**Supporting Information** 

# A Stereoselective Formal Synthesis of Leucascandrolide A

Kiyoun Lee, Hyoungsu Kim, and Jiyong Hong\*

Department of Chemistry, Duke University, Durham, North Carolina 27708, United States

\* To whom correspondence should be addressed.

Tel: 919-660-1545, Fax: 919-660-1605, E-mail: jiyong.hong@duke.edu

| Contents                                         | Page Number |
|--------------------------------------------------|-------------|
| Experimental Section                             | S2          |
| Copies of <sup>1</sup> H and <sup>13</sup> C NMR | S25         |
| Copies of HPLC Analysis of 19                    | S80         |

#### **Preparation of Enoates**



[Oxidation] To a cooled (0 °C) solution of known alcohol 9A<sup>1</sup> (1.750 g, 9.83 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (110 mL, 0.089 M) were added DMSO (2.79 mL, 39.31 mmol), *i*-Pr<sub>2</sub>NEt (3.42 mL, 19.66 mmol), and SO<sub>3</sub> pyridine (3.128 g, 19.66 mmol). After stirred at the same temperature for 2.5 h, the reaction mixture was guenched with saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and saturated aqueous NaHCO<sub>3</sub> and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in* vacuo. The crude aldehyde 9B was employed in next step without further purification. [Horner-Wadsworth-Emmons Olefination] To a cooled (-78 °C) solution of trimethyl phosphonoacetate (2.83 mL, 19.66 mmol) and 18-Crown-6 (5.197 g, 19.66 mmol) in THF (400 mL, 0.024 M) was added dropwise KHMDS (31.45 mL, 0.5 M in toluene, 15.73 mmol) and the resulting mixture was stirred for 10 min before the above aldehyde **9B** was added. After stirred at -78 °C for 40 min, the reaction mixture was guenched with saturated aqueous NH<sub>4</sub>Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 20/1) to afford enoates (Z)-9C (1.660g, 73%) and (E)-9C (0.265 g, 12%) as colorless oils. [For (Z)-9C]  $[\alpha]^{25}_{D}$ = -35.6 (c 1.21, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  6.21–6.28 (m, 1H), 5.83 (dd, J = 8.5, 1.0Hz, 1H), 3.99–4.06 (m, 2H), 3.72 (s, 3H), 2.80–2.92 (m, 4H), 2.04–2.12 (m, 1H), 1.82–1.92 (m, 1H), 1.23 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.7, 150.6, 118.9, 52.4, 50.6, 36.6, 29.4, 25.4, 17.4; IR (neat) 2361, 1715, 1641, 1434, 1197, 871 cm<sup>-1</sup>; HRMS (ESI) *m/z* 233.0671 [(M+H)<sup>+</sup>, C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>S<sub>2</sub> requires 233.0670]. [For (*E*)-9C] [ $\alpha$ ]<sup>25</sup><sub>D</sub>= +36.8 (*c* 0.63, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  6.96 (ddd, J = 15.6, 8.0, 1.0 Hz, 1H), 5.88 (dd, J = 15.6, 1.2 Hz, 1H), 4.11 (d, J = 6.0 Hz, 1H), 3.73 (s, 3H), 2.78–2.92 (m, 4H), 2.73 (dddd, J = 13.2, 6.4, 6.4, 6.4 Hz, 1H), 2.04–2.16 (m, 1H), 1.78–1.90 (m, 1H), 1.26 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.4, 149.5, 121.4, 52.8, 51.4, 41.3, 30.48, 30.40, 25.6, 16.9; IR (neat) 2360, 1715, 1433, 1270, 1172, 978 cm<sup>-1</sup>; HRMS (ESI) *m/z* 233.0664 [(M+H)<sup>+</sup>, C<sub>10</sub>H<sub>16</sub>O<sub>2</sub>S<sub>2</sub> requires 233.0664].

# **Preparation of Allyl Alcohol 9**



To a cooled (-78 °C) solution of (*Z*)-**9**C (420 mg, 1.81 mmol) in toluene (20 mL, 0.09 M) was added DIBAL-H (4.52 mL, 1.0 M in toluene, 4.52 mmol). After stirred at the same temperature for 1 h, the reaction mixture was quenched with MeOH followed by aqueous Rochelle's salt solution and diluted with Et<sub>2</sub>O. The resulting mixture was stirred for 5 h at 25 °C. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1 to 1/2) to afford the (*Z*)-allyl alcohol **9** (341 mg, 92%) as a colorless oil:  $[\alpha]^{25}_{D}$ = -10.4 (*c* 1.23, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.68 (ddd, *J* = 11.0, 7.0, 7.0 Hz, 1H), 5.46 (dd, *J* = 11.0, 11.0 Hz, 1H), 4.22 (dd, *J* = 12.5, 7.0 Hz, 1H), 3.99 (d, *J* = 6.5 Hz, 1H), 2.77–2.90 (m, 5H), 2.04–2.11

(m, 1H), 1.76–1.87 (m, 1H), 1.73 (br s, 1H), 1.15 (d, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  133.2, 129.5, 58.0, 53.6, 36.7, 30.29, 30.16, 25.6, 18.5; IR (neat) 3349, 1421, 1275, 985, 907, 736 cm<sup>-1</sup>; HRMS (ESI) *m/z* 205.0717 [(M+H)<sup>+</sup>, C<sub>9</sub>H<sub>16</sub>OS<sub>2</sub> requires 205.0715].

# **Preparation of Diol 11**



To a cooled (-78 °C) solution of dithiane **9** (1.126 g, 5.510 mmol) in HMPA/THF (1:10, 110 mL) was added dropwise *t*-BuLi (9.73 mL, 1.7 M in pentane, 16.530 mmol). The resulting mixture was stirred for 10 min before the known epoxide **10**<sup>2</sup> (1.357 g, 8.265 mmol) was added. After stirred at -78 °C for 1 h, the reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl, and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1 to 1/1) to afford diol **11** (1.841 g, 81%) as a colorless oil:  $[\alpha]^{25}{}_{D}$ = +17.0 (*c* 0.73, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 8.5 Hz, 2 H), 5.70–5.80 (m, 2H), 4.45 (s, 2H), 4.29 (dd, *J* = 13.0, 8.5 Hz, 1H), 4.19–4.23 (m, 1H), 4.00–4.03 (m, 1H), 3.80 (s, 3H), 3.71 (br s, 1H), 3.59–3.68 (m, 2H), 3.25 (dddd, *J* = 9.5, 7.0, 7.0, 7.0 Hz, 1H), 2.97 (ddd, *J* = 14.0, 11.0, 3.0 Hz, 1H), 2.87 (ddd, *J* = 14.0, 10.5, 3.0 Hz, 1H), 2.70–2.76 (m, 2H), 2.43 (br s, 1H), 2.31 (dd, *J* = 15.5, 8.5 Hz, 1H), 2.19 (dd, *J* = 15.0, 2.5 Hz, 1H), 1.98–2.05 (m, 1H), 1.80–1.91 (m, 2H), 1.71–1.79 (m, 1H), 1.18 (d, *J* = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 132.9, 129.9, 129.16, 129.02, 113.6, 72.6, 67.6, 67.3, 57.8, 56.6, 55.1, 42.4,

38.8, 37.6, 25.9, 24.7, 16.6; IR (neat) 3398, 1611, 1512, 1440, 1301, 1220, 1088, 1032, 820 cm<sup>-1</sup>; HRMS (ESI) *m/z* 411.1654 [(M–H)<sup>+</sup>, C<sub>21</sub>H<sub>32</sub>O<sub>4</sub>S<sub>2</sub> requires 411.1658].

