# **Pd-Catalyzed Intermolecular C-H Amination with Alkylamines**

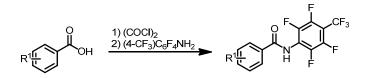
Eun Jeong Yoo, Sandy Ma, Tian-Sheng Mei, Kelvin S. L. Chan, Jin-Quan Yu\*

Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA.

# SUPPORTING INFORMATION

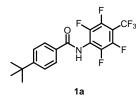
# **Table of Contents**

| General Information                                                                                                                                                                                                                                                     | page                  | S-2                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------|
| Experimental Procedures                                                                                                                                                                                                                                                 | pages                 | S-2 – S-11                    |
| Preparation of <i>N</i> -Aryl Benzamide Substrates<br>Characterization of <i>N</i> -Aryl Benzamide Substrates<br>Optimization Studies<br>General Procedure for Amination<br>Characterization of Amination Products<br>Hydrolysis of aminated product to carboxylic acid | pages<br>page<br>page | S-2 – S-4<br>S-5 – S-7<br>S-7 |
| Complete Ref. 8b                                                                                                                                                                                                                                                        | pages                 | S-12                          |
| NMR Spectra                                                                                                                                                                                                                                                             | pages                 | S-13 – S-44                   |


General Information: Solvents were obtained from Sigma-Aldrich, Alfa-Aesar and Acros and used directly without further purification. Carboxylic acids or carboxylic acid chlorides and 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline were obtained from the commercial sources and used to prepare the corresponding amides. Analytical thin layer chromatography was performed on 0.25 mm silica gel 60-F254. Visualization was carried out with UV light and Vogel's permanganate. <sup>1</sup>H NMR spectra were recorded on Varian Inova instrument (400 MHz) and Bruker DRX (500 MHz). Chemical shifts were quoted in parts per million (ppm) referenced to the residual undeuterated solvent peak or 0.0 ppm for tetramethylsilane. The following abbreviations (or combinations thereof) were used to explain multiplicities: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet. Coupling constants, J, were reported in Hertz unit (Mz). <sup>13</sup>C NMR spectra were recorded on Varian Inova instrument (100 MHz) and Bruker DRX (125 MHz) and were fully decoupled by broad band proton decoupling. Chemical shifts were reported in ppm referenced to the center line of a triplet at 77.0 ppm of chloroform-d. The carbons of the fluorinated aryl rings of the benzamide were omitted because these <sup>13</sup>C NMR were very small due to coupling with the F's. High-resolution mass spectra (HRMS) were recorded on an Agilent Mass spectrometer using ESI-TOF (electrospray ionization-time of flight). IR spectra were recorded on a Perkin Elmer Spectrum BX FTIR spectrometer. Frequencies were given in reciprocal centimeters (cm<sup>-1</sup>) and only selected absorbances were reported.

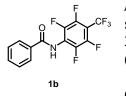
The <sup>13</sup>C NMR signals of the 2,3,5,6-tetrafluoro-4-(trifluoromethyl) aryl groups in the directing groups are weak due to the multiple coupling from the fluorines. For full characterizations see the spectra of the carboxylic acid **4** obtained from the hydrolysis of the amination product **3a**.

# **Experimental Procedure**

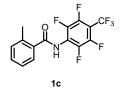

# Preparation of N-Aryl Benzamide Substrates

General procedure for preparation of *N*-aryl benzamide derivatives: An acid choride (10.0 mmol), prepared from the corresponding carboxylic acid and oxalyl chloride, was added to a vigorously stirring solution of 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (11.0 mmol) in toluene (50 mL). The reaction mixture was stirred for 12 h under reflux, and then stirred at room temperature for 4 h. The product mixture was concentrated *in vacuo* and was recrystallized from ethyl acetate/hexane to give the amide.



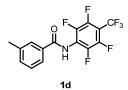

Scheme S1. General procedure for preparation of N-aryl benzamide derivatives

#### Characterization of N-Aryl Benzamide Substrates

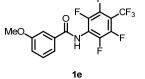



(4-(*tert*-butyl)-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide) (1a): white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, *J* = 8.3 Hz, 2 H), 7.66 (s, 1H), 7.51 (d, *J* = 8.3 Hz, 2H), 1.34 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.96, 157.36, 129.31, 127.97, 126.24, 35.40, 31.29; **IR** (neat) v 3249, 2970, 1673, 1653, 1507, 1467, 1339, 1276, 1261, 1233, 1147, 997, 904, 875, 850 cm<sup>-1</sup>; **HRMS** for C. H. E NO [M+U]<sup>+</sup> 204.1026 formed 204.1051

(ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>14</sub>F<sub>7</sub>NO [M+H]<sup>+</sup> 394.1036, found 394.1051.



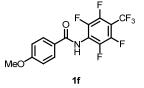

*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (1b): white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  10.92 (s, 1H), 8.01 (t, *J* = 8.0 Hz, 2H), 7.69–7.65 (m, 1H), 7.58 (t, *J* = 8.0 Hz, 2H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  165.14, 132.80, 132.12, 128.70, 128.21; **IR** (neat) v 3711, 2319, 1468, 1055, 1033, 997, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>14</sub>H<sub>6</sub>F<sub>7</sub>NO [M+H]<sup>+</sup> 338.0410, found 338.0423.




**2-methyl-N-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (1c): white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  10.94 (s, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.48–7.44 (m, 1H), 7.37–7.33 (m, 2H), 2.42 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  167.40, 136.20, 134.47, 130.88, 127.74, 125.82, 104.36, 19.40; **IR** (neat) v 3706, 3234, 2318, 1685, 1469, 1142, 1054, 1033, 1002, 993 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m*/*z* Calcd for C<sub>15</sub>H<sub>8</sub>F<sub>7</sub>NO [M+H]<sup>+</sup>

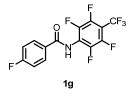
352.0567, found 352.0581.




**3-methyl-***N*-(**2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (**1d**): white solid. <sup>1</sup>**H NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$ 10.87 (s, 1H), 7.84–7.80 (m, 2H), 7.50–7.44 (m, 2H), 2.41 (s, 3H); <sup>13</sup>**C NMR** (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  165.21, 138.14, 133.36, 132.09, 128.66, 128.60, 125.35, 20.88; **IR** (neat) v 3310, 1650, 1455, 1327, 1189, 995 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>15</sub>H<sub>8</sub>F<sub>7</sub>NO [M+H]<sup>+</sup> 352.0567, found 352.0584.

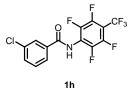


3-methoxy-N-(2,3,5,6-tetrafluoro-4-


(trifluoromethyl)phenyl)benzamide (1e): white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  10.89 (s, 1H), 7.61–7.47 (m, 3H), 7.25–7.22 (m, 1H), 3.84 (s, 3H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  164.83, 159.33, 133.39, 129.91, 120.43, 118.78, 113.10, 55.43; **IR** (neat) v 3697, 3216, 3006, 1674, 1475, 1340, 1232, 1175, 1140, 1047, 995 cm<sup>-1</sup>; **HRMS** (ESI-TOF)

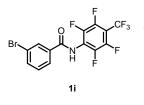
m/z Calcd for C<sub>15</sub>H<sub>8</sub>F<sub>7</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 368.0516, found 368.0530.




**4-methoxy-***N***-**(**2,3,5,6-tetrafluoro-4-**(**trifluoromethyl)phenyl)benzamide** (**1f**): white solid. <sup>1</sup>**H NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  10.73 (s, 1H), 8.00 (d, *J* = 8.8 Hz, 2H), 7.11 (d, *J* = 8.8 Hz, 2H), 3.86 (s, 3H); <sup>13</sup>**C NMR** (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  164.43, 162.79, 130.31, 124.15, 113.95, 55.57; **IR** (neat) v 3706, 2707, 2318, 1469, 1055, 1033, 1012, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for

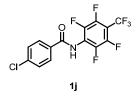
 $C_{15}H_8F_7NO_2 [M+H]^+$  368.0516, found 368.0528.



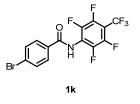

**4-fluoro-***N***-**(**2**,**3**,**5**,**6**-tetrafluoro-**4**-(trifluoromethyl)phenyl)benzamide (**1g**): white solid. <sup>1</sup>**H NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  10.98 (s, 1H), 8.10 (dd,  $J_1 = 8.7$  Hz,  $J_2 = 5.5$  Hz, 2H), 7.42 (t, J = 8.8 Hz, 2H); <sup>13</sup>**C NMR** (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  164.12 (d,  $J_{C-F} = 250.3$  Hz), 164.06, 131.12 (d,  $J_{C-F} = 9.0$  Hz), 128.58 (d,  $J_{C-F} = 3.0$  Hz), 115.80 (d,  $J_{C-F} = 22.1$  Hz); **IR** (neat) v 3249, 1681, 1604, 1508, 1467, 1343, 1237, 1191, 1152, 997, 906, 854 cm<sup>-1</sup>;

**HRMS** (ESI-TOF) m/z Calcd for C<sub>14</sub>H<sub>5</sub>F<sub>8</sub>NO [M+H]<sup>+</sup> 356.0316, found 356.0332.

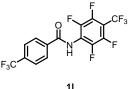



**3-chloro-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (**1h**): white solid. <sup>1</sup>**H NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  11.06 (s, 1H), 8.05 (d, J = 1.6 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.74 (dd,  $J_1 = 8.0$  Hz,  $J_2 = 1.0$  Hz, 1H), 7.61 (t, J = 7.9 Hz, 1H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  163.78, 134.02, 133.52, 132.62, 130.74, 127.95, 126.99; **IR** (neat) v 3216, 3131, 1673, 1655, 1531, 1509, 1482, 1470, 1336, 1158, 1150, 996, 923, HTOP)

878 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>14</sub>H<sub>5</sub>ClF<sub>7</sub>NO [M+H]<sup>+</sup> 372.0021, found 372.0029.

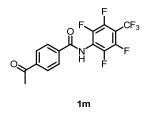



**3-bromo-***N***-**(**2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (**1i**): white solid. <sup>1</sup>**H NMR** (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  11.06 (s, 1H), 8.19 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.9 Hz, 1H); <sup>13</sup>**C NMR** (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  163.69, 135.52, 134.20, 130.97, 130.80, 127.37, 121.90; **IR** (neat) v 3712, 2319, 1467, 1055, 1033, 996, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m*/*z* Calcd for C<sub>14</sub>H<sub>5</sub>SF<sub>7</sub>NO [M+H]<sup>+</sup> 0535


415.9515, found 415.9535.



**4-chloro-***N***-**(**2**,**3**,**5**,**6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (**1j**): white solid. <sup>1</sup>**H** NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  11.05 (s, 1H), 8.03 (d, *J* = 8.5 Hz, 2H), 7.66 (d, *J* = 8.5 Hz, 2H); <sup>13</sup>**C** NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  164.16, 137.70, 130.84, 130.12, 128.83; **IR** (neat) v 3709, 2707, 2319, 1462, 1054, 1033, 1013, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>14</sub>H<sub>5</sub>ClF<sub>7</sub>NO [M+H]<sup>+</sup> 372.0021, found 372.0039.




