Supporting Information

Enantioselective complexation of chiral propylene oxide by an enantiopure water-soluble cryptophane

Aude Bouchet, ${ }^{\dagger}$ Thierry Brotin, ${ }^{*, \dagger}$ Mathieu Linares, ${ }^{\#}$ Hans Ågren, ${ }^{\#}$ Dominique Cavagnat, ${ }^{\dagger}$ and Thierry Buffeteau ${ }^{*}$, \dagger
${ }^{\dagger}$ Institut des Sciences Moléculaires (UMR 5255 - CNRS), Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France, ${ }^{\ddagger}$ Laboratoire de Chimie de l'ENS-LYON (UMR 5182 - CNRS), Ecole Normale Supérieure de Lyon, 46 Allée d’Italie, 69364 Lyon 07, France, \# Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm, Sweden.
t.Buffeteau@ism.u-bordeaux1.fr
thierry.brotin@ens-lyon.fr

S1 : ECD spectra of $M M-1$ and $P P-1$ in presence of $r a c-\operatorname{PrO},(S)-\operatorname{PrO}$ and $(R)-\operatorname{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution $(0.1 \mathrm{M})$ at 293 K .
S2 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (R)-PrO.

S3: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (S)-PrO.

S4: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (R)-PrO.

S5: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (S)-PrO.

S6 : ECD spectra of $M M-1$ and $P P-1$ in presence of $r a c-\operatorname{PrO},(S)-\operatorname{PrO}$ and $(R)-\operatorname{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution $(0.1 \mathrm{M})$ at 293 K .
S7: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (R)-PrO.

S8 : ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (S) PrO .

S9: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (R)-PrO.

S10 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (S)-PrO.

S11 : ECD spectra of $M M-1$ and $P P-1$ in presence of rac- $\mathrm{PrO},(S)-\mathrm{PrO}$ and $(R)-\mathrm{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{KOH}$ solution (0.1 M) at 278 K .
S12 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ recorded at 275 K in presence of (R)-PrO.

S13: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ recorded at 275 K in presence of (S)-PrO.

S14: ECD spectra of empty $M M-\mathbf{1}$ and $P P-\mathbf{1}$ as well as $M M-\mathbf{1}$ and $P P-\mathbf{1}$ in presence of $(R)-$ PrO and $(S)-\mathrm{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solution (0.1 M) at 293 K .
S15: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ recorded at 275 K in presence of (S)-PrO.

S16 : Dihedral angles of the three linkers during the 2 ns of the dynamics. These values have been extracted from the MD calculations for the phenolate form of $(R)-\operatorname{PrO} @ P P-1$ and $(S)-$ $\operatorname{PrO} @ P P-1$ complexes starting from the $T T T$ conformations of the linkers.
S17: Calculation of the potential energy difference from MD results.
S18 : Full list of authors of reference 16

Figure S1: ECD spectra of $M M-\mathbf{1}$ and $P P-\mathbf{1}$ in presence of $(S)-\operatorname{PrO}$ and $(R)-\operatorname{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{NaOH}$ solution $(0.1 \mathrm{M})$ at 293 K .
${ }^{1} \mathrm{H}$ NMR spectrum of $P P-1$ in $\mathrm{NaOD}(\mathrm{pH}=13.2)$ in presence of (R)-PrO
Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=4.17 \mathrm{mg} \text { of } P P-1 \text { in } 0.4 \mathrm{~mL} \text { of } \mathrm{NaOD}(\mathrm{pH}=13.2) \\
\text { CHost(total) }=12.15 \mathrm{mM} ; C \text { Host(empty guest })=0.95 \mathrm{mM} \\
C \text { (free guest) }=42.4 \mathrm{mM} ; C \text { Host }(\text { complex })=11.3 \mathrm{mM}
\end{gathered}
$$

Figure S2: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $P P-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (R)-PrO.
${ }^{1} \mathrm{H}$ NMR spectrum of $P P-1$ in $\mathrm{NaOD}(\mathrm{pH}=13.2)$ in presence of $(\mathrm{S})-\mathrm{PrO}$
Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=4.19 \mathrm{mg} \text { of } P P-1 \text { in } 0.4 \mathrm{~mL} \text { of } \mathrm{NaOD}(\mathrm{pH}=13.2) \\
\text { CHost }(\text { total })=13.2 \mathrm{mM} ; \text { CHost }(\text { empty guest })=1.75 \mathrm{mM} \\
C \text { (free guest) })=49.7 \mathrm{mM} ; \text { CHost }(\text { complex })=11.4 \mathrm{mM}
\end{gathered}
$$