Preparation of  $\alpha$ ,  $\beta$ -Unsaturated Aldehyde 8



To a solution of diol 11 (1.460 g, 3.54 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50.0 mL, 0.071 M) was added MnO<sub>2</sub> (1.539 g, 17.69 mmol), and the resulting mixture was stirred for 1 h at 0 °C. An addition of MnO<sub>2</sub> (1.539 g, 17.69 mmol) was repeated two times every 30 min. When diol 11 was completely consumed, the reaction mixture was filtered through a pad of celite and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford  $\alpha,\beta$ -unsaturated aldehyde 8 (1.014 g, 70%) along with a 1:1 mixture (0.169 g, 12%) of tetrahydropyrans 12 as colorless oils: [For Aldehyde 8]  $[\alpha]^{25}_{D}$  = +24.3 (*c* 2.17, CHCl<sub>3</sub>); <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{CDCl}_3) \delta 10.07 \text{ (d}, J = 7.5 \text{ Hz}, 1\text{H}), 7.25 \text{ (d}, J = 8.0 \text{ Hz}, 2\text{H}), 6.84-6.90 \text{ (m}, 3\text{H}), 6.01$ (ddd, J = 11.5, 7.5, 1.0 Hz, 1H), 4.45 (s, 2H), 4.21-4.26 (m, 1H), 4.00 (dddd, J = 11.5, 7.0, 7.0, 1.0 Hz)7.0 Hz, 1H), 3.80 (s, 3H), 3.60–3.68 (m, 2H), 3.56 (d, J = 2.0 Hz, 1H), 2.96 (ddd, J = 14.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0,3.0 Hz, 1H), 2.87 (ddd, J = 14.0, 9.5, 3.0 Hz, 1H), 2.77 (dddd, J = 21.5, 14.0, 6.5, 3.0 Hz, 2H), 2.30 (dd, J = 15.5, 9.0 Hz, 1H), 2.11 (dd, J = 15.5, 1.5 Hz, 1H), 1.97–2.05 (m, 1H), 1.81–1.94 (m, 2H), 1.70–1.77 (m, 1H), 1.25 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  190.7, 159.0, 152.0. 130.0. 129.1. 113.6, 72.6, 67.3, 66.9, 55.4, 55.0, 42.2, 38.8, 37.5, 26.1, 25.5, 24.4, 16.3; IR (neat) 3433, 1671, 1512, 1245, 1086, 1031, 819 cm<sup>-1</sup>; HRMS (ESI) m/z 411.1653 [(M+H)<sup>+</sup>, C<sub>21</sub>H<sub>30</sub>O<sub>4</sub>S<sub>2</sub> requires 411.1658].

### **Representative Procedure for the Secondary Amine-Catalyzed Oxa-Michael Reaction**



To a cooled (-40 °C) solution of aldehyde 8 (29.0 mg, 0.071 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (3.0 mL, 0.024 M) was added dropwise a mixture of piperidine BzOH (0.26 mL, 0.055 M in CH<sub>2</sub>Cl<sub>2</sub>). After stirred at -40 °C for 24 h, the reaction mixture was diluted with hexanes (30.0 mL), filtered through a short pad of silica gel (hexanes/EtOAc, 3/1), and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford a 10:1 mixture of 2,3-trans-2,6-trans-tetrahydropyran 12a and 2,3-cis-2,6-cis-tetrahydropyran 12b in 96% yield as colorless oils: [For 2,3-*trans*-2,6-*trans*-Tetrahydropyran 12a]:  $[\alpha]^{25}_{D}$ = +11.6 (c 0.67, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.72 (dd, J = 3.0, 1.5 Hz, 1H), 7.26 (d, J = 8.5 Hz, 2H), 6.87 (d, J = 8.5 Hz, 2H), 4.41 (AB,  $\Delta v = 15.0$  Hz,  $J_{AB} = 11.5$  Hz, 2H), 4.25 (ddd, J = 10.5, 7.0, 4.0 Hz, 1H), 4.11 (dddd, J = 9.5, 4.5, 4.5, 4.5 Hz, 1H), 3.80 (s, 3H), 3.45–3.53 (m, 2H), 3.01 (ddd, J = 14.5, 11.0, 3.0 Hz, 1H), 2.88 (ddd, J = 14.5, 11.0, 3.5 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd, J = 13.0, 9.0, 10.0 Hz, 1H), 2.81 (ddd3.0 Hz, 1H), 2.68–2.76 (m, 3H), 2.41 (dd, J = 14.5, 6.0 Hz, 1H), 2.21–2.29 (m, 2H), 1.92–2.04 (m, 2H), 1.80–1.91 (m, 2H), 1.23 (d, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  201.5, 159.1, 130.5, 129.4, 113.7, 72.8, 69.7, 67.8, 66.8, 55.3, 52.4, 47.6, 42.6, 39.5, 33.5, 26.2, 25.7, 25.2, 14.6; IR (neat) 1721, 1611, 1511, 1244, 1100, 1031, 818 cm<sup>-1</sup>; HRMS (FAB) *m/z* 411.1658  $[(M+H)^{+}, C_{21}H_{30}O_4S_2 \text{ requires } 411.1658].$  [For 2,3-*cis*-2,6-*cis*-Tetrahydropyran 12b]:  $[\alpha]^{25}_{D}=$ -15.7 (c 0.76, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.69 (dd, J = 2.0, 2.0 Hz, 1H), 7.25 (d, J =8.5 Hz, 2H), 6.88 (d, J = 9.0 Hz, 2H), 4.78 (ddd, J = 9.5, 3.5, 2.0 Hz, 1H), 4.40 (AB,  $\Delta v = 20.0$ 

Hz,  $J_{AB} = 12.0$  Hz, 2H), 3.97–4.04 (m, 1H), 3.80 (s, 3H), 3.48–3.52 (m, 2H), 2.80–2.90 (m, 2H), 2.70–2.79 (m, 2H), 2.60 (ddd, J = 16.5, 9.5, 2.5 Hz, 1H), 2.28 (ddd, J = 16.5, 4.0, 2.0 Hz, 1H), 2.07 (ddd, J = 7.0, 7.0, 7.0 Hz, 1H), 1.91–2.05 (m, 3H), 1.65–1.77 (m, 3H), 1.10 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  201.2, 159.1, 130.4, 129.3, 113.7, 72.7, 70.3, 70.1, 65.9, 55.2, 53.5, 47.4, 38.43, 38.22, 35.8, 26.0, 25.38, 25.21, 9.0; IR (neat) 1724, 1612, 1512, 1246, 1089, 1032, 819 cm<sup>-1</sup>; HRMS (ESI) *m/z* 433.1479 [(M+Na)<sup>+</sup>, C<sub>21</sub>H<sub>30</sub>O<sub>4</sub>S<sub>2</sub> requires 433.1478].