**3-bromo-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (1k): white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  11.01 (s, 1H), 8.02– 7.89 (m, 2H), 7.80 (d, *J* = 8.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$ 164.32, 131.82, 131.20, 130.27, 126.77; IR (neat) v 3750, 3250, 2989, 2707, 2318, 1679, 1468, 997, 897 cm<sup>-1</sup>; HRMS (ESI-TOF) *m/z* Calcd for C<sub>14</sub>H<sub>5</sub>SF<sub>7</sub>NO [M+H]<sup>+</sup> 415.9515, found 415.9533.



*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)-4-(trifluoromethyl)benzamide (11): white solid. <sup>1</sup>H NMR (400 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  11.20 (s, 1H), 8.20 (d, *J* = 8.1 Hz, 2H), 7.96 (d, *J* = 8.2 Hz, 2H); <sup>13</sup>C NMR (100 MHz, (CD<sub>3</sub>)<sub>2</sub>SO)  $\delta$  164.13, 135.88, 132.49 (q, *J*<sub>C-F</sub> = 31.6 Hz), 129.18, 125.74 (q, *J*<sub>C-F</sub> = 3.6 Hz), 123.81 (q, *J*<sub>C-F</sub> = 271.3 Hz); IR (neat) v 3714, 3250, 2319, 1683, 1472, 1327, 1172, 1132, 999 cm<sup>-1</sup>;

**HRMS** (ESI-TOF) m/z Calcd for C<sub>15</sub>H<sub>5</sub>F<sub>10</sub>NO [M+H]<sup>+</sup> 406.0284, found 406.0291.



**4-acetyl-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide** (1m): white solid. <sup>1</sup>H NMR (400 MHz,  $(CD_3)_2SO$ )  $\delta$  10.98 (s, 1H), 7.97 (s, 4H), 2.65 (s, 3H); <sup>13</sup>C NMR (100 MHz,  $(CD_3)_2SO$ )  $\delta$  197.70, 164.48, 139.72, 135.75, 128.57, 128.44, 27.06; IR (neat) v 3750, 2692, 1474, 1055, 1002, 897 cm<sup>-1</sup>; HRMS (ESI-TOF) *m*/*z* Calcd for C<sub>16</sub>H<sub>8</sub>F<sub>7</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 380.0516, found 380.5021.

## **Optimization Studies**

Experimental procedure for the optimization of Pd catalysts (Table S1): A 50 mL Schlenk-type sealed tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with the amide substrate (**1a**, 0.1 mmol), *O*-benzoyl hydroxylmorpholine (0.2 mmol), Pd(OAc)<sub>2</sub> (10 mol %), ligand (20 mol %), CsF (0.2 mmol), and solvent (1.0 mL). The reaction tube was capped, evacuated briefly under high vacuum and then charged with N<sub>2</sub> (1 atm, balloon) (×3). The reaction mixture was stirred at 130 °C for 18 h. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with ethyl acetate and then filtered through a small pad of Celite. The filtrate was concentrate *in vacuo*. The NMR yield of desired product **3a** was determined by integration using an internal standard (dibromomethane).

| t-Bu  | H Ar +                                                                     | OBz 20 mol %<br>20 mol %<br>2 equiv<br>solve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | % [Pd]<br>Ligand<br>. CsF<br>ent t-Bu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a<br>reaction<br>N-Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Entry | [Pd]                                                                       | Ligand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Solvent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yield (%) <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1     | Pd(OAc) <sub>2</sub>                                                       | PCy <sub>3</sub> ⋅HBF <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2     | Pd(OAc) <sub>2</sub>                                                       | Cy-JohnPhos·HBF <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3     | Pd(OAc) <sub>2</sub>                                                       | SPhos-HBF <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4     | Pd(dba) <sub>2</sub>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5     | Pd(dba) <sub>2</sub>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6     | Pd(OAc) <sub>2</sub>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7     | Pd(OAc) <sub>2</sub>                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2-dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | <i>t</i> -Bu<br><b>1a</b> , Ar = (4<br>Entry<br>1<br>2<br>3<br>4<br>5<br>6 | $\frac{P}{t-Bu} + \frac{P}{H} + \frac$ | $\frac{10 \text{ mol } 6}{20 \text{ mol } \%}$ $\frac{10 \text{ mol } \%}{2 \text{ equiv}}$ $\frac{10 \text{ mol } \%}{130 \text{ °C}}$ | $\begin{array}{c c} & \begin{array}{c} 2 \ equiv. \ CsF \\ \hline solvent \\ 130 \ ^\circC, 18 \ h \end{array} & \begin{array}{c} 1 \\ \hline t-Bu \end{array} & \begin{array}{c} 1 \\ \hline 1a, Ar = (4-CF_3)C_6F_4 \end{array} & (2 \ equiv) \end{array} & \begin{array}{c} 1 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \end{array} & \begin{array}{c} toluene \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \end{array} & \begin{array}{c} toluene \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \end{array} & \begin{array}{c} toluene \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ \hline 1 \\ Pd(OAc)_2 \\ PCy_3 \ HBF_4 \\ \hline 1 \\ Pd(OAc)_2 \\ \hline 1 \\ Pd$ |

<sup>a</sup> Reaction conditions: 1a (0.1 mmol), *O*-benzoyl hyroxylmorpholine (2.0 equiv), Pd(OAc)<sub>2</sub> (10 mol %), CsF (2.0 equiv), ligand (20 mol %), solvent (1 mL), 130 °C, 18 h.
 <sup>b</sup> The yield was determined by <sup>1</sup>H NMR analysis of the crude product using dibromomethane as an internal standard.

Table S1. Optimization of Pd catalyst for intermolecular amination reaction

Experimental procedure for the optimization of general reaction conditions (Table S2): A 50 mL Schlenk-type sealed tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with the amide substrate (**1a**, 0.1 mmol), *O*-benzoyl hydroxylmorpholine (0.2 mmol), Pd(OAc)<sub>2</sub> (10 mol %), additive (0.1 mmol), base (0.2 mmol), and solvent (1.0 mL). The reaction tube was capped, evacuated briefly under high vacuum and then charged with N<sub>2</sub> (1 atm, balloon) (×3). The reaction mixture was stirred at 130 °C for 18 h. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with ethyl acetate and then filtered through a small pad of Celite. The filtrate was concentrate *in vacuo*. The NMR yield of desired product **3a** was determined by integration using an internal standard (dibromomethane).

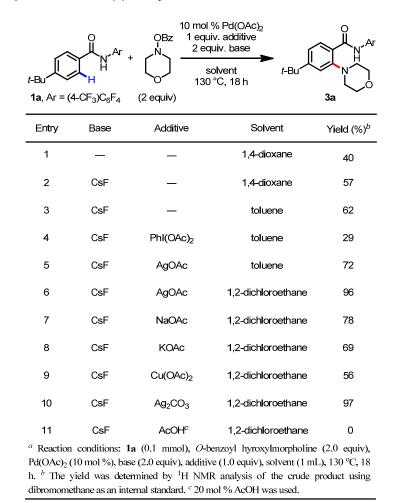
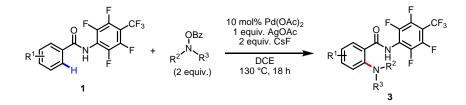



Table S2. Optimization of Pd(II)-catalyzed intermolecular amination reaction <sup>a</sup>

Experimental procedure for the optimization of general reaction condition (Table S3): A 50 mL Schlenk-type sealed tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with the amide substrate (**1a**, 0.1 mmol), *O*-benzoyl hydroxylmorpholine (0.2 mmol),  $Pd(OAc)_2$  (10 mol %), AgOAc (0.1 mmol), base (0.2 mmol), and DCE (1.0 mL). The reaction tube was capped, evacuated briefly under high vacuum and then

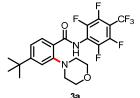

charged with N<sub>2</sub> (1 atm, balloon) (×3). The reaction mixture was stirred at 130 °C for 18 h. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was diluted with ethyl acetate and then filtered through a small pad of Celite. The filtrate was concentrate *in vacuo*. The NMR yield of desired product **3a** was determined by integration using an internal standard (dibromomethane).

| <i>t</i> -Bu<br><b>1a</b> , Ar = (4 | 0<br>N <sup>-Ar</sup> +<br>H<br>4-CF <sub>3</sub> )C <sub>6</sub> F <sub>4</sub> | OBz 1                  | mol % Pd(OAc<br>equiv AgOAc<br>2 equiv. base<br>DCE<br>130 °C, 18 h | )₂<br>►                          | Ar<br>N<br>3a          |
|-------------------------------------|----------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|----------------------------------|------------------------|
| Entry                               | Base                                                                             | Yield (%) <sup>b</sup> | Entry                                                               | Base                             | Yield (%) <sup>b</sup> |
| 1                                   | CsF                                                                              | 96                     | 6                                                                   | KF                               | 88                     |
| 2                                   | Cs <sub>2</sub> CO <sub>3</sub>                                                  | <2                     | 7                                                                   | Na <sub>2</sub> HPO <sub>4</sub> | 39                     |
| 3                                   | NaOAc                                                                            | 53                     | 8                                                                   | $NaH_2PO_4$                      | 56                     |
| 4                                   | KOAc                                                                             | 42                     | 9                                                                   | K <sub>2</sub> HPO <sub>4</sub>  | 80                     |
| 5                                   | Na <sub>2</sub> CO <sub>3</sub>                                                  | 78                     | 10                                                                  | KH₂PO₄                           | 58                     |

Table S2. Base screening for Pd(II)-catalyzed intermolecular amination reaction <sup>a</sup>

<sup>*a*</sup> Reaction conditions: **1a** (0.1 mmol), *O*-benzoyl hyroxylmorpholine (2.0 equiv), Pd(OAc)<sub>2</sub> (10 mol %), base (2.0 equiv), AgOAc (1.0 equiv), DCE (1 mL), 130 °C, 18 h. <sup>*b*</sup> The yield was determined by <sup>1</sup>H NMR analysis of the crude product using dibromomethane as an internal standard.

#### **General Procedure for Amination**



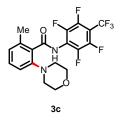

Scheme S2. General procedure for Pd(II)-catalyzed intermolecular amination

General procedure for Pd(II)-catalyzed amination reaction: A 50 mL Schlenk-type sealed tube (with a Teflon high pressure valve and side arm) equipped with a magnetic stir bar was charged with the amide substrate (1, 0.2 mmol), *O*-benzoyl hydroxylamine (82.9 mg, 0.4 mmol), Pd(OAc)<sub>2</sub> (4.5 mg, 10 mol %), AgOAc (33.4 mg, 0.2 mmol), CsF (60.7 mg, 0.4 mmol), and DCE (1.0 mL). The reaction tube was capped, evacuated briefly under high vacuum and then charged with N<sub>2</sub> (1 atm, balloon) (×3). The reaction mixture was stirred at 130 °C for 18 h. Upon completion, the reaction mixture was cooled to room temperature. The reaction mixture was

diluted with ethyl acetate and then filtered through a small pad of Celite. The filtrate was concentrate *in vacuo*. The resulting residue was purified by silica gel flash column chromatography using hexanes/EtOAc as the eluent.

