С	0.077832	1.196999	-0.136660	С	2.307045	-0.494579	-0.293999
С	0.201779	2.538691	-0.823815	С	3.737230	-0.866130	-0.617099
С	0.052675	3.641773	0.218774	С	3.739314	-2.213396	-1.332044
С	0.170452	5.022254	-0.406921	С	5.148970	-2.654578	-1.691162
Н	0.062572	5.805235	0.340225	Н	5.143768	-3.615014	-2.201444
С	-0.745217	-0.006615	-2.147528	С	2.823665	0.889141	1.704123
С	-2.201719	0.023434	-1.738183	С	2.401373	-0.134461	2.735577
С	-3.072097	0.016478	-2.989875	С	3.254673	0.039868	3.987204
С	-4.551458	0.049946	-2.641027	С	2.868528	-0.957179	5.067992
Η	-5.168528	0.043248	-3.536650	Н	3.478046	-0.828540	5.959576
С	1.610643	-0.037307	-1.654302	С	2.646861	1.962490	-0.442321
С	2.785311	-0.046336	-0.699122	С	2.075843	2.093953	-1.837354
С	4.083006	-0.060939	-1.499470	С	2.718077	3.287676	-2.534757
С	5.297699	-0.073233	-0.585233	С	2.175031	3.461986	-3.944073
Η	6.222855	-0.082345	-1.156846	Н	2.636176	4.311002	-4.443343
Br	-1.451338	0.056932	3.141252	0	-0.136431	-0.554589	-3.061715
0	1.845674	-0.044643	3.071275	Br	-0.797181	-2.722371	-0.515091
Η	-0.888392	1.094593	0.344569	Br	-2.784718	-1.022718	-0.213133
Η	0.823583	1.105542	0.644593	Br	-4.659536	0.597964	0.062448
Н	-0.505695	0.858767	-2.756767	Н	1.858732	-1.240563	0.352179

Н -0.535891 -0.892800 -2.737882 Н 1.716338 -0.46	2110 -1.202234
Н 0.798244 -1.135415 0.651277 Н 3.877919 0.77	1.472522
Н -0.915032 -1.063447 0.367296 Н 2.675196 1.89	2924 2.088155
Н 1.632803 -0.918033 -2.287431 Н 0.164409 0.87	-0.407603
Н 1.657283 0.832824 -2.300881 Н 0.298616 0.09	1.145690
Н -2.423211 0.917518 -1.157738 Н 2.467852 2.86	0.126082
Н -2.451640 -0.843291 -1.128531 Н 3.720232 1.80	9737 -0.487592
Н 2.758828 -0.925690 -0.057069 Н 2.531200 -1.14	7171 2.357727
Н 2.775681 0.836410 -0.061340 Н 1.353784 -0.00	6448 3.002463
Н -0.570885 2.662661 -1.580787 Н 0.997490 2.24	-1.803881
Н 1.169957 2.642843 -1.311117 Н 2.272183 1.19	-2.424183
Н -0.684690 -2.669669 -1.531588 Н 4.336299 -0.94	3730 0.288545
Н 1.061536 -2.704911 -1.299362 Н 4.198338 -0.12	2665 -1.264919
Н 2.137044 -0.039322 2.155794 Н 0.584401 2.32	27419 2.250173
H 0.867029 -0.014287 3.038646 H 0.434817 3.11	0442 0.679891
H 0.734534 -3 533658 1 013420 H -0.030952 0 32	2035 -2.680636
H -1 002407 -3 494423 0 787736 H -0 358260 -1 12	9346 -2 313662
H -0.913530 3.539007 0.712722 H -1.819495 2.09	2723 0.399235
H 0.816735 3.51/103 0.985805 H 1.672261 1.32	8388 1 958068
H = 1.072201 = 1.52 H = 4.004802 = 0.038042 = 2.146382 = H = 4.305008 = 0.08	<i>1.95</i> 0000 <i>1.95</i> 0000 <i>1.95</i> 0000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.724314
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9/020 4.3010/2