To a solution of aldehyde **8** (32.3 mg, 0.078 mmol) in  $CH_2Cl_2$  (3.0 mL, 0.026 M) was added dropwise a mixture of pyrrolidine BzOH (0.28 mL, 0.054 M in  $CH_2Cl_2$ ) at 25 °C. After stirred at 25 °C for 1 h, the reaction mixture was diluted with hexanes (30.0 mL), filtered through a short pad of silica gel (hexanes/EtOAc, 3/1), and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford 2,3-*cis*-2,6-*cis*tetrahydropyran **12b** (31.6 mg, 98%) as a colorless oil.

Organocatalytic Oxa-Michael Reaction for the Synthesis of 2,3-*trans*-2,6-*trans*-Tetrahydropyran 12a



To a cooled (-40 °C) solution of aldehyde **8** (965 mg, 2.35 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (50.0 mL, 0.047 M) was added dropwise a mixture of (*S*)-(-)- $\alpha$ , $\alpha$ -diphenyl-2-pyrrolidinemethanol trimethylsilyl ether (*S*)-**13**(153 mg, 0.47 mmol) and BzOH (57 mg, 0.47 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (2 mL). After stirred at -40 °C for 13 h, the reaction mixture was diluted with hexanes (150.0 mL), and filtered through a short pad of silica gel (hexanes/EtOAc, 3/1) and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford 2,3-*trans*-2,6-*trans*-tetrahydropyran **12a** (946 mg, 98%) as a colorless oil.

#### **Preparation of Alcohol 12A**



To a stirred solution of aldehyde **12a** (851.5 mg, 2.07 mmol) in EtOH (25.0 mL) was added freshly prepared Raney 2400 Ni (~13 g) in EtOH (5.0 mL) at 25 °C. After stirred at 40 °C for 12 h, the reaction mixture was filtered through a pad of celite and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 3/1) to afford alcohol **12A** (354.3 mg, 55%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +47.5 (*c* 0.43, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500

MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (d, J = 8.5 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 4.44 (AB,  $\Delta v = 17.5$  Hz,  $J_{AB} = 11.5$  Hz, 2H), 4.03–4.08 (m, 1H), 3.80 (s, 3H), 3.67–3.79 (m, 2H), 3.53 (dd, J = 7.0, 5.5 Hz, 2H), 3.44 (ddd, J = 9.0, 9.0, 2.5 Hz, 1H), 3.01 (dd, J = 8.0, 4.0 Hz, 1H), 2.16 (dddd, J = 14.0, 10.0, 5.5, 5.5 Hz, 1H), 1.76–1.84 (m, 2H), 1.66–1.72 (m, 1H), 1.56–1.66 (m, 2H), 1.40–1.50 (m, 2H), 1.29–1.37 (m, 1H), 0.86 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 130.3, 129.3, 113.7, 76.0, 72.7, 69.4, 67.0, 61.3, 55.2, 34.79, 34.64, 30.8, 28.4, 26.9, 18.0; IR (neat) 3439, 1513, 1457, 1247, 1090, 1035, 820 cm<sup>-1</sup>; HRMS (FAB) *m/z* 309.2059 [(M+H)<sup>+</sup>, C<sub>18</sub>H<sub>28</sub>O<sub>4</sub> requires 309.2060].

#### **Preparation of Homoallyl Alcohol 14**



**[Oxidation]** To a cooled (0 °C) solution of alcohol **12A** (480.0 mg, 1.56 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (25.0 mL, 0.062 M) were added DMSO (0.44 mL, 6.23 mmol), *i*-Pr<sub>2</sub>NEt (0.54 mL, 3.11 mmol), and SO<sub>3</sub>·pyridine (495.3 mg, 3.11 mmol). After stirred at 0 °C for 2 h, the reaction mixture was quenched with saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and saturated aqueous NaHCO<sub>3</sub> and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The crude aldehyde **12B** was employed in next step without further purification. **[Brown Allylation]** To a cooled (-78 °C) solution of (-)-Ipc<sub>2</sub>B(OMe) (984.5 mg, 3.11 mmol) in Et<sub>2</sub>O (40.0 mL, 0.08 M) was added dropwise allylmagnesium bromide (3.11 ml, 3.11 mmol, 1.0 M in Et<sub>2</sub>O). The reaction mixture was recooled

to -78 °C, and a solution of **12B** in Et<sub>2</sub>O (2 mL) was added dropwise. After stirred at -78 °C for 1 h, the resulting mixture was quenched with 1 N NaOH/30% H<sub>2</sub>O<sub>2</sub> (1:1, total 20 mL). The resulting mixture was stirred for 30 min at 25 °C, and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 5/1 to 3/1) to afford homoallyl alcohol **14** (418.5 mg, 77%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +45.5 (*c* 1.37, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 5.82 (dddd, *J* = 16.8, 10.4, 7.2, 7.2 Hz, 1H), 5.05–5.12 (m, 2H), 4.44(AB,  $\Delta v$  = 14.8 Hz,  $J_{AB}$  = 11.6 Hz, 2H), 4.00–4.06 (m, 1H), 3.86–3.92 (m, 1H), 3.80 (s, 3H), 3.50–3.56 (m, 3H), 3.07 (d, *J* = 3.6 Hz, 1H), 2.12–2.29 (m, 3H), 1.74–1.84 (m, 1H), 1.55–1.70 (m, 4H), 1.41–1.51 (m, 2H), 1.28–1.39 (m, 1H), 0.85 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 135.1, 130.3, 129.2, 117.0, 113.6, 72.71, 72.63, 69.8, 67.23, 67.17, 55.1, 42.0, 38.3, 34.2, 30.7, 28.6, 27.0, 18.0; IR (neat) 3438, 1612, 1512, 1363, 1245, 1033, 819 cm<sup>-1</sup>; HRMS (FAB) *m*/z 349.2372 [(M+H)<sup>+</sup>, C<sub>21</sub>H<sub>32</sub>O<sub>4</sub> requires 349.2373].

## Preparation of tert-Butyl Carbonate 14A



To a cooled (-78 °C) solution of alcohol **14** (103.1 mg, 0.30 mmol) in Et<sub>2</sub>O (6.0 mL, 0.05 M) was added dropwise *n*-BuLi (0.14 mL, 0.35 mmol, 2.5 M in hexanes). After stirred for 30 min at the same temperature, the cold reaction mixture was quickly transferred to a solution of Boc-ON

(145.3 mg, 0.59 mmol) in THF (3.0 mL) at 0 °C via cannular. After stirred at 25 °C for 5 h, the reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl, and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 8/1) to afford carbonate **14A** (95.2 mg, 72%) as a colorless oil:  $[\alpha]^{25}{}_{D}$ = +67.9 (*c* 2.45, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.27 (d, *J* = 9.0 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 5.77 (dddd, *J* = 17.0, 10.0, 7.5, 7.5 Hz, 1H), 5.03–5.11 (m, 2H), 4.91–4.97 (m, 1H), 4.45 (AB,  $\Delta \nu$  = 31.0 Hz, *J*<sub>AB</sub> = 11.0 Hz, 2H), 3.96 (dddd, *J* = 9.0, 4.5, 4.5, Hz, 1H), 3.79 (s, 3H), 3.48–3.57 (m, 2H), 3.36 (ddd, *J* = 10.0, 7.0, 2.0 Hz, 1H), 2.37 (dd, *J* = 9.0, 9.0 Hz, 2H), 2.00 (dddd, *J* = 16.5, 11.5, 6.5, 6.5 Hz, 1H), 1.79 (ddd, *J* = 18.5, 7.5, 3.0, 1H), 1.58–1.74 (m, 4H), 1.48 (s, 9H), 1.42–1.48 (m, 1H), 1.32–1.37 (m, 2H), 0.91 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 153.1, 133.6, 130.8, 129.3, 117.8, 113.7, 81.5, 73.1, 72.7, 71.8, 68.5, 66.9, 55.2, 39.7, 36.9, 34.3, 32.0, 28.2, 27.8, 26.8, 18.2; IR (neat) 1734, 1514, 1367, 1276, 1169, 1094 cm<sup>-1</sup>; HRMS (FAB) *m/z* 466.3165 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>26</sub>H<sub>40</sub>O<sub>6</sub> requires 466.3163].