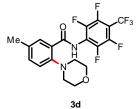
## Characterization of Amination Products:




**4-(***tert***-butyl)-2-morpholino-***N***-(<b>2,3,5,6-tetrafluoro-4**-(**trifluoromethyl)phenyl)benzamide** (**3a**): white solid (91.8 mg, 96% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.27 (d, *J* = 8.0 Hz, 1H), 7.43–7.40 (m, 2H), 3.89 (t, *J* = 4.0 Hz, 4H), 3.09 (t, *J* = 4.0 Hz, 1H), 1.34 (s, 9H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.51, 158.13, 150.90, 146.09 (m), 143.43 (m), 140.95 (m), 132.12, 124.24, 123.79, 121. 60 (m), 121.13 (q,

 $J_{C-F} = 273$  Hz) 67.41, 53.97, 35.57, 31.22 ; **IR** (neat) v 2988, 1705, 1655, 1473, 1335, 1283, 1222, 1142, 979 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>22</sub>H<sub>21</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 479.1564, found 479.1573.

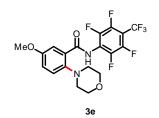
2-morpholino-N-(2,3,5,6-tetrafluoro-4-


(trifluoromethyl)phenyl)benzamide (3b): white solid (71.7 mg, 85% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.09 (s, 1H), 8.34–8.32 (m, 1H), 7.62–7.58 (m, 1H), 7.45–7.36 (m, 2H), 3.88 (t, J = 4.3 Hz, 4H), 3.08 (t, J = 4.4 Hz, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.58, 151.13, 134.08, 132.44, 126.98, 126.62, 122.88, 67.36, 54.00; **IR** (neat) v 2924, 2854, 1691, 1655, 1505, 1474, 1459, 1336, 1235, 1143, 1116, 997, 918 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd

for C<sub>18</sub>H<sub>13</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 423.0938, found 423.0950.



### 2-methyl-6-morpholino-N-(2,3,5,6-tetrafluoro-4-


(trifluoromethyl)phenyl)benzamide (3c): white solid (77.6 mg, 89% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.86 (s, 1H), 7.33 (t, J = 7.9 Hz, 1H), 7.06– 7.03 (m, 2H), 3.08 (m, 4H), 3.00 (m, 4H), 2.45 (s, 3 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.96, 150.29, 139.12, 131.29, 130.05, 127.38, 117.41, 67.15, 53.78, 20.62; **IR** (neat) v 3244, 1740, 1681, 1472, 1145, 998 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m*/*z* Calcd for C<sub>19</sub>H<sub>15</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 437.1094, found 437.1113.



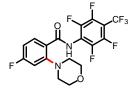
5-methyl-2-morpholino-N-(2,3,5,6-tetrafluoro-4-

(trifluoromethyl)phenyl)benzamide (3d): white solid (71.6 mg, 82% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.28 (s, 1H), 8.15 (s, 1H), 7.40 (t, J = 8.2 Hz, 1H), 7.33 (t, J = 8.2 Hz, 1H), 3.87 (m, 4H), 3.05 (m, 4H), 2.32 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.74, 148.60, 137.08, 134.70, 132.65, 126.20, 122.94, 67.42, 54.05, 21.06; **IR** (neat) v 3750, 2847, 1737, 1692, 1655, 1506, 1476, 1459, 1336, 1236, 1144, 1116, 998 cm<sup>-1</sup>; **HRMS** 

(ESI-TOF) m/z Calcd for C<sub>19</sub>H<sub>15</sub>F<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 437.1094, found 437.1108.



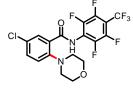
5-methoxy-2-morpholino-N-(2,3,5,6-tetrafluoro-4-


(trifluoromethyl)phenyl)benzamide (3e): yellow foam (71.4 mg, 79% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.66 (s, 1H), 7.88 (d, J = 3.1

Hz, 1H), 7.40 (d, J = 8.8 Hz, 1H), 7.15 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 3.1$  Hz, 1H), 3.92 (comp. m, 7H), 3.06 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.38, 158.14, 143.88, 127.71, 124.64, 121.04, 115.08, 67.46, 55.97, 54.13; **IR** (neat) v 3705, 2845, 1737, 1691, 1656, 1506, 1477, 1337, 1234, 1144, 1116, 1047, 1033, 1000 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m*/*z* Calcd for C<sub>19</sub>H<sub>15</sub>F<sub>7</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 453.1044, found 453.1051.

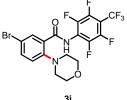


**4-methoxy-2-morpholino-***N***-**(**2,3,5,6-tetrafluoro-4-**(**trifluoromethyl)phenyl)benzamide** (**3f**): white powder (79.6 mg, 88% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.77 (s, 1H), 8.30 (d, *J* = 8.6 Hz, 1H), 6.89 (comp. m, 2H), 3.88 (comp. m, 7H), 3.06 (m, 4H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  164.09, 163.33, 152.97, 134.47, 119.18, 111.23, 109.42, 67.37, 55.87, 54.04; **IR** (neat) v 2965, 2849, 1739, 1688, 1654, 1601, 1507, 1474, 1458, 1337, 1231, 1143, 1115, 997, 863 cm<sup>-1</sup>; **HRMS** 


(ESI-TOF) m/z Calcd for C<sub>19</sub>H<sub>15</sub>F<sub>7</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 453.1044, found 453.1060.



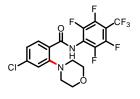
3a


**4-fluoro-2-morpholino-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3g):** white solid (60.7 mg, 69% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.53 (s, 1 H), 8.35 (dd,  $J_1$  = 8.8 Hz,  $J_2$  = 6.7 Hz, 1H), 7.09 (comp. m, 2 H), 3.89 (m, 4 H), 3.06 (m, 4 H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  167.98 (d, J = 255.6 Hz), 162.70, 153.36 (d, J = 8.0 Hz),134.98 (d, J = 10.0 Hz), 123.00 (d, J = 4.0 Hz), 114.20 (d, J = 21.1 Hz), 110.21 (d, J = 22.1 Hz), 67.22, 54.08; **IR** (neat) v 3749, 2319, 28, 098, 807 cm<sup>-1</sup>: **HPMS** (ESL TOF) m/z Calad for C = H, F N O, [M+H]<sup>+</sup>

1691, 1474, 1460, 1338, 998, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>12</sub>F<sub>8</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 441.0844, found 441.0861.



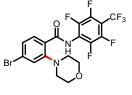
**3-chloro-6-morpholino-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3h):** white solid (54.8 mg, 60% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.99 (s, 1H), 8.33 (d, *J* = 2.4 Hz, 1H), 7.57 (dd, *J*<sub>1</sub> = 8.6 Hz, *J*<sub>2</sub> = 2.4 Hz, 1H), 7.41 (*J* = 8.6 Hz, 1H), 3.90 (m, 4H), 3.08 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.14, 149.25, 133.71, 132.82, 132.02, 128.01, 124.31, 67.04, 53.80; IR (neat) v 3750,


2857, 1692, 1655, 1506, 1475, 1459, 1336, 1236, 1143, 1115, 999, 918, 878 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>12</sub>ClF<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 457.0548, found 457.0564.



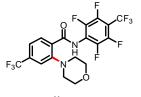
(trifluoromethyl)phenyl)benzamide (3i): white solid (56.1 mg, 56% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.92 (s, 1H), 8.47 (d, J = 2.4 Hz, 1H), 7.72 (dd,  $J_1 = 8.6$  Hz,  $J_2 = 2.4$  Hz, 1H), 7.34 (J = 8.6 Hz, 1H), 3.90 (m, 4H), 3.08 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.05, 149.78, 136.69, 135.01, 128.20, 124.51, 120.49, 67.02, 53.75; IR (neat) v 3706, 2864,

3-bromo-2-morpholino-N-(2,3,5,6-tetrafluoro-4-


<sup>3i</sup> 2844, 2707, 2318, 1462, 1339, 1055, 1033, 1012, 914, 897 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>12</sub>SF<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 501.0043, found 501.0057.

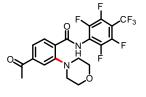


3i


**4-chloro-2-morpholino-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3j):** white solid (65.8 mg, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.61 (s, 1H), 8.27 (d, *J* = 8.6 Hz, 1H), 7.41 (s, 1H), 7.37 (*J* = 8.6 Hz, 1H), 3.90 (m, 4H), 3.09 (m, 4H); <sup>13</sup>C

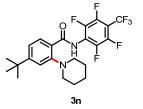
**NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.48, 151.89, 139.76, 133.56, 127.01, 124.90, 123.14, 66.96, 53.79; **IR** (neat) v 2966, 2854, 1692, 1589, 1507, 1458, 1337, 1236, 1145, 1115, 997, 945 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m*/*z* Calcd for C<sub>18</sub>H<sub>12</sub>ClF<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 457.0548, found 457.0566.




**4-bromo-2-morpholino**-*N*-(**2,3,5,6-tetrafluoro-4**-(**trifluoromethyl**)**phenyl**)**benzamide** (**3k**): white solid (75.2 mg, 75% yield). <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.58 (s, 1H), 8.20 (d, *J* = 8.6 Hz, 1H), 7.56 (*J* = 2.4 Hz, 1H), 7.53 (dd, *J*<sub>1</sub> = 8.6 Hz, *J*<sub>2</sub> = 2.4 Hz, 1H), 3.90 (m, 4H), 3.10 (m, 4H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  162.64, 151.88, 133.69, 130.08, 128.22, 126.17, 125.43, 67.00, 53.86; **IR** (neat) v 2963, 2924, 2853,

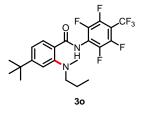
1691, 1584, 1505, 1472, 1456, 1336, 1234, 1186, 1143, 1114, 996, 936, 791 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>18</sub>H<sub>12</sub>SF<sub>7</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 501.0043, found 501.0062.



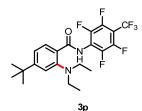

4-trifluoromethyl-2-morpholino-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3l): white solid (66.7 mg, 68% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 12.61 (s, 1H), 8.46 (d, J = 8.0 Hz, 1H), 7.67 (s, 1H), 7.64 (d, J = 8.0 Hz, 1H), 3.93 (m, 4H), 3.14 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 162.26, 151.35, 135.41 (q,  $J_{C-F} = 32.8$  Hz), 133.20, 129.58, 123.24 (q,  $J_{C-F} = 3.6$  Hz), 123.10 (q,  $J_{C-F} = 273.6$  Hz),

119.49 (q,  $J_{C-F} = 3.6$  Hz), 66.95, 53.81; **IR** (neat) v 3749, 2849, 2707, 2692, 2319, 1694, 1656, 1613, 1505, 1474, 1459, 1418, 1332, 1128, 1113, 996, 948 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>19</sub>H<sub>12</sub>F<sub>10</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> 491.0812, found 491.0824.



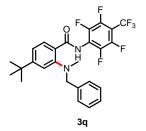

**4-acetyl-6-morpholino-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3m):** white solid (65.0 mg, 70% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.91 (s, 1H), 8.45 (d, *J* = 8.1 Hz, 1H), 8.06 (s, 1H), 7.91 (dd, *J*<sub>1</sub> = 8.1 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H), 3.92 (m, 4H), 3.15 (m, 4H), 2.68 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  196.87, 162.57, 151.25, 141.07, 132.87, 130.06, 126.36, 121.92, 67.01, 53.78, 26.88; IR

(neat) v 2923, 2853, 1685, 1506, 1336, 1234, 1141, 996, 927, 875, 855, 715 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>20</sub>H<sub>15</sub>F<sub>7</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> 465.1044, found 465.1061.