Figure S3: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (S) - PrO .
${ }^{1} \mathrm{H}$ NMR spectrum of $M M-1$ in $\mathrm{NaOD}(\mathrm{pH}=13.2)$ in presence of $(\mathrm{R})-\mathrm{PrO}$
Temperature: 275 K

$\mathrm{m}=4.44 \mathrm{mg}$ of $M M-1$ in 0.4 mL of NaOD ($\mathrm{pH}=13.2$)
CHost(total) $=13.9 \mathrm{mM} ;$ CHost(empty guest) $=3.1 \mathrm{mM}$
C (free guest $)=24.1 \mathrm{mM} ; C$ Host $($ complex $)=10.9 \mathrm{mM}$

Figure S4: ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (R) - PrO .

$\mathrm{m}=3.95 \mathrm{mg}$ of $M M-1$ in 0.4 mL of $\mathrm{NaOD}(\mathrm{pH}=13.2)$
CHost(total) $=12.4 \mathrm{mM} ;$ CHost $($ empty guest $)=2.23 \mathrm{mM}$
$C($ free guest $)=14.8 \mathrm{mM} ;$ CHost $($ complex $)=10.19 \mathrm{mM}$

Figure $55:{ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{NaOD}$ recorded at 275 K in presence of (S) - PrO.

Figure S6: ECD spectra of $M M-\mathbf{1}$ and $P P-\mathbf{1}$ in presence of $r a c-\operatorname{PrO},(S)-\operatorname{PrO}$ and $(R)-\operatorname{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{LiOH}$ solution (0.1 M) at 293 K .
${ }^{1} \mathrm{H}$ NMR spectrum of $P P-1$ in LiOD $(\mathrm{pH}=12.4)$ in presence of $(\mathrm{R})-\mathrm{PrO}$ Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=3.58 \mathrm{mg} \text { of } P P-1 \text { in } 0.4 \mathrm{~mL} \text { of } \mathrm{LiOD}(\mathrm{pH}=12.4) \\
C \text { Host }(\text { total })=11.3 \mathrm{mM} ; \text { CHost }(\text { empty guest })=1.55 \mathrm{mM} \\
C \text { (free guest })=32.4 \mathrm{mM} ; C \text { Host }(\text { complex })=9.7 \mathrm{mM}
\end{gathered}
$$

S7: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $P P-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (R)-PrO.
${ }^{1} \mathrm{H}$ NMR spectrum of $P P-1$ in LiOD ($\mathrm{pH}=12.4$) in presence of (S) - PrO Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=3.44 \mathrm{mg} \text { of } P P-1 \text { in } 0.4 \mathrm{~mL} \text { of LiOD }(\mathrm{pH}=12.4) \\
C \text { (Host(total) }=13.36 \mathrm{mM} ; C \text { Host(empty guest })=2.24 \mathrm{mM} \\
C(\text { free guest })=51.9 \mathrm{mM} ; C \text { Host(complex })=11.1 \mathrm{mM}
\end{gathered}
$$

S8 : ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $P P-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (S) PrO .
${ }^{1} \mathrm{H}$ NMR spectrum of $M M-1$ in LiOD ($\mathrm{pH}=12.4$) in presence of (R)-PrO
Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=3.70 \mathrm{mg} \text { of } M M-1 \text { in } 0.4 \mathrm{~mL} \text { of LiOD }(\mathrm{pH}=12.4) \\
C \text { Host(total })=12.6 \mathrm{mM} ; \text { CHost(empty guest })=4.1 \mathrm{mM} \\
C(\text { free guest })=19.2 \mathrm{mM} ; \text { CHost }(\text { complex })=8.5 \mathrm{mM}
\end{gathered}
$$

S9: ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectrum of $M M-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (R)-PrO.
${ }^{1} \mathrm{H}$ NMR spectrum of $M M-1$ in LiOD ($\mathrm{pH}=12.4$) in presence of (S)-PrO
Temperature: 275 K

$$
\mathrm{m}=5.32 \mathrm{mg} \text { of } M M-1 \text { in } 0.4 \mathrm{~mL} \text { of } \mathrm{LiOD}(\mathrm{pH}=12.4)
$$

CHost(total) $=16.73 \mathrm{mM} ;$ CHost $($ empty guest $)=1.87 \mathrm{mM}$ $C($ free guest $)=32.9 \mathrm{mM} ;$ CHost $($ complex $)=14.86 \mathrm{mM}$

S10 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{LiOD}$ recorded at 275 K in presence of (S)-PrO.