# **Preparation of Cyclic Carbonate 15**



To a cooled (-78 °C) solution of *tert*-butyl carbonate **14A** (184.3 mg, 0.41 mmol) in toluene (10.0 mL, 0.041 M) was added dropwise IBr (0.62 mL, 0.62 mmol, 1.0 M in CH<sub>2</sub>Cl<sub>2</sub>) via syringe. After stirred for 30 min at the same temperature, the reaction mixture was quenched with

saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 1/1) to afford cyclic carbonate **15** (176.8 mg, 83%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +68.8 (*c* 1.77, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.28 (d, *J* = 8.5 Hz, 2H), 6.90 (d, *J* = 8.5 Hz, 2H), 4.51–4.58 (m, 1H), 4.46 (AB, Δυ = 55.0 Hz, *J*<sub>AB</sub> = 11.5 Hz, 2H), 4.19–4.25 (m, 1H), 4.06–4.12 (m, 1H), 3.83 (s, 3H), 3.46–3.58 (m, 3H), 3.34 (dd, *J* = 10.5, 4.5 Hz, 1H), 3.23 (dd, *J* = 10.5, 7.0 Hz, 1H), 2.27 (ddd, *J* = 14.5, 3.0, 3.0 Hz, 1H), 2.15 (dddd, *J* = 15.0, 10.0, 5.0, 5.0 Hz, 1H), 1.92 (ddd, *J* = 14.0, 9.5, 2.0 Hz, 1H), 1.77–1.85 (m, 1H), 1.59–1.68 (m, 4H), 1.49–1.54 (m, 1H), 1.29–1.43 (m, 2H), 0.90 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 159.0, 148.3, 130.7, 129.2, 113.7, 76.9, 75.0, 72.5, 70.1, 68.9, 66.4, 55.3, 39.1, 35.2, 34.0, 30.8, 28.5, 27.0, 17.9, 5.5; IR (neat) 3301, 1742, 1611, 1512, 1243, 1175, 1091, 1031, 818, 762 cm<sup>-1</sup>; HRMS (FAB) *m/z* 536.1510 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>22</sub>H<sub>31</sub>IO<sub>6</sub> requires 536.1504].

**Preparation of Epoxide 16** 



To a stirred solution of iodo carbonate **15** (228.1 mg, 0.44 mmol) in MeOH (10.0 mL, 0.044 M) was added potassium carbonate (182 mg, 1.32 mmol) at 25 °C. After stirred at 25 °C for 10 h, the reaction mixture was quenched with saturated aqueous  $Na_2S_2O_3$  and aqueous  $NaHCO_3$  and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were washed with brine, dried over anhydrous  $Na_2SO_4$ , and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel,

hexanes/EtOAc, 3/1) to afford epoxide **16** (114.2 mg, 71%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +42.9 (*c* 0.58, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 8.5 Hz, 2H), 4.41 (AB,  $\Delta v$  = 14.0 Hz, *J*<sub>AB</sub> = 11.5 Hz, 2H), 4.01–4.10 (m, 2H), 3.79 (s, 3H), 3.50–3.55 (m, 3H), 3.40 (d, *J* = 3.5 Hz, 1H), 3.04–3.09 (m, 1H), 2.75 (dd, *J* = 4.5, 4.0 Hz, 1H), 2.48 (dd, *J* = 5.0, 2.0 Hz, 1H), 2.18 (dddd, *J* = 18.5, 12.0, 7.5, 7.5 Hz, 1H), 1.76–1.84 (m, 1H), 1.68–1.75 (m, 2H), 1.54–1.67 (m, 4H), 1.43–1.52 (m, 2H), 1.29–1.38 (m, 1H), 0.85 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 130.3, 129.3, 113.7, 72.71, 72.62, 70.3, 67.4, 66.1, 55.2, 50.1, 46.7, 39.9, 39.1, 34.4, 30.6, 28.8, 27.2, 18.0; IR (neat) 3432, 1612, 1512, 1246, 1089, 1033, 820 cm<sup>-1</sup>; HRMS (FAB) *m/z* 365.2322 [(M+H)<sup>+</sup>, C<sub>21</sub>H<sub>32</sub>O<sub>5</sub> requires 365.2323].

**Preparation of Methyl Ether 7** 



To a stirred solution of alcohol **16** (142.5 mg, 0.39 mmol) in DMF (5.0 mL, 0.078 M) were added NaH (28 mg, 1.17 mmol) and MeI (0.05 mL, 0.78 mmol) at 0 °C. After stirred for 2 h at 25 °C, reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl and H<sub>2</sub>O, and diluted with CH<sub>2</sub>Cl<sub>2</sub>. The layers were separated, and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford methyl ether 7 (137.4 mg, 93%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +63.5 (*c* 1.53, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.26 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.4 Hz, 2H), 4.45 (s, 2H), 3.96 (dddd, *J* = 9.2, 4.8, 4.8, 4.8 Hz, 1H), 3.80 (s, 3H), 3.47–3.62 (m, 4H), 3.31 (s, 3H), 2.95 (m, 1H), 2.76 (dd, *J* = 5.2, 5.2 Hz, 1H), 2.46 (dd, *J* = 5.2, 2.8 Hz, 1H), 2.06

(dddd, J = 14.4, 8.4, 6.0, 6.0 Hz, 1H), 1.57–1.80 (m, 7H), 1.45–1.52 (m, 1H), 1.30–1.41 (m, 2H), 0.93 (d, J = 6.4 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.0, 130.5, 129.1, 113.7, 74.9, 72.7, 71.9, 68.3, 66.9, 56.7, 55.2, 49.0, 46.7, 38.3, 36.3, 34.3, 32.0, 28.2, 26.7, 18.3; IR (neat) 1612, 1512, 1365, 1245, 1087, 1034, 820 cm<sup>-1</sup>; HRMS (FAB) *m/z* 379.2477 [(M+H)<sup>+</sup>, C<sub>21</sub>H<sub>34</sub>O<sub>5</sub> requires 379.2479].