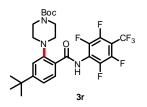

**4-(***tert***-butyl)-2-(piperidin-1-yl)-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3n): white solid (92.3 mg, 97% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 13.7 (s, 1H), 8.25 (d,** *J* **= 8.4 Hz, 1H), 7.41–7.35 (m, 2H), 3.01 (m, 4H), 1.76 (m, 4H), 1.63 (m, 2H), 1.33 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) \delta 163.87, 157.72, 152.61, 131.80, 123.74, 123.57, 119.64, 55.29, 35.56, 31.32, 26.71, 23.65; IR (neat) v 3750, 2862, 2707, 2319, 1692, 1605, 1507, 1475, 1338, 1144, 998 cm<sup>-1</sup>; (Calad for C, H, E N, O, IM+H)<sup>+</sup> 477, 1771, found 477, 1780.** 

**HRMS** (ESI-TOF) m/z Calcd for C<sub>23</sub>H<sub>23</sub>F<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 477.1771, found 477.1780.




4-(*tert*-butyl)-2-(methyl(propyl)amino)-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3o): yellow oil (74.2 mg, 80% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 13.80 (s, 1H), 8.23 (d, J = 8.2 Hz, 1H), 7.38–7.35 (m, 2H), 3.01 (t, J = 7.7 Hz, 2H), 2.77 (s, 3H), 1.52 (m, 2H), 1.34 (s, 9H), 0.88 (t, J = 7.4, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ 163.83, 157.76, 151.71, 131.63, 124.40, 123.69, 119.64, 59.51, 44.77, 35.50, 31.25, 20.87, 11.88; **IR** (neat) v 3750, 2873, 2692, 2318, 1739, 1691, 1655, 1606, 1506, 1470, 1337, 1236, 1144, 997 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for  $C_{22}H_{23}F_7N_2O$  [M+H]<sup>+</sup> 465.1771, found 465.1789.



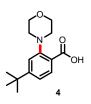

**4-**(*tert*-butyl)-2-(diethylamino)-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3p): yellow oil (67.8 mg, 73% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.26 (d, *J* = 8.3 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.34 (s, 1H), 3.11 (dd, *J*<sub>1</sub> = 14.4 Hz, *J*<sub>2</sub> = 7.2 Hz, 4H), 1.33 (s, 9H), 1.03 (t, *J* = 7.2 Hz, 6H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>)  $\delta$  163.97, 157.56, 148.99, 131.38, 126.31, 123.92, 120.77, 50.37, 35.45, 31.29, 12.23; **IR** (neat) v 2971, 2872, 1690, 1606, 1506, 1338, 1238,

1145, 998 cm<sup>-1</sup>; **HRMS** (ESI-TOF) m/z Calcd for C<sub>22</sub>H<sub>23</sub>F<sub>7</sub>N<sub>2</sub>O [M+H]<sup>+</sup> 465.1771, found 465.1787.



**2-(benzyl(methyl)amino)-4-(***tert***-butyl)-***N***-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (3q):** yellow oil (76.8 mg, 75% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  13.30 (s, 1H), 8.23 (d, *J* = 8.3 Hz, 1H), 7.38–7.35 (m, 1H), 7.28–7.26 (m, 4H), 7.16–7.13 (m, 2H), 4.20 (s, 2H), 2.76 (s, 3H), 1.32 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  163.72, 157.42, 151.20, 135.66, 131.93, 129.79, 128.76, 128.30, 123.55, 120.27, 61.80, 43.67, 35.48, 31.24; IR (neat) v 3749, 2866, 2707, 2693, 2319, 1691, 1655, 1605, 1507, 1473, 1338, 1146, 998 cm<sup>-1</sup>; **HRMS** (ESI-TOF)

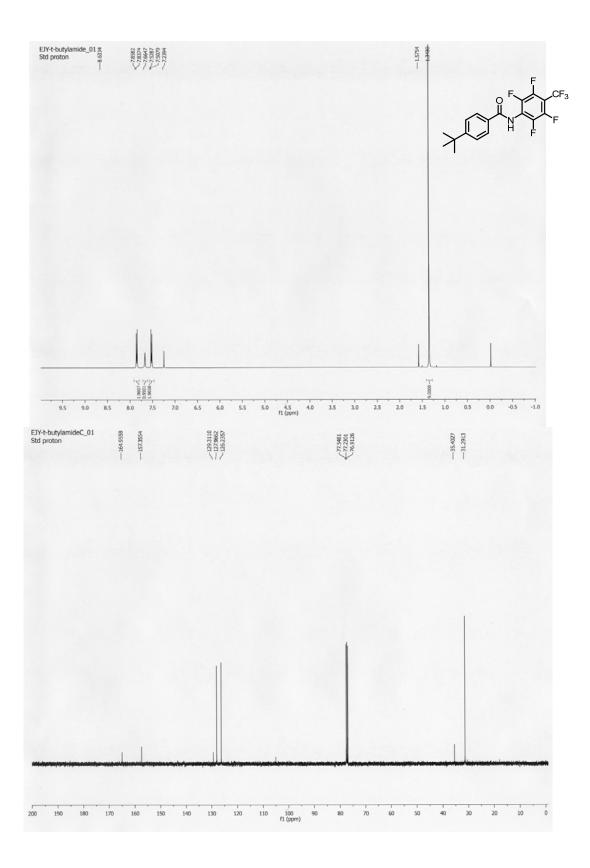
m/z Calcd for C<sub>26</sub>H<sub>23</sub>F<sub>7</sub>N<sub>2</sub>O<sub>5</sub> [M+H]<sup>+</sup> 513.1771, found 513.1792.

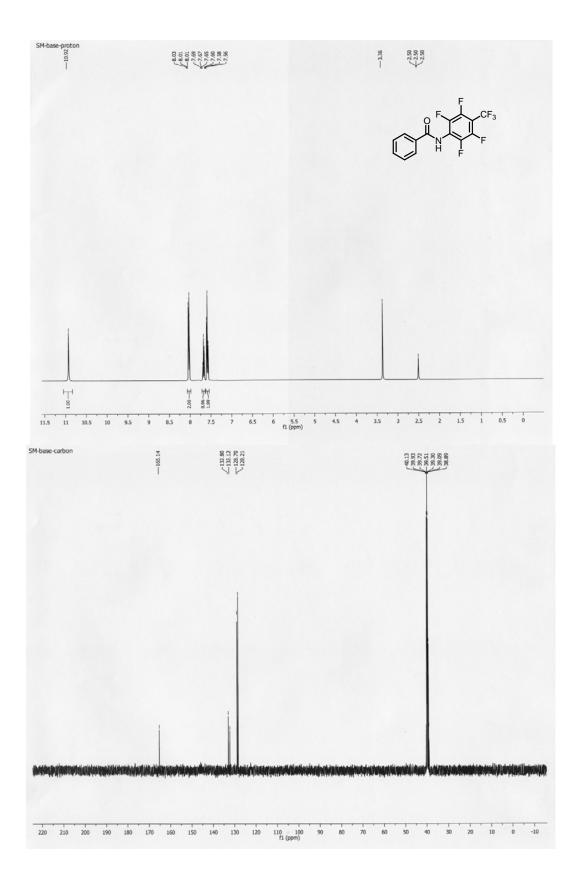


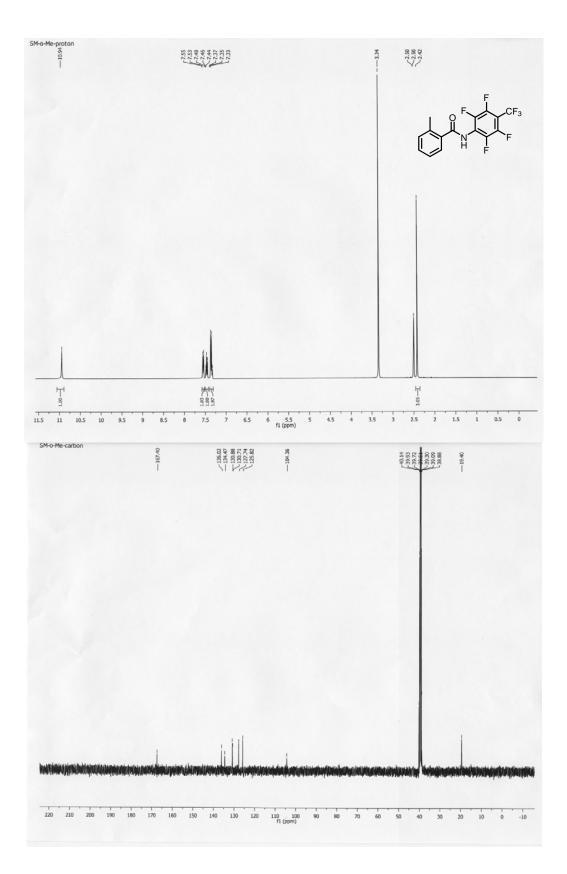

tert-butyl4-(5-(tert-butyl)-2-((2,3,5,6-tetrafluoro-4-<br/>(trifluoromethyl)phenyl)carbamoyl)phenyl)piperazine-1-carboxylate(3r): white solid (90.0 mg, 78% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$ 13.03 (s, 1H), 8.26 (d, J = 8.3 Hz, 1H), 7.40–7.37 (m, 2H), 3.62 (s, 4H),3.04 (s, 4H), 1.47 (s, 9H), 1.33 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$ 163.50, 158.11, 154.63, 151.00, 132.19, 124.29, 123.71, 119.54, 80.71,

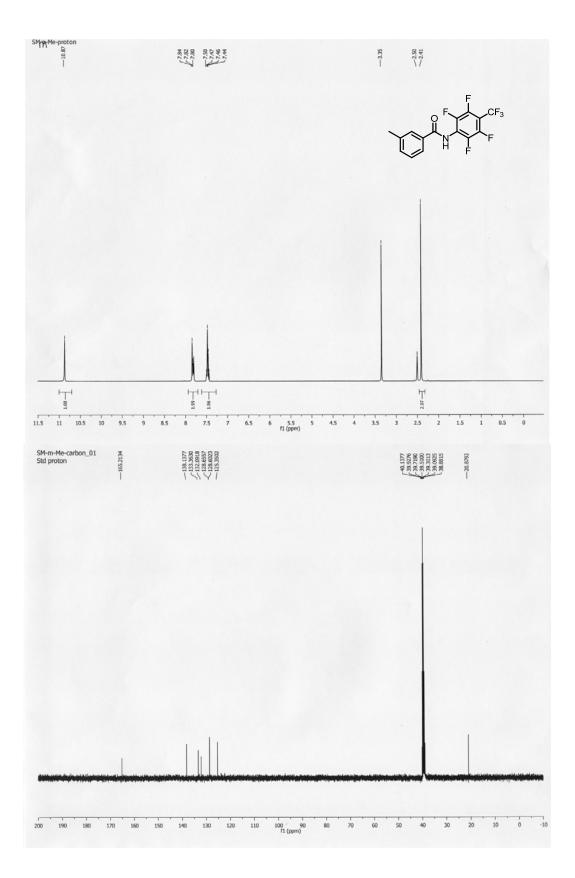
53.75, 35.58, 31.26, 28.57; **IR** (neat) 2968, 1696, 1605, 1508, 1477, 1339, 1283, 1237, 1145, 998, cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for  $C_{27}H_{30}F_7N_3O_3$  [M+H]<sup>+</sup> 573.2248, found 578.2246.