$\Pi -2.610302 0.67/204 -3.007934 \Pi 2.331922 4.10$	4510 -1.949703 4510 2566969
H = -2.848209 = -0.8/49/1 = -5.5/5/59 H = 5.798110 = 5.14	-4318 -2.300808
H -0.805378 -5.162285 -1.068601 H 5.267561 -2.95	8981 -0.691/58
H 0.9409/2 -5.2025/6 -0.843290 H 3.130986 -2.13	9106 -2.233980
H 5.303775 0.807298 0.055322 H -1.486463 3.57	6296 3.053645
H 5.286327 -0.953887 0.055076 H -1.629559 4.34	9803 1.47/927
H 1.140022 5.1440/2 -0.88/404 H 1.824593 -0.83	1208 5.350680
Н -0.599314 5.167813 -1.163222 Н 2.999337 -1.97	8021 4.712535
H -4.822611 -0.814131 -2.036435 H 5.623818 -1.92	-2.346038
Н -4.791100 0.946418 -2.071409 Н 5.761062 -2.75	0475 -0.795690
Н 2.366863 2.57	-4.541419
Н 1.098680 3.62	-3.922325
$[TPA]^+ \parallel [Br]^ [TPA]^+ \parallel [Br_3]^-$	
69 71	
C 3.429571 -1.114473 -2.238758 C -3.323618 -3.64	-1.228777
C 2.371168 -0.874997 -1.168571 C -2.373458 -2.57	6984 -0.702466
C 1.097875 -0.395566 -1.832016 C -2.563039 -1.30	-1.505061
N -0.016189 -0.006213 -0.899127 N -1.750757 -0.12	0281 -1.059121
C -1.176258 0.389088 -1.771755 C -0.280897 -0.44	-1.005928
C -2.432274 0.822586 -1.046098 C 0.343928 -0.84	5839 -2.325189
C -3.520595 1.129942 -2.067772 C 1.782946 -1.28	9482 -2.092362
C -0.381726 -1.145073 0.014812 C -2.028304 0.97	3676 -2.053790
C -0.900226 -2.394328 -0.662276 C -1.346001 2.29	5783 -1.778487
C -1.178493 -3.449150 0.402585 C -1.701268 3.28	5465 -2.881226
C 0.400963 1.127617 0.000121 C -2.127911 0.30	0.335605
C 0.931348 2.364555 -0.690954 C -3.568090 0.71	0480 0.551668
C 1.199419 3.433255 0.363041 C -3.729070 1.15	2539 2.002348
O -2.299852 0.864108 2.763510 O 0.327181 2.78	1.418032
Br 0.707812 -0.209352 3.541611 Br 0.597798 -0.27	2.920197
H 0.505656 -1.360090 0.598987 Br 2.836744 -0.070	5105 1.562149
H 0.505656 -1.360090 0.598987 Br 2.836744 -0.07 H -1.119416 -0.755765 0.707910 Br 4.958770 0.15	51051.56214955750.263798

Н	1.294575	0.478635	-2,444285	Н	-1.468727	1.123833	0.586913
Н	-0.471679	1.375584	0.592938	Н	-3.599491	-0.989495	-1.470626
Н	1.136243	0.721916	0.686763	Н	-2.308274	-1.481192	-2.545256
Н	-0.817415	1.188593	-2.411784	Н	0.212038	0.431354	-0.601953
Н	-1.384413	-0.469519	-2.401632	Н	-0.176038	-1.241495	-0.274109
Н	2.196863	-1.803329	-0.627409	Н	-1.726060	0.585807	-3.020847
Н	2.743926	-0.138189	-0.459231	Н	-3.105756	1.102242	-2.071953
Н	-2.248376	1.715899	-0.451292	Н	-2.580842	-2.408388	0.352723
Н	-2.787052	0.038155	-0.378832	Н	-1.351340	-2.940690	-0.790497
Н	-0.171962	-2.786859	-1.369988	Н	-0.263496	2.174967	-1.747125
Н	-1.821097	-2.189551	-1.205777	Н	-1.668354	2.705027	-0.822554
Н	1.858515	2.147756	-1.218594	Н	-4.246745	-0.117267	0.355093
Н	0.215275	2.751351	-1.414102	Н	-3.842337	1.536017	-0.102787