#### **Preparation of Diol 5**



To a cooled (-78 °C) solution of dithiane  $6^3$  (113.6 mg, 0.60 mmol) in HMPA/THF (1:10, total 11.0 mL) was added dropwise *t*-BuLi (1.05 mL, 1.7 M in pentane, 1.79 mmol) and the resulting mixture was stirred for 10 min before epoxide 7 (147.0 mg, 0.39 mmol) was added. After stirred at -78 °C for 1 h, the reaction mixture was quenched with saturated aqueous NH<sub>4</sub>Cl and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 1/1) to afford diol **5** (202.9 mg, 92%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +18.8 (*c* 3.20, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 5.80 (ddd, *J* = 11.5, 7.0, 7.0 Hz, 1H), 5.70 (ddd, *J* = 11.0, 7.0, 7.0 Hz, 1H), 4.43 (AB,  $\Delta \nu$  = 16.0 Hz, *J*<sub>AB</sub> = 12.0 Hz, 2H), 4.16–4.21 (m, 1H), 4.08–4.12 (m, 2H), 3.94 (dddd, *J* = 9.0, 4.5, 4.5, 4.5 Hz, 1H), 3.87 (s, 1H), 3.78 (s, 3H), 3.47–3.57 (m, 3H), 3.41–3.44 (m, 1H), 3.29 (s, 3H), 2.83–2.92 (m, 2H), 2.72–2.83 (m, 5H), 2.17 (dd, *J* = 15.0, 8.5 Hz, 1H), 1.88–2.04 (m, 4H), 1.78 (ddd, *J* =

14.0, 9.0, 6.0 Hz, 1H), 1.58–1.73 (m, 5H), 1.44–1.54 (m, 2H), 1.30–1.41 (m, 2H), 0.92 (d, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 131.8, 130.4, 129.2, 126.3, 113.7, 76.6, 72.9, 72.5, 68.5, 66.85, 66.81, 58.1, 56.0, 55.2, 51.8, 45.0, 42.1, 37.7, 36.7, 34.3, 31.9, 28.1, 26.6, 26.2, 26.1, 24.9, 18.3; IR (neat) 3401, 1611, 1512, 1245, 1086, 1031, 818, 733 cm<sup>-1</sup>; HRMS (FAB) *m/z* 569.2961 [(M+H)<sup>+</sup>, C<sub>30</sub>H<sub>48</sub>O<sub>6</sub>S<sub>2</sub> requires 569.2965].

Preparation of 2,6-cis-Tetrahydropyran 4



To a stirred solution of diol **5** (73.0 mg, 0.19 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.5 mL, 0.023 M) was added MnO<sub>2</sub> (55.8 mg, 0.64 mmol), and the resulting mixture was stirred for 1 h at 25 °C. An addition of MnO<sub>2</sub> (55.8 mg, 0.64 mmol) was repeated three times every 1 h. After stirred for additional 8 h, the reaction mixture was filtered through a pad of celite and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford bistetrahydropyran **4** (62.5 mg, 86%) as a colorless oil:  $[a]^{25}_{D}$ = +28.8 (*c* 1.28, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.75 (dd, *J* = 3.0, 2.0 Hz, 1H), 7.26 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 4.41 (AB,  $\Delta v$  = 16.5 Hz, *J*<sub>AB</sub> = 11.5 Hz, 2H), 4.31 (dddd, *J* = 10.5, 8.5, 4.5, 2.0 Hz, 1H), 3.89–3.97 (m, 2H), 3.79 (s, 3H), 3.48–3.55 (m, 3H), 3.43–3.47 (m, 1H), 3.27 (s, 3H), 2.82–2.95 (m, 2H), 2.71–2.82 (m, 2H), 2.54 (ddd, *J* = 16.5, 11.0, 3.0 Hz, 1H), 1.93–2.09 (m, 3H), 1.45–1.78 (m, 10H), 1.25–1.39 (m, 2H), 0.91 (d, *J* = 6.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  200.8, 159.0, 130.6, 129.1, 113.6, 74.1, 72.6, 72.0, 69.5, 68.3, 68.2, 67.1, 56.6, 55.1, 48.9, 47.6, 43.3, 42.5,

39.3, 38.4, 34.2, 32.0, 28.1, 26.7, 25.75, 25.67, 25.57, 18.2; IR (neat) 2361, 2337, 1700, 1512, 1436, 1245, 1092, 1033, 819 cm<sup>-1</sup>; HRMS (FAB) *m/z* 567.2808 [(M+H)<sup>+</sup>, C<sub>30</sub>H<sub>46</sub>O<sub>6</sub>S<sub>2</sub> requires 567.2809].

## **Preparation of Dimethyl Acetal 17**



To a stirred solution of aldehyde **4** (72.5 mg, 0.13 mmol) in MeOH (4.0 mL, 0.032 M) were added trimethyl orthoacetate (0.05 mL, 0.38 mmol) and (1*S*)-(+)-10-camphorsulfonic acid (3.0 mg, 0.013 mmol) at 25 °C. After stirred for 30 min at 25 °C, reaction mixture was quenched with saturated aqueous NaHCO<sub>3</sub>, and diluted with EtOAc and H<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford acetal **17** (77.8 mg, 99%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +23.6 (*c* 1.66, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.25 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.5 Hz, 2H), 4.59 (dd, *J* = 7.5 Hz, 1H), 4.43 (AB,  $\Delta \nu$  = 13.5 Hz, *J*<sub>AB</sub> = 11.5 Hz, 2H), 3.94 (dddd, *J* = 9.0, 4.5, 4.5, 4.5 Hz, 1H), 3.81–3.87 (m, 2H), 3.79 (s, 3H), 3.20 (s, 3H), 3.28 (s, 3H), 2.83–2.93 (m, 2H), 2.70–2.80 (m, 2H), 2.24 (d, *J* = 12.5 Hz, 1H), 2.21 (d, *J* = 12.5 Hz, 1H), 2.02–2.11 (m, 1H), 1.94–2.01 (m, 2H), 1.80 (ddd, *J* = 14.5, 8.0, 4.5 Hz, 1H), 1.51–1.77 (m, 11H), 1.44–1.50 (m, 2H), 1.31–1.38 (m, 2H), 0.90 (d, *J* = 6.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  159.1, 130.6, 129.2, 113.7, 102.1, 74.0, 72.7, 71.7, 69.31, 69.29, 68.6, 67.2, 56.6, 55.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2, 54.2,

52.8, 47.9, 43.7, 43.2, 39.5, 39.4, 38.5, 34.7, 31.7, 28.4, 27.0, 25.87, 25.78, 25.76, 18.3; IR (neat) 1724, 1512, 1457, 1247, 1093, 1038, 820 cm<sup>-1</sup>; HRMS (FAB) m/z 630.3496 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>32</sub>H<sub>52</sub>O<sub>7</sub>S<sub>2</sub> requires 630.3493].

### **Preparation of Alcohol 17A**



To a stirred solution of PMB-ether **17** (73.3 mg, 0.12 mmol) in pH 7 buffer/CH<sub>2</sub>Cl<sub>2</sub> (1/10, total 5.5 mL) was added DDQ (40.5 mg, 0.18 mmol) at 0 °C. The reaction mixture was stirred at 25 °C for 1 h, quenched with saturated aqueous NaHCO<sub>3</sub>, and diluted with H<sub>2</sub>O. The resulting mixture was stirred vigorously for 1 h. The layers were separated, and the aqueous layer was extracted with CH<sub>2</sub>Cl<sub>2</sub>. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 1/2) to afford alcohol **17A** (57.4 mg, 98%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +27.1 (*c* 1.08, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  4.62 (dd, *J* = 7.5, 3.5 Hz, 1H), 3.94 (dddd, *J* = 10.0, 5.0, 5.0, 5.0 Hz, 1H), 3.69–3.86 (m, 4H), 3.54–3.62 (m, 2H), 3.34 (s, 3H), 3.32 (s, 3H), 3.30 (s, 3H), 2.87–2.90 (m, 3H), 2.74–2.77 (m, 3H), 2.23 (d, *J* = 12.0 Hz, 1H), 2.21 (d, *J* = 12.0 Hz, 1H), 1.97–2.04 (m, 3H), 1.86 (ddd, *J* = 13.5, 9.0, 4.5 Hz, 1H), 1.66–1.81 (m, 4H), 1.44–1.64 (m, 7H), 1.34–1.45 (m, 2H), 0.96 (d, *J* = 6.0 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  101.7, 74.2, 72.6, 69.7, 69.39, 69.30, 60.6, 56.4, 53.4, 52.4, 47.9, 43.6, 43.2, 39.23, 39.10, 37.4, 35.0, 33.7, 28.1, 26.4, 25.88, 25.80, 25.74, 18.4; IR (neat) 2360, 2338, 1733,

1558, 1456, 1243, 1122, 1052, 667 cm<sup>-1</sup>; HRMS (ESI) *m/z* 510.2918 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>24</sub>H<sub>44</sub>O<sub>6</sub>S<sub>2</sub> requires 510.2918].