# Hydrolysis of amination product (3a) to carboxylic acid (4) (eq 6)

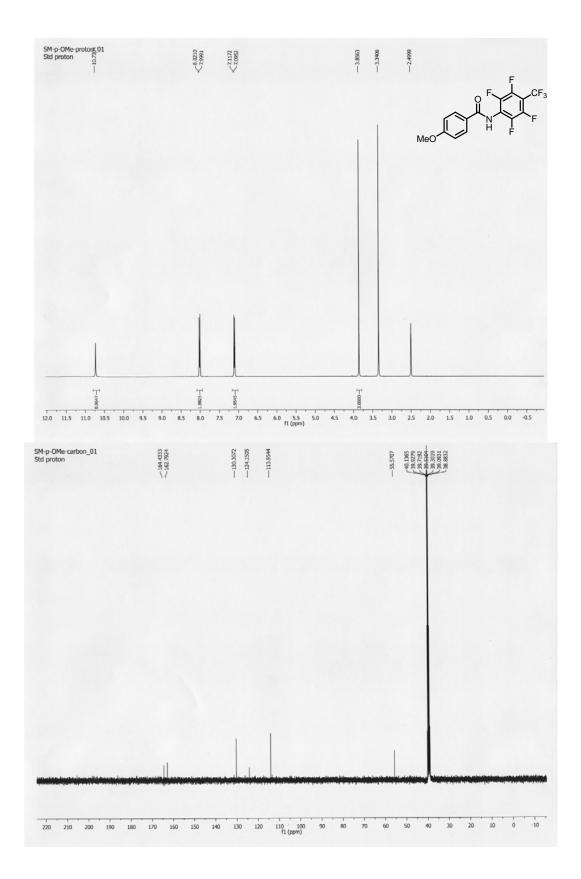

4-(*tert*-butyl)-2-morpholino-*N*-(2,3,5,6-tetrafluoro-4-(trifluoromethyl)phenyl)benzamide (**3a**, 48.9 mg, 0.1 mmol) was dissolved in trifluoroacetic acid, hydrochloric acid (2:1, 3 mL). The reaction mixture was stirred for 12 h at 100 °C. The reaction mixture was extracted with ethyl ether. The organic layer was washed with 1 % Na<sub>2</sub>CO<sub>3</sub>, dried over Na<sub>2</sub>SO<sub>4</sub>, and concentrated under vacuum to give the carboxylic acid (96%)

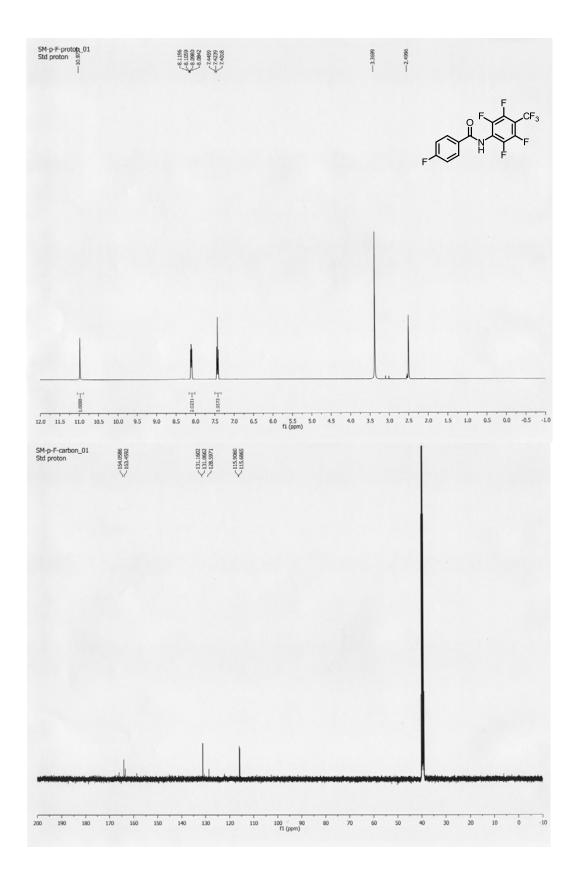


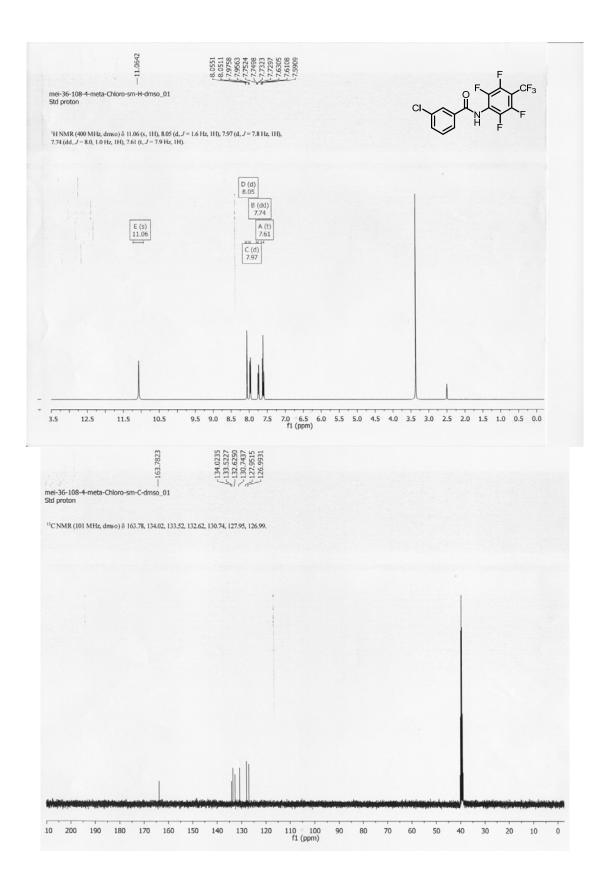


**2-morpholinobenzoic acid** (**4**): white solid. <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>)  $\delta$  10.79 (br, 1H), 8.24 (d, *J* = 8.3 Hz, 1H), 7.53–7.50 (m, 2H), 3.98 (s, 4H), 3.33 (s, 4H), 1.35 (s, 9H); <sup>13</sup>**C NMR** (100 MHz, CDCl<sub>3</sub>)  $\delta$  165.66, 159.54, 131.79, 126.03, 122.02, 119.24, 105.01, 66.68, 54.47, 35.83, 31.07; **IR** (neat) 2966, 1740, 1694, 1606, 1508, 1339, 1238, 1146, 998 cm<sup>-1</sup>; **HRMS** (ESI-TOF) *m/z* Calcd for C<sub>15</sub>H<sub>21</sub>NO<sub>3</sub> [M+H]<sup>+</sup> 264.1594, found 264.1593.

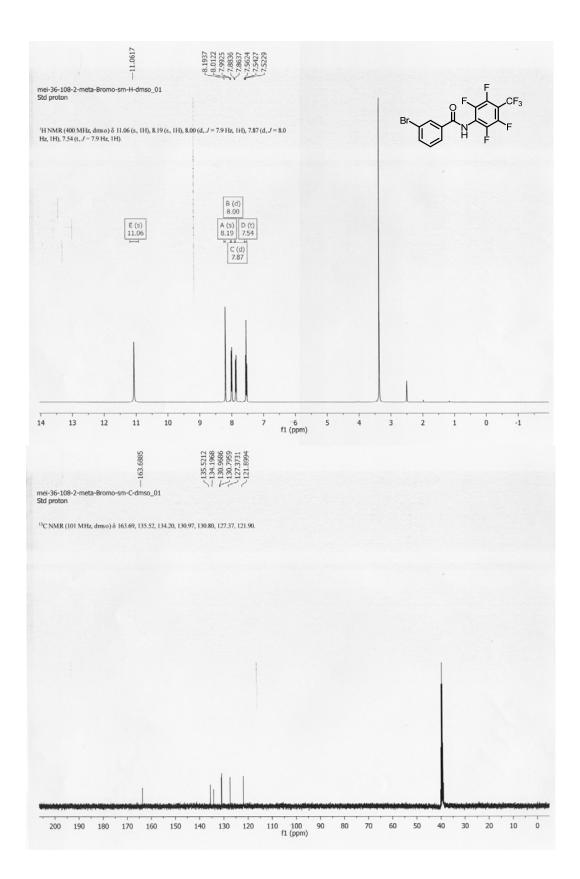

# Complete Ref. 8b

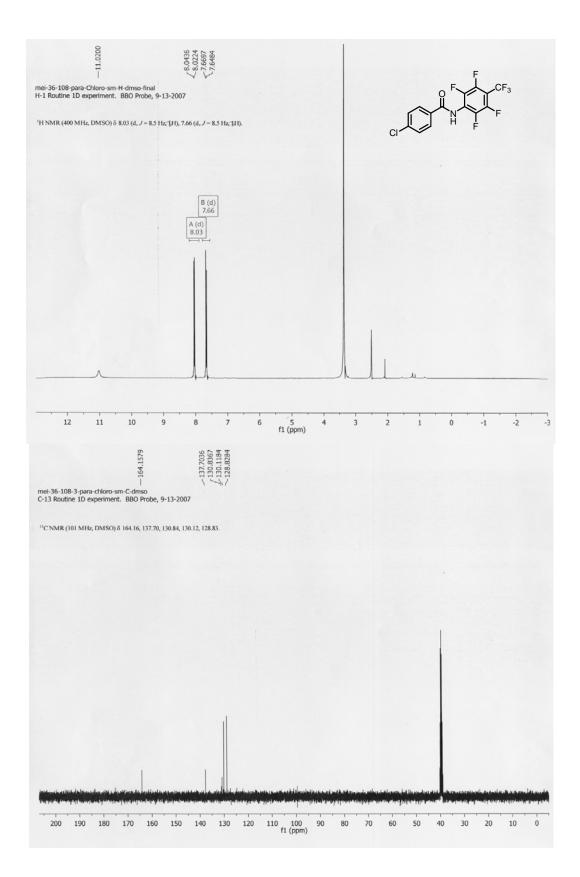

Tang, H.; Yan, Y.; Feng, Z.; de Jesus, R. K.; Yang, L.; Levorse, D. A.; Owens, K. A.; Akiyama, T. E.; Bergeron, R.; Castriota, G. A.; Doebber, T. W.; Ellsworth, K. P.; Lassman, M. E.; Li, C.; Wu, M. S.; Zhang, B. B.; Chapman, K. T.; Mills, S. G.; Berger, J. P.; Pasternak, A. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 6088

