Sodium Fluoride-Assisted Modulation of Anodised TiO₂ Nanotube for Dye-Sensitised Solar Cells Application

Jung-Ho Yun[†], Yun Hau Ng[†], Changhui Ye[‡], Attila J. Mozer^{*, §}, Gordon G. Wallace[§] and Rose Amal^{*, †}

[†] ARC Centre of Excellence for Functional Nanomaterials

School of Chemical Engineering, the University of New South Wales,

Sydney, NSW 2052, Australia

[‡] Key Laboratory of Materials Physics, Institute of Solid State Physics,

Chinese Academyof Sciences, Hefei, China

[§] Intenlligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science,

University of Wollongong, Wollongong, NSW 2522, Australia

Corresponding autor. Email : ^{*, †} r.amal@unsw.edu.au ^{*, §} attila@uow.edu.au

When high water concentration (50 wt. %) in electrolyte was employed to anodisation of Ti foil, TiO_2 particles were formed instead of a TNT array. The SEM image of TiO_2 particles was shown in the Figure S1.

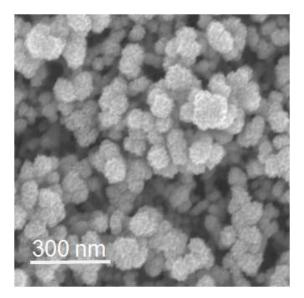


Figure S1. SEM image of Ti foil anodised at 60 V in ethylene glycol based electrolyte with 0.5 wt. % NaF and 50 wt. % water