## **Preparation of Aldehyde 18**



To a stirred solution of alcohol **17A** (85.3 mg, 0.17 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5.0 mL, 0.035 M) were added MS 3Å (~170 mg), NMO (40.5 mg, 0.35 mmol), and TPAP (3 mg) at 0 °C. After stirred at 0 °C for 2 h, the reaction mixture was diluted with hexanes (4 mL). The resulting mixture was stirred for 30 min and filtered through a short pad of silica gel to afford aldehyde **18** (81.4 mg, 96%) as a colorless oil:  $[\alpha]^{25}_{D}$ = +25.3 (*c* 0.79, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.77 (dd, *J* = 3.0, 1.5 Hz, 1H), 4.55 (dd, *J* = 8.0, 3.5 Hz, 1H), 4.39 (dddd, *J* = 9.0, 4.0, 4.0, 4.0 Hz, 1H), 3.76–3.84 (m, 2H), 3.45–3.51 (m, 2H), 3.34 (s, 3H), 3.28 (s, 3H), 3.27 (s, 3H), 2.84–2.91 (m, 3H), 2.72–2.76 (m, 2H), 2.40 (ddd, *J* = 16.0, 5.0, 2.0 Hz, 1H), 2.22 (d, *J* = 13.5 Hz, 1H), 2.18 (d, *J* = 13.5 Hz, 1H), 1.94–2.02 (m, 2H), 1.79 (ddd, *J* = 14.0, 8.5, 4.5 Hz, 1H), 1.62–1.76 (m, 4H), 1.53–1.61 (m, 4H), 1.46–1.52 (m, 1H), 1.38–1.45 (m, 1H), 1.28–1.38 (m, 2H), 0.91 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  201.3, 101.9, 73.8, 72.4, 69.31, 69.21, 66.9, 56.7, 53.9, 52.7, 47.9, 45.9, 43.5, 43.1, 39.6, 39.2, 38.2, 34.1, 28.0, 26.6, 25.8, 25.7, 18.1; IR (neat) 1724, 1457, 1387, 1099, 1052 cm<sup>-1</sup>; HRMS (ESI) *m/z* 508.2760 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>24</sub>H<sub>42</sub>O<sub>6</sub>S<sub>2</sub> requires 508.2761].

#### **Preparation of Allyl Alcohol 19**



To a cooled (-5 °C) solution of (-)-MIB (1.0 mg, 0.004 mmol) and Et<sub>2</sub>Zn (0.29 mL, 0.32 mmol, 1.1 M in toluene) in toluene (2.0 mL) was added aldehyde 18 (52.0 mg, 0.11 mmol) in toluene (0.5 mL). Vinylborane (0.22 mL, 0.22 mmol, 1.0 M in toluene, freshly prepared according to Oppolzer's report<sup>4</sup>) was slowly added by a syringe pump over 1 h. The reaction mixture was stirred for additional 30 min at -5 °C, guenched with saturated aqueous NH<sub>4</sub>Cl, and diluted with Et<sub>2</sub>O. The resulting mixture was stirred for 1 h at 25 °C. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The residue was filtered through a short pad of silica gel (hexanes/EtOAc, 2/1) to afford crude allyl alcohol 19 (dr = 32:1) as a colorless oil: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.67 (dddd, J = 15.0, 7.0, 7.0, 1.0 Hz, 1H), 5.52 (dd, J = 15.5, 6.0 Hz, 1H, 4.69 (dd, J = 7.5, 3.5 Hz, 1H), 4.34 (br d, 3.5 Hz, 1H), 4.08 (dddd, J = 9.5, 5.0, 5.0, 5.0 Hz, 1H), 3.81–3.89 (m, 2H), 3.61–3.67 (m, 1H), 3.56–3.60 (m, 1H), 3.37 (s, 3H), 3.36 (s, 3H), 3.32 (s, 3H), 3.06 (d, J = 4.5 Hz, 1H), 2.90-2.93 (m, 2H), 2.79 (dd, J = 6.5, 4.5 Hz, 2H), 2.23 (d, J = 13.5 Hz, 1H), 2.26 (d, J = 13.5 Hz, 1H), 1.85–2.04 (m, 6H), 1.68–1.82 (m, 4H), 1.57-1.67 (m, 5H), 1.46-1.55 (m, 2H), 1.35-1.46 (m, 2H) 0.99 (d, J = 6.5 Hz, 3H), 0.91 (d, J =6.5 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H); IR (neat) 3459, 1717, 1386, 1095, 968, 667 cm<sup>-1</sup>; HRMS (ESI) m/z 592.3693 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>30</sub>H<sub>54</sub>O<sub>6</sub>S<sub>2</sub> requires 592.3700].

The diastereomeric ratio was determined by Shimadzu HPLC system through Phenomenex Luna  $C_{18}$  (5 micron, 4.60 × 250 mm) column with a flow rate of 1 mL/min and isocratic 80% MeOH in H<sub>2</sub>O using SPD-20A UV/VIS detector (230 nm, 254 nm). The 1:1 mixture of (17*S*)- and (17*R*)-alcohols was prepared by Dess–Martin oxidation of the crude alcohol **19** and DIBAL-H reduction of the resulting ketone.

## **Preparation of Macrolactol 20**



To a stirred solution of the above alcohol **19** in THF (2.0 mL) was added 1 N HCl (1.0 mL) at 25 °C. After stirred vigorously for 12 h at the same temperature, the reaction mixture was diluted with H<sub>2</sub>O, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated *in vacuo*. The resulting crude oil was left for 15 h at 25 °C, and the residue was purified by column chromatography (silica gel, hexanes/EtOAc, 4/1) to afford macrolactol **20** (27.5 mg, 49% for two steps) as a colorless oil:  $[\alpha]^{25}{}_{D}$ = +59.8 (*c* 0.22, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.73 (ddd, *J* = 14.5, 7.0, 7.0 Hz, 1H), 5.12 (dd, *J* = 15.0, 9.0 Hz, 1H), 4.71 (ddd, *J* = 9.5, 9.5, 4.0 Hz, 1H), 4.65 (d, *J* = 12.0 Hz, 1H), 4.34 (ddd, *J* = 11.0, 11.0, 3.0 Hz, 1H), 3.92 (d, *J* = 11.5 Hz, 1H), 3.74–3.81 (m, 2H), 3.63 (dd, *J* = 11.5, 11.5 Hz, 1H), 3.37 (s, 3H), 2.90 (ddd, *J* = 5.0, 4.5, 4.5 Hz, 2H), 2.78 (dd, *J* = 7.0, 4.5 Hz, 2H), 2.48 (dd, *J* = 14.0, 12.5 Hz, 1H), 2.22 (d, *J* = 14.5 Hz, 1H), 2.18 (d, *J* = 13.5 Hz, 1H), 1.85–2.04 (m, 5H), 1.69–1.83 (m, 4H), 1.45–1.65 (m, 5H), 1.42 (d, *J* = 12.0 Hz, 1H), 1.32