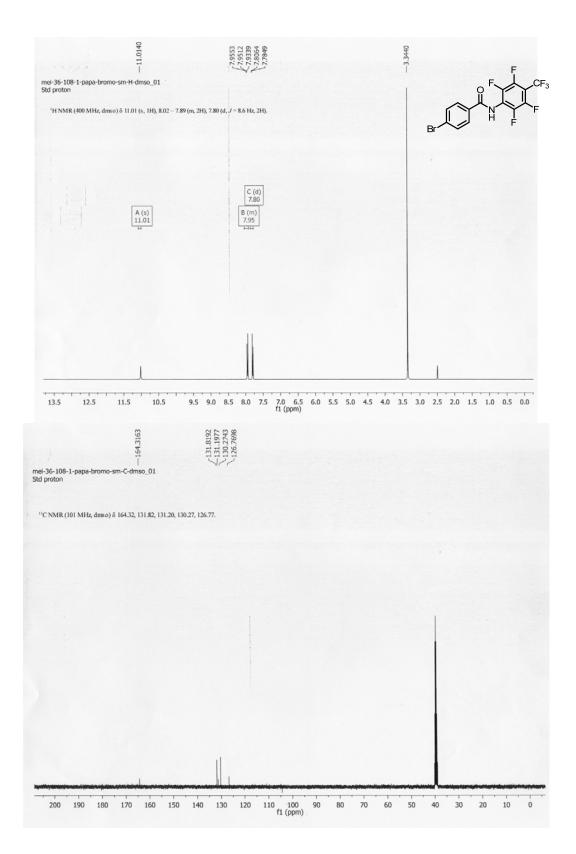


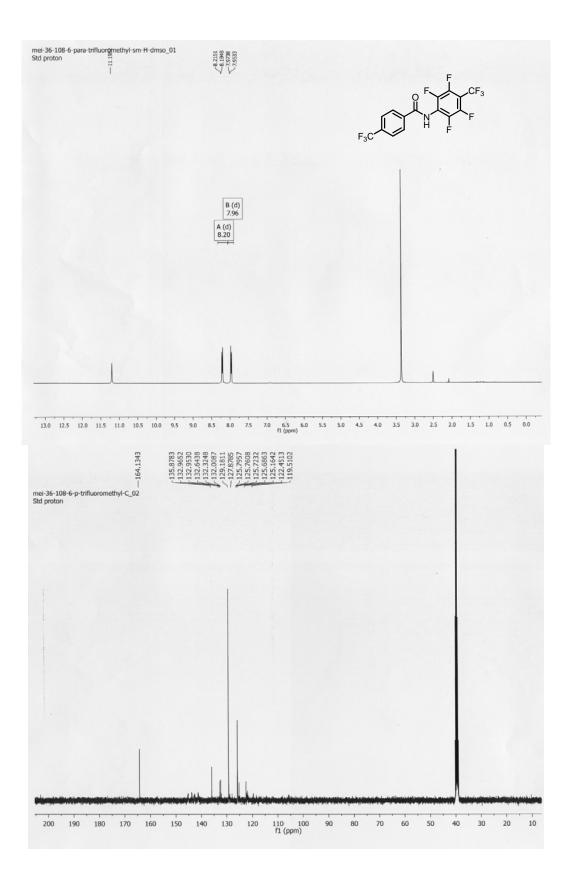



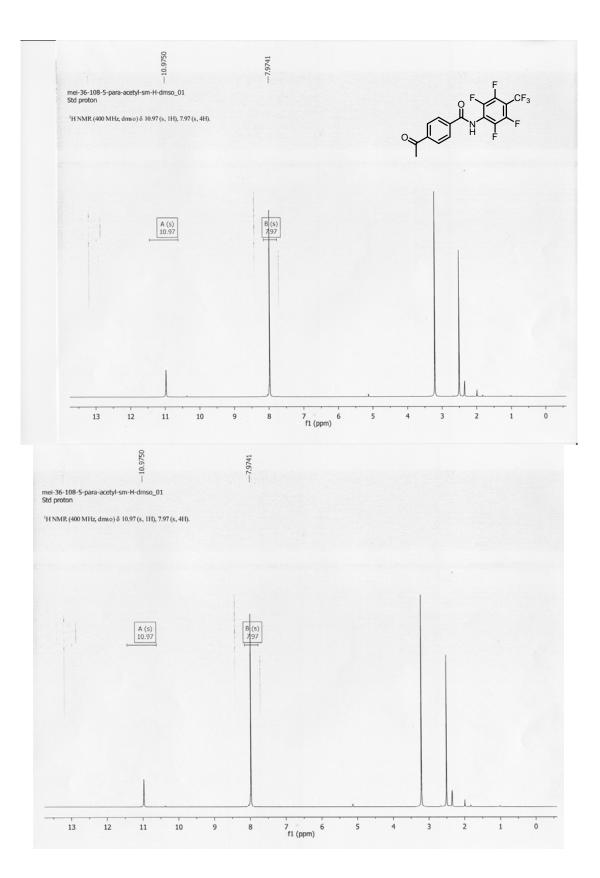



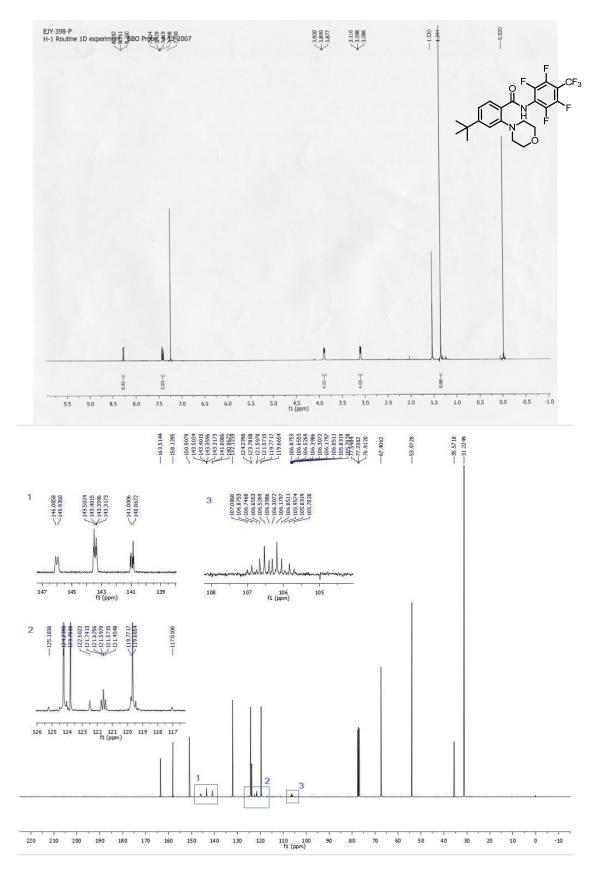



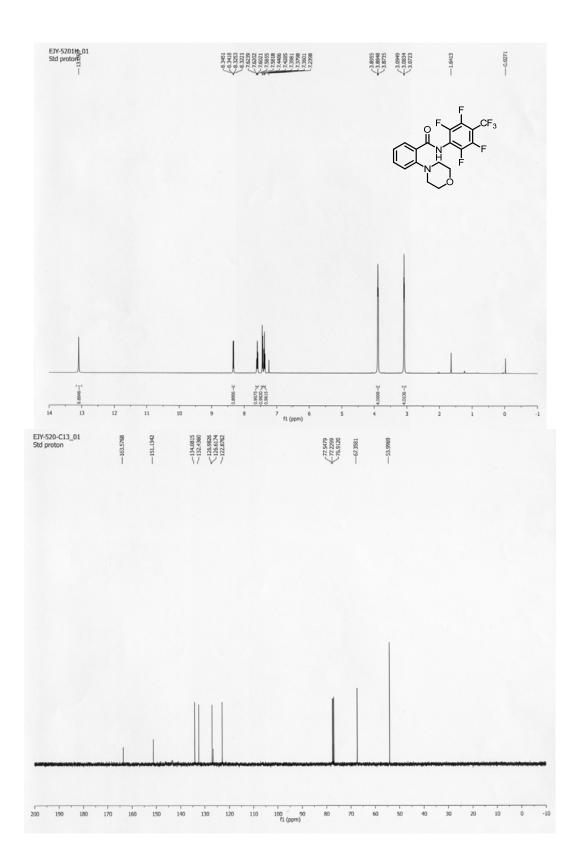



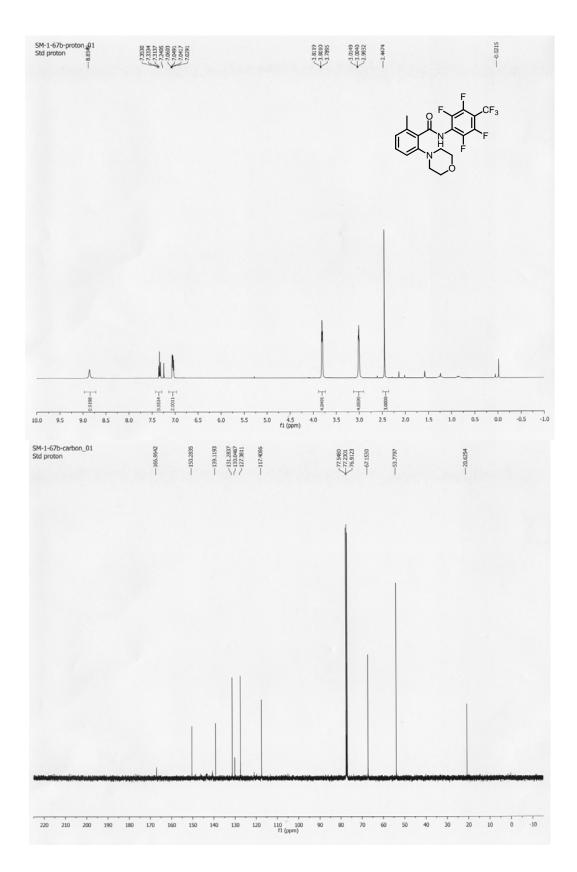



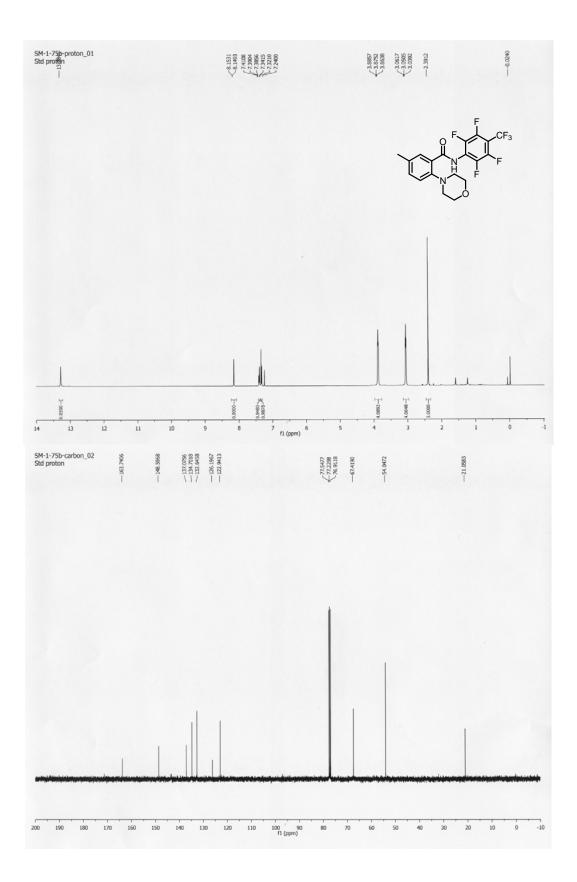



