
Supporting Information

Model Random Polyampholytes from Nonpolar Methacrylic Esters

Baljinder Kaur,¹ Larissa D'Souza,¹ Lisa A. Slater,² Thomas H. Mourey,² Siwei Liang,³ Ralph H. Colby,³ Warren T. Ford¹

¹Department of Chemistry, Oklahoma State University, Stillwater, OK 74078
²Eastman Kodak Company, Corporate Research and Engineering, 1999 Lake Avenue, Rochester, NY 14650-2136
³Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802

Correspondence to W. T. Ford (E-mail: <u>warren.ford@okstate.edu</u>)

Figure S1. ¹H NMR spectrum of terpolymer B1 in CDCl₃.

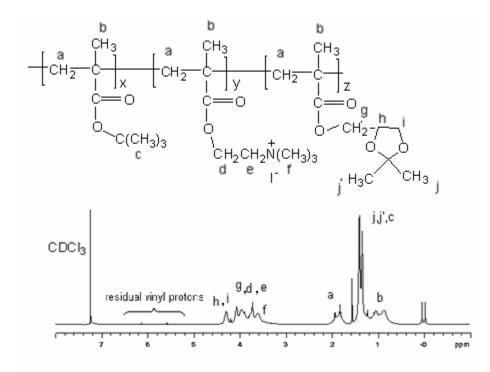
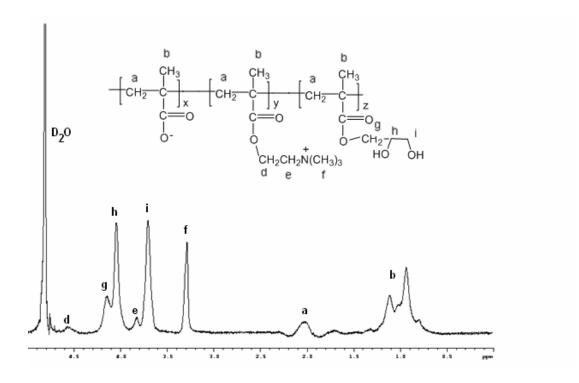



Figure S2. ¹H NMR spectrum of quaternized polymer Q1-1 in CDCl₃.

Figure S3. ¹H NMR spectrum of polyampholyte PA1-1 in D_2O .

sample ^a	DP _n	terpolymer	THF	CH ₃ I	DMAEMA ^b	isolated
		(g)	(mL)	(mmol)	(mmol)	yield (g) ^c
Q1-1	368	1.00	15.0	320	0.81	1.16
Q1-2	368	1.76	15.0	320	1.43	1.90
Q2-1	225	3.00	10.0	580	2.47	3.35
Q2-2	225	2.36	10.0	580	1.94	2.55
Q4	263	2.40	10.0	50	3.88	2.74
Q10	1825	1.15	10.0	2.0	0.85	1.30
Q11	1075	0.80	10.0	2.0	1.10	1.01

^aTwo separate samples of terpolymers B1 and B2 were converted to polycations. ^bCalculated from % conversion of DMAEMA in terpolymer after partial conversion and moles of DMAEMA in the feed mixture. ^cThe isolated yields are slightly high due to small amounts of THF in the samples, which were detected in the NMR spectra.

product	reactant ^a	solution ^b	yield
	(g)	(mL)	(g)
PA1-1	1.00	10	0.50
PA1-2	1.76	14	0.89
PA2-1	3.01	24	1.42
PA2-2	2.50	14	1.53
PA4	2.74	16	1.42
PA10	1.49	10	1.05
PA11	1.01	6	0.48

Table S2. Synthesis of Polyampholytes

^aSamples Q in Table S1. ^b1/1 concd aq HCl/1,4-dioxane.