(d, J = 14.5 Hz, 1H), 1.26 (dd, J = 13.0, 13.0 Hz, 1H), 1.18 (d, J = 7.5 Hz, 3H), 1.05 (ddd, J = 14.5, 11.0, 2.5 Hz, 1H), 0.88 (dd, J = 6.5 Hz, 3H), 0.86 (dd, J = 6.5 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  134.2, 130.7, 90.9, 74.1, 73.7, 71.8, 71.0, 68.7, 63.2, 57.1, 47.6, 44.2, 43.5, 43.3, 41.7, 39.5, 38.4, 35.8, 31.1, 28.1, 27.2, 26.04, 25.96, 25.7, 24.4, 22.32, 22.27, 18.4; IR (neat) 3481, 1733, 1558, 1456, 1088, 973, 667 cm<sup>-1</sup>; HRMS (ESI) *m/z* 546.3276 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>28</sub>H<sub>48</sub>O<sub>5</sub>S<sub>2</sub> requires 546.3281].

## **Preparation of Ketone 20A**



To a stirred solution of dithiane **20** (12.3 mg, 0.023 mmol) in saturated aqueous NaHCO<sub>3</sub>/CH<sub>3</sub>CN (1:1, total 1.5 mL) was added I<sub>2</sub> (11.8 mg, 0.046 mmol) at 0 °C. An addition of I<sub>2</sub> (11.8 mg, 0.046 mmol) was repeated two times every 20 min at the same temperature. The reaction mixture was quenched with saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> and saturated aqueous NaHCO<sub>3</sub>, and diluted with Et<sub>2</sub>O. The layers were separated, and the aqueous layer was extracted with Et<sub>2</sub>O. The combined organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated *in vacuo*. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 4/1) to afford ketone **20A** (9.4 mg, 93%) as a colorless oil.  $[\alpha]^{25}_{D}$ = +70.8 (*c* 0.17, CHCl<sub>3</sub>); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.75 (ddd, *J* = 15.0, 7.0, 7.0 Hz, 1H), 5.11 (dd, *J* = 15.5, 9.0 Hz, 1H), 4.95 (dd, *J* = 12.0, 2.5 Hz, 1H), 4.68–4.74 (m, 1H), 4.47 (d, *J* = 12.0 Hz, 1H), 4.27 (dddd, *J* = 10.5, 10.5, 3.0, 3.0 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, *J* = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, *J* = 11.5 Hz, 2H), 3.60 (ddd, J = 10.5, 10.5, 4.5 Hz, 1H), 3.93 (d, *J* = 11.5 Hz, 1H), 3.68 (dd, J = 11.5,

1H), 3.41 (s, 3H), 2.30–2.44 (m, 5H), 2.11 (ddd, J = 11.5, 11.5, 2.0 Hz, 1H), 1.84–1.97 (m, 5H), 1.38–1.66 (m, 4H), 1.36 (dd, J = 12.0, 12.0 Hz, 1H), 1.25–1.29 (m, 2H), 1.17 (d, J = 7.5 Hz, 3H), 1.80 (ddd, J = 14.5, 10.5, 2.0 Hz, 1H), 0.88 (d, J = 6.5 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  205.6, 134.5, 130.4, 90.5, 75.31, 75.09, 73.81, 73.54, 69.0, 63.3, 57.2, 48.0, 47.7, 44.1, 41.7, 40.4, 39.1, 35.8, 30.9, 28.1, 27.1, 24.3, 22.31, 22.26, 18.3; IR (neat) 3499, 1718, 1436, 1365, 1241, 1089, 989 cm<sup>-1</sup>; HRMS (ESI) *m/z* 456.3317 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>25</sub>H<sub>42</sub>O<sub>6</sub> requires 456.3320].

## **Preparation of Macrolactone 20B**



To a stirred solution of lactol **20A** (6.5 mg, 0.015 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.0 mL, 0.015 M) were added PCC (16.0 mg, 0.074 mmol) and MS 4Å (13 mg) at 25 °C. After stirred for 8 h at the same temperature, the reaction mixture was diluted with CH<sub>2</sub>Cl<sub>2</sub> and filtered through a short pad of silica gel. The residue was purified by column chromatography (silica gel, hexanes/EtOAc, 2/1) to afford lactone **20B** (5.6 mg, 85%) as a white solid:  $[\alpha]^{25}_{D}$ = +69.2 (*c* 0.12, CHCl<sub>3</sub>); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  5.68–5.77 (m, 1H), 5.30–5.41 (m, 2H), 4.02 (dddd, *J* = 11.5, 11.5, 3.0, 3.0 Hz, 1H), 3.89 (d, *J* = 11.5 Hz, 1H), 3.45–3.56 (m, 3H), 3.38 (s, 3H), 2.64 (dd, *J* = 13.0, 3.5 Hz, 1H), 2.44–2.50 (m, 2H), 2.25–2.38 (m, 3H), 2.11 (ddd, *J* = 13.5, 11.5, 2.0 Hz, 1H), 1.82–1.94 (m, 3H), 1.58–1.75 (m, 3H), 1.41–1.58 (m, 3H), 1.29–1.34 (m, 2H), 1.16 (d, *J* = 7.0 Hz, 3H), 1.05 (ddd, *J* = 14.5, 11.0, 2.5 Hz, 1H), 0.86 (d, *J* = 6.5 Hz, 3H), 0.84 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>C

NMR (125 MHz, CDCl<sub>3</sub>) δ 205.6, 168.6, 132.8, 129.8, 74.4, 73.57, 73.55, 73.5, 71.3, 63.1, 57.4, 47.9, 47.4, 43.4, 42.7, 41.6, 39.6, 35.6, 30.9, 28.1, 27.1, 24.1, 22.2, 18.2; IR (neat) 1733, 1372, 1235, 1021, 734 cm<sup>-1</sup>; HRMS (ESI) *m/z* 454.3164 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>25</sub>H<sub>40</sub>O<sub>6</sub> requires 454.3163].