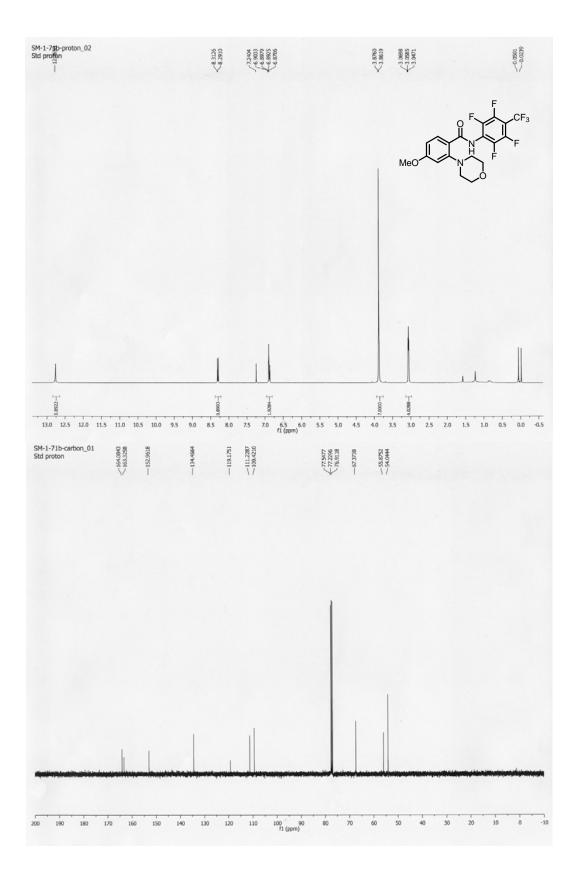



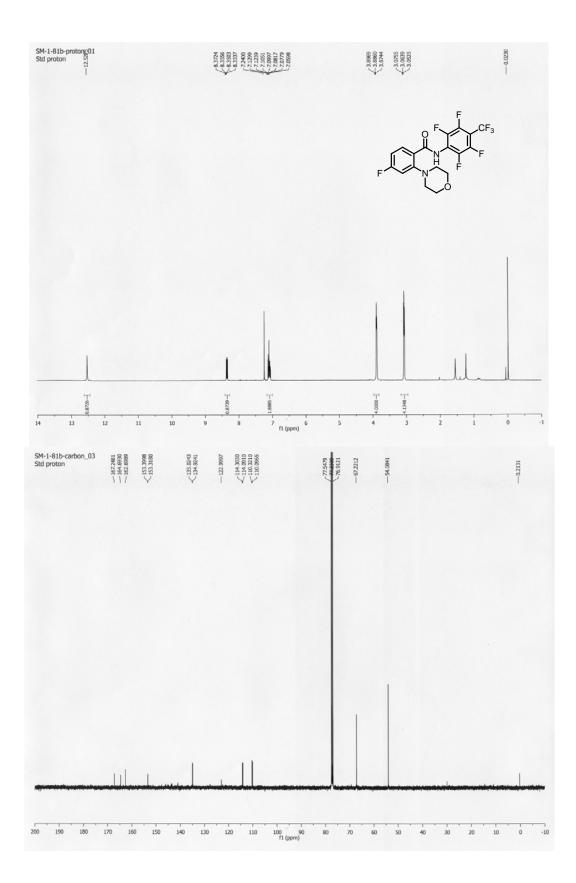



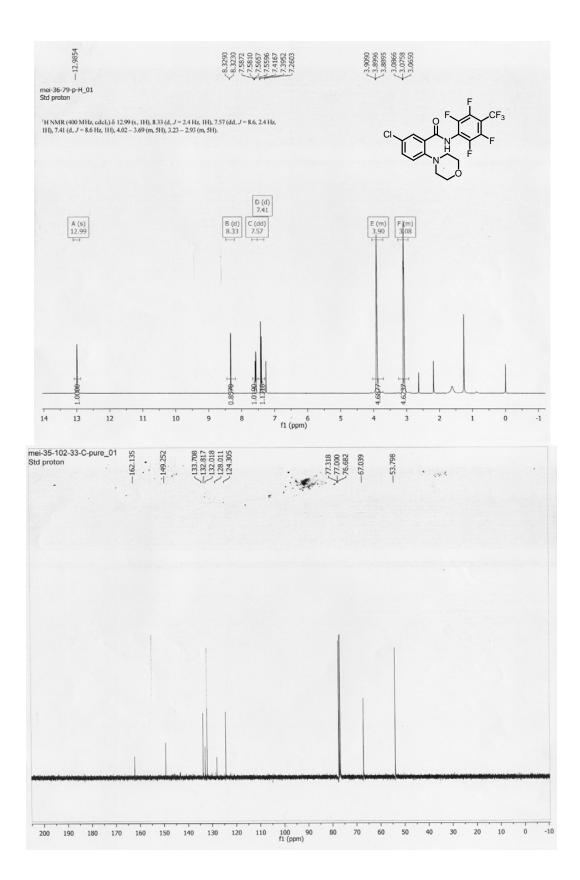



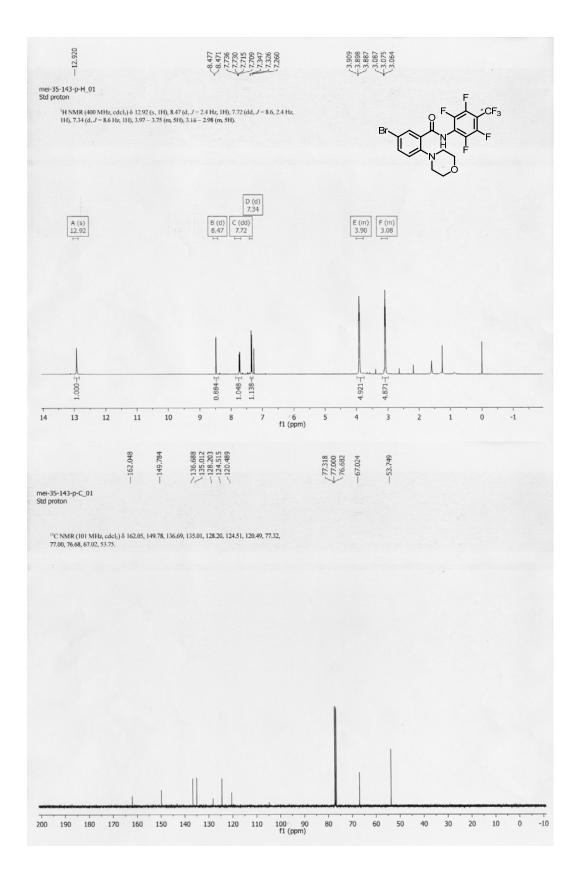



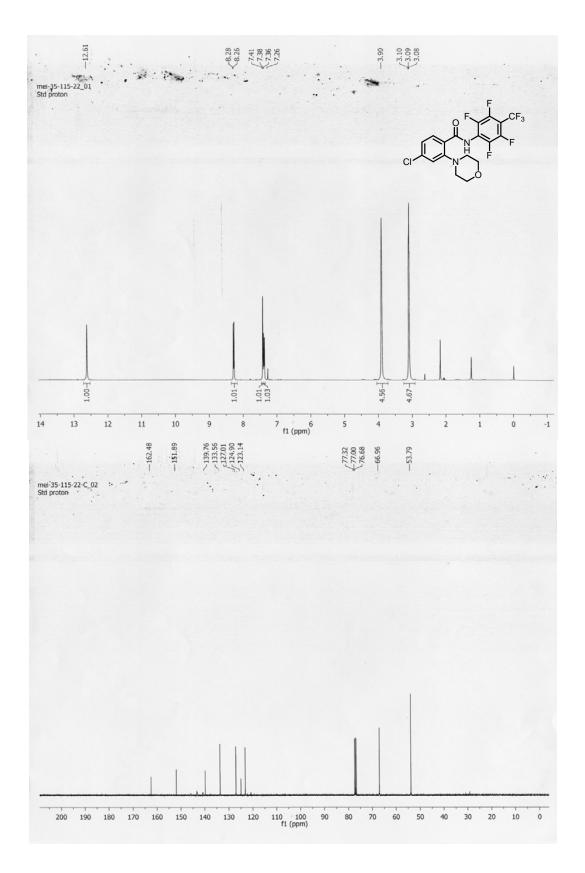


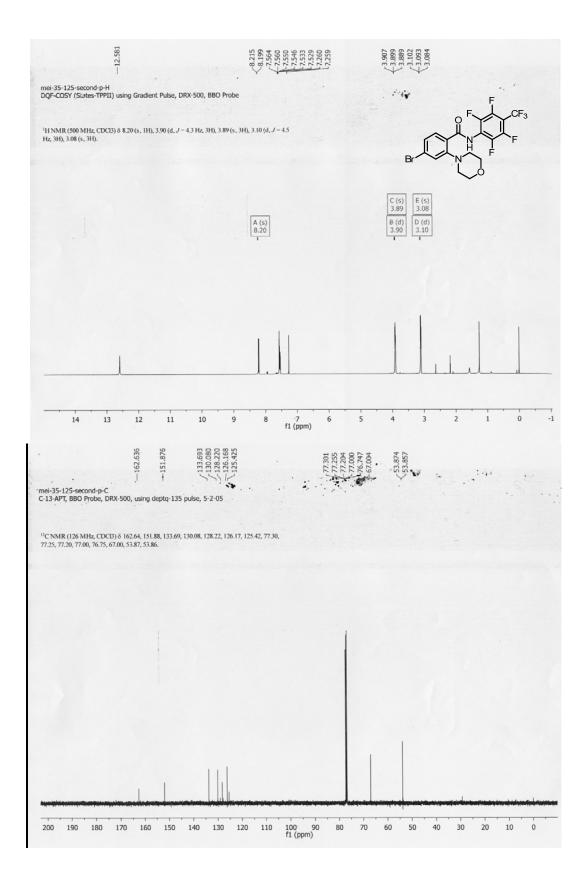



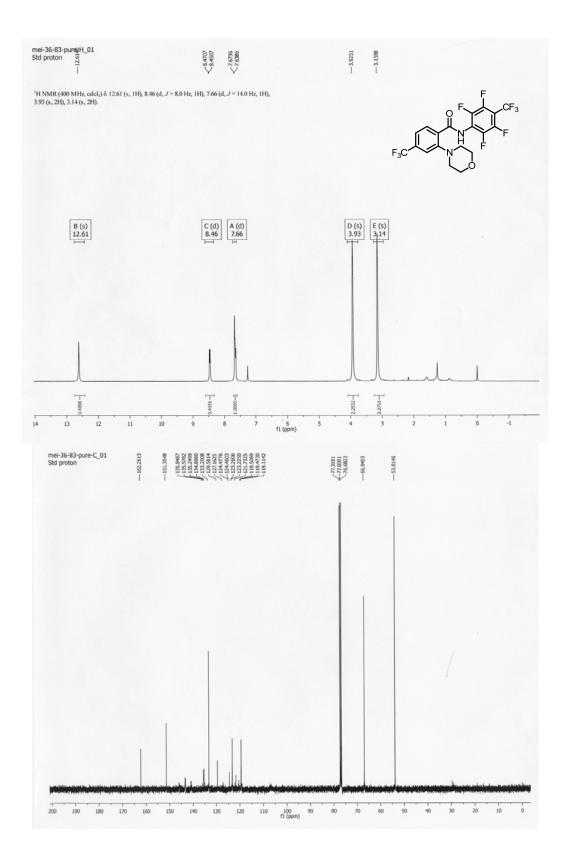