S11: ECD spectra of $M M-1$ and $P P-1$ in presence of rac- $\mathrm{PrO},(S)-\mathrm{PrO}$ and $(R)-\mathrm{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{KOH}$ solution (0.1 M) at 278 K .
${ }^{1} \mathrm{H}$ NMR spectrum of $M M-1$ in $\mathrm{KOD}(\mathrm{pH}=13.6)$ in presence of (R)-PrO
Temperature: 275 K

S12 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-1$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ recorded at 275 K in presence of (R)-PrO.
${ }^{1} \mathrm{H}$ NMR spectrum of $M M-1$ in $\mathrm{KOD}(\mathrm{pH}=13.6)$ in presence of $(\mathrm{S})-\mathrm{PrO}$ Temperature: 275 K

$$
\begin{gathered}
\mathrm{m}=4.01 \mathrm{mg} \text { of } M M-1 \text { in } 0.4 \mathrm{~mL} \text { of KOD }(\mathrm{pH}=13.6) \\
C \text { Host(total) }=12.6 \mathrm{mM} ; C \text { Host(empty guest })=8.0 \mathrm{mM} \\
C(\text { free guest })=33.6 \mathrm{mM} ; C \text { Host }(\text { complex })=4.6 \mathrm{mM}
\end{gathered}
$$

S13 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $M M-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{KOD}$ recorded at 275 K in presence of (S)-PrO.

S14 : ECD spectra of empty $M M-1$ and $P P-\mathbf{1}$ as well as $M M-\mathbf{1}$ and $P P-1$ in presence of (R) PrO and $(S)-\mathrm{PrO}$ in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CsOH}$ solution $(0.1 \mathrm{M})$ at 293 K .

${ }^{1} \mathrm{H}$ NMR spectrum of rac-1 in CsOD $(\mathrm{pH}=13.5)$ in presence of $(\mathrm{rac})-\mathrm{PrO}$

Temperature: 275 K

S15 : ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectrum of $\mathrm{rac}-\mathbf{1}$ in $\mathrm{D}_{2} \mathrm{O} / \mathrm{CsOD}$ recorded at 275 K in presence of (rac)-PrO.

S16: Dihedral angles of the three linkers during the 2 ns of the dynamics. These values have been extracted from the MD calculations for the phenolate form of $(R)-\operatorname{PrO} @ P P-1$ and (S) PrO@ $@ P-1$ complexes starting from the $T T T$ conformations of the linkers.

To determine the relative stability of the two complexes $(R)-\operatorname{PrO} @ P P-\mathbf{1}$ and $(S)-\operatorname{PrO} @ P P-\mathbf{1}$ for the phenol form, we optimized several points along the MD trajectories (OPLS ForceField). For the last ns, we optimized one frame every 2 ps (500 geometries). The energy of the host-guest system being hidden by the fluctuation of energy of the water molecules of the box, we had to suppress them during the optimization. The energy converged to 132.3 ± 0.3 $\mathrm{kcal} / \mathrm{mol}$ and $133.4 \pm 0.3 \mathrm{kcal} / \mathrm{mol}$ for the $(R)-\mathrm{PrO} @ P P-\mathbf{1}$ and $(S)-\mathrm{PrO} @ P P-\mathbf{1}$ complexes, respectively. The potential energy difference $(1.1 \mathrm{kcal} / \mathrm{mol})$ is in reasonable agreement with the experimental value.

	(R)-PrO@PP-1		(S)-PrO@ $P P-\mathbf{1}$	
	AVG	STDEV	AVG	STDEV
Energy $(\mathrm{kcal} / \mathrm{mol})$	132.3	0.3	133.4	0.3
Bond Stretching	5.4	0.2	5.4	0.2
Angle Bending	145.1	0.4	145.3	0.4
Improper Torsion	0.2	0.1	0.2	0.1
Torsional Angle	21.6	0.5	21.8	0.5
Van Der Waals	15.4	0.4	15.8	0.4
Charge-Charge	-55.4	0.3	-55.1	0.3

S17 : Calculation of the potential energy difference from MD results.

Full list of authors of reference [16]

Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Naktasuji, H.; Hada, M.; Ehara, M.; Toyota,K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Statmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P. Y.; Morokuma, K.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, D.J.; Fox, T.; Keith, M.A.; Al-Laham, C.Y.; Peng, A.; Nanayakkara, M.; Challacombe, R.L.; Gill, P.M. W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C.; Pople, J.A. Gaussian 03, revision B.04, Gaussian Inc., Pittsburgh, PA, 2003.