**Preparation of Leucascandrolide A Macrolactone (3)** 



To a stirred solution of ketone **20B** (5.4 mg, 0.012 mmol) in MeOH (1 mL) was added NaBH<sub>4</sub> (1.8 mg, 0.048 mmol) at 0 °C. The reaction mixture was stirred for 30 min at the same temperature before AcOH (0.02 mL) was added. The resulting mixture was concentrated and the residue was purified by column chromatography (silica gel, hexanes/EtOAc, 1/1 to 1/2) to afford the known leucascandrolide A macrolactone **3** (5.2 mg, 96% as a 20:1 mixture of diastereomers) as a white solid whose spectral data were identical to those of the known synthetic  $\mathbf{3}^{5a-c}$ :  $[\alpha]^{25}_{D}$ = +54.1 (*c* 0.07, EtOH); <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  5.70 (ddd, *J* = 14.0, 7.0, 7.0 Hz, 1H), 5.31– 5.38 (m, 2H), 3.89 (d, *J* = 9.0 Hz, 2H), 3.72 (ddddd, *J* = 7.5, 7.5, 2.0, 2.0, 2.0 Hz, 1H), 3.51 (dd, *J* = 10.5, 10.5 Hz, 2H), 3.35 (s, 3H), 3.21 (dd, *J* = 11.5, 11.5 Hz, 1H), 2.56 (dd, *J* = 13.0, 3.5 Hz, 1H), 2.30–2.42 (m, 2H), 2.00–2.05 (m, 2H), 1.81–1.92 (m, 4H), 1.56–1.74 (m, 3H), 1.47–1.56 (m, 3H), 1.40–1.46 (m, 1H), 1.20–1.33 (m, 4H), 1.16 (d, *J* = 7.0 Hz, 3H), 1.00 (ddd, *J* = 14.0, 10.5, 2.0 Hz, 1H), 0.85 (d, *J* = 6.0 Hz, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 132.4, 130.1, 73.61, 73.54, 73.0, 72.2, 70.8, 68.0, 63.0, 57.3, 43.1, 42.8, 41.6, 41.1, 40.8, 39.1, 35.5, 31.0, 28.1,

27.1, 24.1, 22.2, 18.2; IR (neat) 3438, 1739, 1457, 1261, 1085, 962 cm<sup>-1</sup>; HRMS (FAB) *m/z* 456.3321 [(M+NH<sub>4</sub>)<sup>+</sup>, C<sub>25</sub>H<sub>42</sub>O<sub>6</sub> requires 456.3320].

# References

- Maddess, M. L.; Tackett, M. N.; Watanabe, H.; Brennan, P. E.; Spilling, C. D.; Scott, J. S.; Osborn, D. P.; Ley, S. V. Angew. Chem., Int. Ed. 2007, 46, 591–597.
- (a) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond, D. G.; Jacobsen, E. N. J. Am. Chem. Soc.
  2004, 126, 1360–1362. (b) Mohapatra, D. K.; Das, P. P.; Reddy, D. S.; Yadav, J. S. Tetrahedron Lett. 2009, 50, 5941–5944.
- 3. Kim, H.; Park, Y.; Hong, J. Angew. Chem., Int. Ed. 2009, 48, 7577-7581.
- 4. Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170-173.
- (a) Wang, Y., Janjic, J.; Kozmin, S. A. J. Am. Chem. Soc. 2002, 124, 13670–13671. (b)
  Williams, D. R.; Patnaik, S.; Plummer, S. V. Org. Lett. 2003, 5, 5035–5038. (c) Evans, P. A.;
  Andrews, W. J. Angew. Chem., Int. Ed. 2008, 47, 5426–5429.





















**S28** 



































S36















































































































































**S74** 







**S76** 



 $\mathbf{S77}$ 



**S78** 



# ==== Shimadzu LCsolution Analysis Report ====

|                          | C:\Documents and Settings\HPLC\My Documents\Data\Kiyoun\KL9.lcd |
|--------------------------|-----------------------------------------------------------------|
| Acquired by              | : Admin                                                         |
| Sample Name              | : KL-VI-vinylzinc-real                                          |
| Sample Description : flo | ow rate:1.0ml/min                                               |
| Condition:75% meoh       |                                                                 |
| Data File Name           | : KL9.lcd                                                       |
| Method File Name         | : KL.lcm                                                        |
| Batch File Name          |                                                                 |
| Report File Name         | : Default.lcr                                                   |
| Data Acquired            | : 5/4/2010 11:19:10 AM                                          |
| Data Processed           | : 5/4/2010 2:45:06 PM                                           |

### <Chromatogram>

C:\Documents and Settings\HPLC\My Documents\Data\Kiyoun\KL9.Icd uV 39.062 44.176 dr 1:1 mixture 30000-57.497 20000-39.06 44.179 10000-57.497 1Det.A Ch1 2Det.A Ch2 0-20 30 60 50 10 40 Ó min

1 Det.A Ch1/230nm 2 Det.A Ch2/254nm

PeakTable

| UV detecto | or Ch1 230nm |         |        |         |      |
|------------|--------------|---------|--------|---------|------|
| Peak#      | Ret. Time    | Area    | Height | Area %  | Name |
| 1          | 39.062       | 858304  | 12718  | 47.423  |      |
| 2          | 44.176       | 798093  | 10340  | 44.096  |      |
| 3          | 57.497       | 153509  | 1859   | 8.482   |      |
| Tota       |              | 1809905 | 24918  | 100.000 |      |

| 1 | UV detecto: | r Ch2 254nm |         |        |         |      |
|---|-------------|-------------|---------|--------|---------|------|
|   | Peak#       | Ret. Time   | Area    | Height | Area %  | Name |
|   | 1           | 39.063      | 1003131 | 14887  | 47.323  |      |
|   | 2           | 44.179      | 932727  | 12067  | 44.001  |      |
|   | 3           | 57.497      | 183916  | 2199   | 8.676   |      |
|   | Total       |             | 2119774 | 29153  | 100.000 |      |

#### PeakTable

# ==== Shimadzu LCsolution Analysis Report ====

|                         | C:\Documents and Settings\HPLC\My Documents\Data\Kiyoun\KL10.lcd |
|-------------------------|------------------------------------------------------------------|
| Acquired by             | : Admin                                                          |
| Sample Name             | : KL-VI-vinylzinc-real                                           |
| Sample Description : fl | ow rate:1.0ml/min                                                |
| Condition:75% meoh      |                                                                  |
| Data File Name          | : KL10.lcd                                                       |
| Method File Name        | : KL.lcm                                                         |
| Batch File Name         | :                                                                |
| Report File Name        | : Default.lcr                                                    |
| Data Acquired           | : 5/4/2010 1:26:53 PM                                            |
| Data Processed          | : 5/4/2010 2:38:04 PM                                            |
|                         |                                                                  |

### <Chromatogram>



1 Det.A Ch1/230nm

2 Det.A Ch2/254nm

PeakTable

| 1 | UV detecto | r Ch1 230nm |         |        |         |      |
|---|------------|-------------|---------|--------|---------|------|
|   | Peak#      | Ret. Time   | Area    | Height | Area %  | Name |
|   | 1          | 39.010      | 157198  | 2616   | 2.902   |      |
|   | 2          | 40.526      | 62564   | 1080   | 1.155   |      |
|   | 3          | 43.059      | 5197118 | 44118  | 95.943  |      |
|   | Total      |             | 5416880 | 47814  | 100.000 |      |

| <b>n</b> 1 |    |       |            |   |
|------------|----|-------|------------|---|
| Peal       | κı | а     | Ы          | e |
| 1.000      |    | - C B | <b>U</b> 1 | ~ |

| UV detector | r Ch2 254nm |         |        |         |      |
|-------------|-------------|---------|--------|---------|------|
| Peak#       | Ret. Time   | Area    | Height | Area %  | Name |
| 1           | 39.018      | 188543  | 3103   | 2.979   |      |
| 2           | 40.548      | 75228   | 1278   | 1.189   |      |
| 3           | 43.055      | 6065866 | 51409  | 95.833  |      |
| Total       |             | 6329637 | 55790  | 100 000 |      |