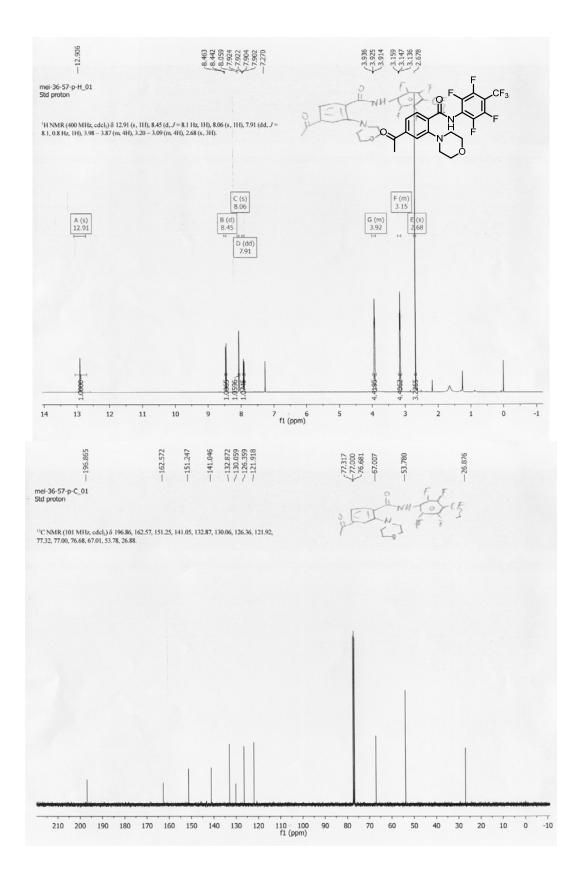



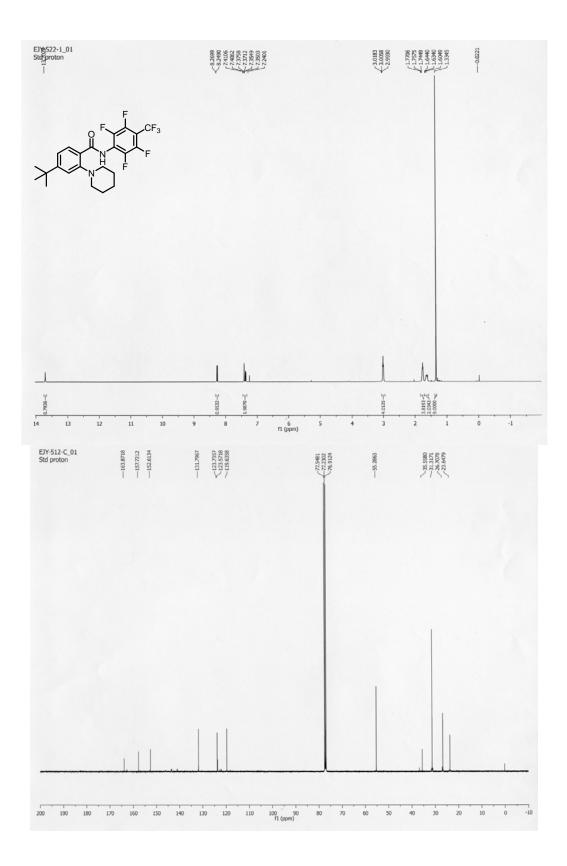



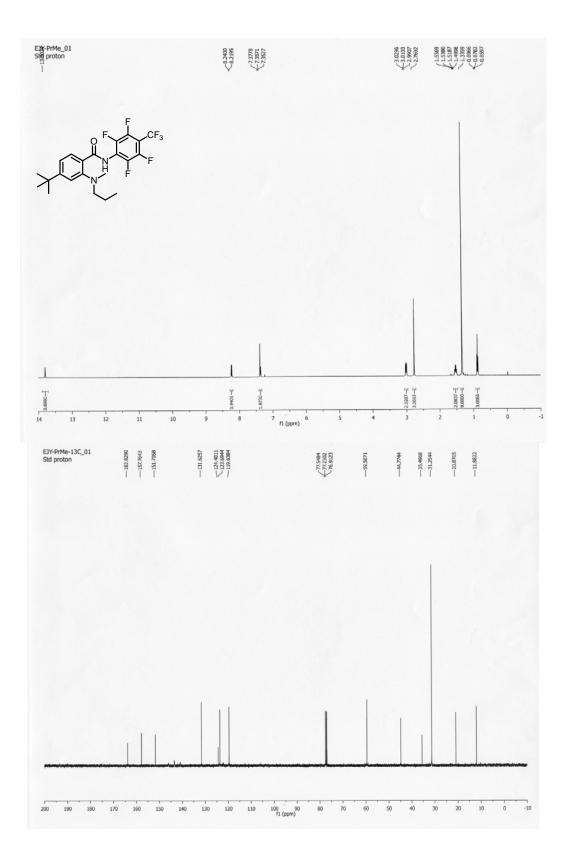



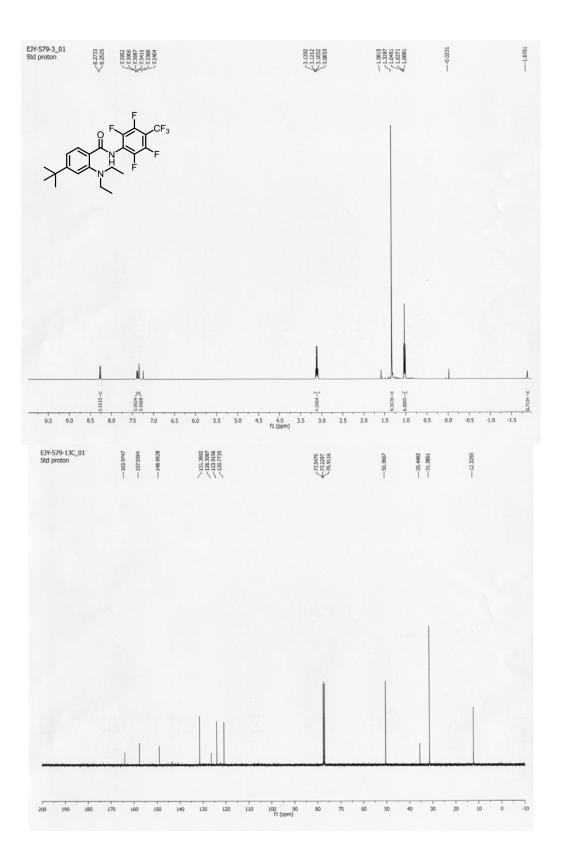



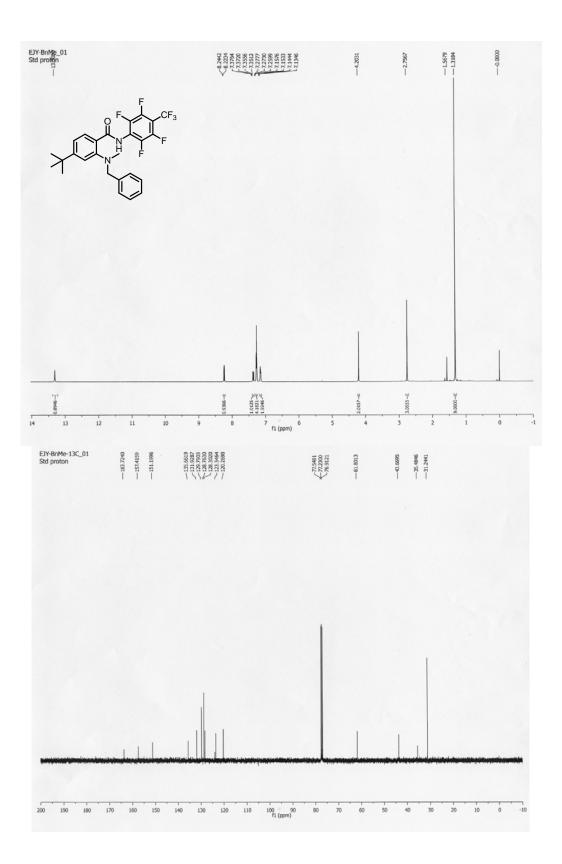



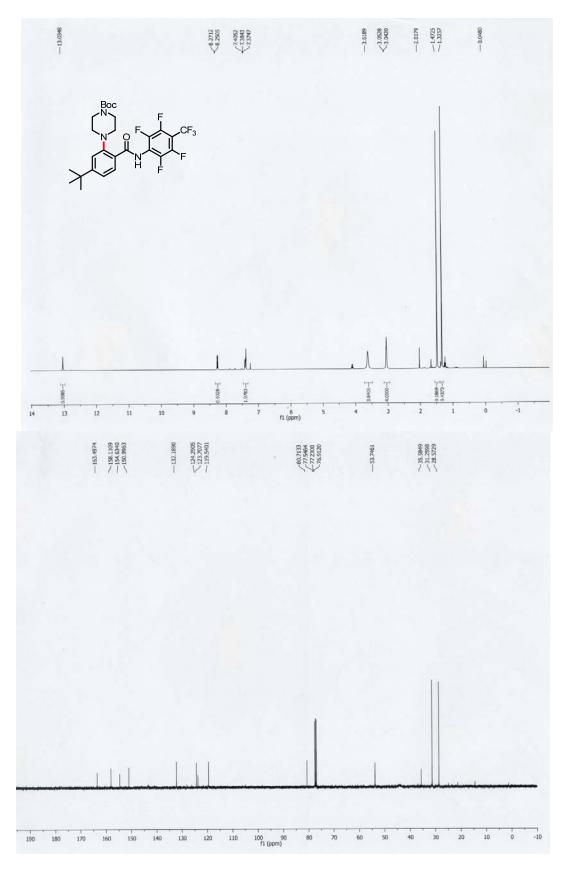



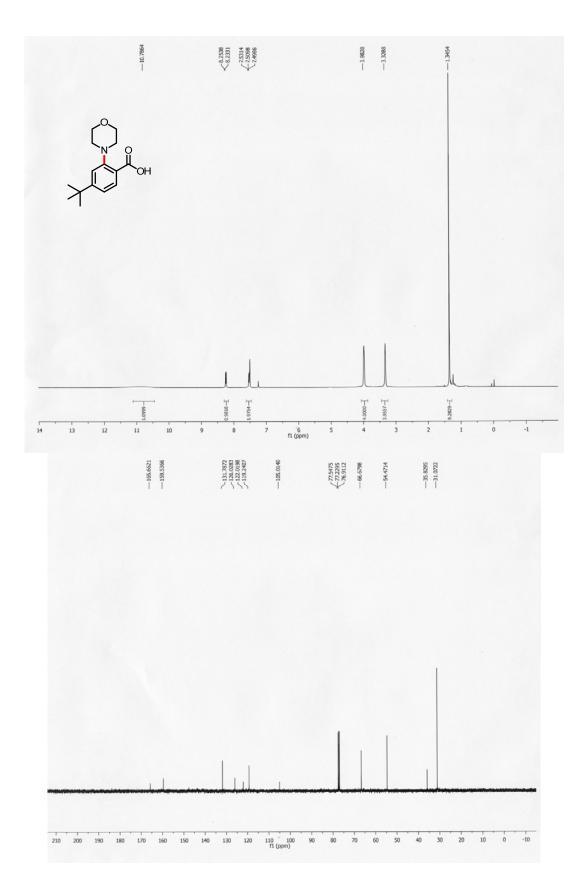










S42