Н	-2.388953	0.850920	1.807002	Н	-0.205437	-1.664780	-2.786085
Н	-1.392399	0.544066	2.949937	Н	0.338034	-0.006893	-3.019344
C	1.752494	4.714631	-0.240432	Н	0.381069	2.637129	0.469165
Ĥ	0.273251	3.653344	0.897081	Н	0.460709	1.912475	1.816424
Н	1 905174	3 045574	1 099887	C	2 482420	-1 655776	-3 392076
C	-1 727584	-4 737065	-0 190845	н	2.338756	-0 496260	-1 590812
н	-0.257738	-3 664324	0.947563	Н	1 791461	-2.148183	-1 418383
н	-1 890689	-3.051365	1 128045	C	-3 170829	-4 963223	-0.483631
C	-4 805863	1 603149	-1 407162	н	-4 352294	-3 293953	-1 136803
н	-3 164013	1 896304	-2 758141	Н	-3 135459	-3 807025	-2 291727
Н	-3 724291	0 236451	-2.660370	C	-1 058341	4 644915	-2.653610
C	4 732790	-1 634474	-1 652158	н	-1 379581	2 887722	-3 845127
н	3 050698	-1.830065	-2.970611	Н	-2.785584	3 400591	-2.929015
н	3 619185	-0.182321	-2 773674	C	-5 150955	1 586884	2.320153
C	2 014890	5 774574	0.818489	н	-3 443926	0 332344	2.520155
н	2.676255	4 488427	-0 773724	H	-3 042818	1 976700	2 206931
н	1 046124	5 095343	-0.978783	C II	3 900683	-2 151800	-3 154748
н	2 414118	6 686694	0.380260	н	1 902980	-2 422361	-3 908060
н	1 095400	6.027154	1 344637	Н	2 500052	-0 781769	-4 044186
н	2 731293	5 411643	1.54280	н	4 407180	-2 376623	-4 091002
C	-5 892232	1 910163	-2 426333	н	4 48 26 99	-1 402833	-7.619999
н	-5.153915	0.836580	-0.714072	н	3 893647	-3.057303	-2.549100
н	-4 593880	2 492956	-0.813569	C II	_4 121180	-6 028974	-1.007368
н	-6.806350	2.452550	-1.04/306	ч	-7.1/1601	-5.308225	-0.577028
H	-5 563906	2.230007	-3 114018	H H	-2.140091	-3.308223	0.578252
н	-6.120067	1.024046	-3.013315	и	-4.002820	-6.067303	-0.470037
C II	-0.129907	-5 785646	0.877070	и Ц	-5.155024	-5.706619	-0.470037
с н	-1.998378	-3.785040	-0.733602	н Ц	-3.038556	-6.210055	-0.900008
и Ц	-2.04/11/	-5.125884	-0.919711	C II	-5.302564	2 017320	3 771079
и П	2 205212	6 701043	-0.919711	с u	5 420540	2.017529	1 650106
и П	-2.393212	6 033406	1 412501	и П	5 822120	2.408004	2 105277
и П	2 720187	-0.033490 5 414705	1.412301	и П	6 3 2 1 4 2 7	2 220025	2.105277
п	-2.720107	-3.414/93	1.003772	п u	-0.321427	2.329033	3.990749
с и	5.107005	-1.0034/0	-2.723770	П U	-5.040029	1.170332	4.442470
п U	J.102100 A 527727	-0.920083	-0.913183	П С	-4.038303	2.03100/	3.773208 2.777152
п u	4.33/13/ 6 71/020	-2.3030/1	-1.119903	U U	-1.419/00	5.030063	-3./4/132
п U	0./14838 5/26/55	-2.237/80	-2.290913	П U	-1.3/322/	J.UJUU0U 1 500022	-1.003004
п U	6 000970	-2.300303	-3.43000/	п u	0.024300	4.522055	-2.000+70
п	0.0098/9	-0.933163	-3.248043	П U	-0.930400	0.004830 5 271712	-3.3/0209
					-1.090/80	J.2/1/13 5 780200	-4./20000
				п	-2.47/3/1	3.789200	-3./0/3/1