Stereoconvergent Amine-Directed Alkyl-Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

Zhe Lu, Ashraf Wilsily, and Gregory C. Fu*
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Supporting Information

Table of Contents

I. General S-1
II. Preparation of Materials S-1
III. Stereoconvergent Suzuki Cross-Coupling Reactions S-7
IV. Assignment of Absolute Stereochemistry S-15
V. ${ }^{1}$ H NMR Spectra S-17

I. General

The following reagents were purchased and used as received: $9-\mathrm{BBN}$ dimer (Aldrich), $\mathrm{NiBr}_{2}{ }^{\bullet}$ diglyme (Aldrich; somewhat hygroscopic), KOt-Bu (Acros or Strem), n-hexanol (Aldrich; anhydrous), and $i-\operatorname{Pr}_{2} \mathrm{O}$ (Aldrich; anhydrous). Unless otherwise noted, reactions were conducted with stirring in oven-dried glassware under an inert atmosphere.

II. Preparation of Materials

(1S,2S)- $N^{1}{ }^{1} N^{2}$-Dimethyl-1,2-di(naphthalen-1-yl)ethane-1,2-diamine (1). The title compound was synthesized from 2,2'-((1R,2R)-1,2-diaminoethane-1,2-diyl)diphenol and 1-naphthaldehyde according to a procedure by Chin, ${ }^{1}$ methylated according to a procedure by Alper, ${ }^{2}$ and purified by flash chromatography ($2: 33: 65 \mathrm{NEt}_{3}: E t O A c: h e x a n e s$) to provide the desired ligand.
(1) Kim, H.; Nguyen, Y.; Yen, C. P.-H.; Chagal, L.; Lough, A. J.; Kim, B. M.; Chin, J. J. Am. Chem. Soc. 2008, 130, 12184-12191.
(2) Kuznetsov, V. F.; Jefferson, G. R.; Yap, G. P. A.; Alper, H. Organometallics 2002, 21, 42414248.

The (R, R) enantiomer was synthesized by the same method, except starting with $2,2^{\prime}-$ ((1S,2S)-1,2-diaminoethane-1,2-diyl)diphenol.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27-8.14(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.69(\mathrm{~s}$, $2 \mathrm{H}), 2.23$ ($\mathrm{s}, 6 \mathrm{H}$), 2.08 ($\mathrm{br} \mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,133.9,132.3,128.8,127.6,125.5,125.3,125.2,125.1,123.3$, 35.1.

FT-IR (KBr) 2945, 2790, 1943, 1596, 1507, 1394, 1162, 1136, $1104 \mathrm{~cm}^{-1}$.
MS (APCI + ESI $) m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2}: 340.2$, found: 340.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=+77^{\circ}\left(\mathrm{c}=0.011, \mathrm{CHCl}_{3}\right)$.

Synthesis of starting materials. These procedures have not been optimized.

Representative procedure for the synthesis of tertiary amides from secondary amines: Triethylamine ($4.2 \mathrm{~mL}, 30 \mathrm{mmol}$) and then the α-chloro acyl chloride (20 mmol) were added dropwise to a $0^{\circ} \mathrm{C}$ solution of the secondary amine (20 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ in a $500-\mathrm{mL}$ round-bottom flask. Then, the reaction was allowed to warm to room temperature and stirred for 2 h . Next, an aqueous solution of $\mathrm{HCl}(1 \mathrm{M} ; 50 \mathrm{~mL})$ was added. The organic layer was separated, washed with water (50 mL) and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated.

Representative procedure for the synthesis of tertiary amides from primary amines: The secondary amide was synthesized from the primary amine according to the preceding procedure. The unpurified secondary amide (20 mmol) was dissolved in dry THF (100 mL) in a $250-\mathrm{mL}$ round-bottom flask, and the solution was cooled to $0^{\circ} \mathrm{C}$. Sodium hydride ($0.48 \mathrm{~g}, 20$ mmol) was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min . Next, MeI ($1.2 \mathrm{~mL}, 20 \mathrm{mmol}$) was added dropwise over 1 min . Then, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , after which the reaction was quenched by the addition of water $(20 \mathrm{~mL})$. The solvent was removed by rotary evaporation, and $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ were added to the residue. The organic layer was separated, washed with water (50 mL) and brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated.

Representative procedure for the reduction of amides to arylamines: Borane-THF (1.0 M; 1.0 equiv) was added dropwise to a solution of the amide in dry THF (100 mL) in a 3-neck, 300mL round-bottom flask equipped with a stir bar and a reflux condenser. After the addition was complete, the solution was heated at reflux for 18 h . Next, it was allowed to cool to room temperature, and then the reaction was quenched by the addition of an aqueous solution of $\mathrm{NaOH}(1 \mathrm{M} ; 10 \mathrm{~mL})$. The THF was removed by rotary evaporation, and the resulting mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$. The organic layer was separated, washed with water (100 mL) and brine (100 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated.

N-(2-Chloropropyl)- N -methylaniline. Synthesized from N -methylaniline ($3.5 \mathrm{~mL}, 32.3$ mmol) and 2-chloropropanoyl chloride ($3.1 \mathrm{~mL}, 31.9 \mathrm{mmol}$). Purified by chromatography $\left(0 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $): 4.66 \mathrm{~g}(78 \%$ over 2 steps $)$. Clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 3 \mathrm{H}), 4.28$ (sextet, $1 \mathrm{H}, \mathrm{J}=7.2$ $\mathrm{Hz}), 3.68-3.61(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.5,15.2 \mathrm{~Hz}), 3.52-3.45(\mathrm{dd}, 1 \mathrm{H}, J=7.3,15.2 \mathrm{~Hz}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~d}$, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7,129.5,116.9,112.0,61.2,55.3,40.0,23.2$.
FT-IR (neat) 2976, 1601, 1509, 1353, 748, $692 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClN}$: 183.1, found: 183.1.

N-(2-Chloro-3-methylbutyl)- N-methylaniline. Synthesized from N-methylaniline (3.10 g , 20.0 mmol) and 2-chloro-3-methylbutanoyl chloride ($2.16 \mathrm{~mL}, 20.0 \mathrm{mmol}$). Purified by chromatography ($0 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $): 1.36 \mathrm{~g}$ (32% over 2 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.66(\mathrm{~m}, 3 \mathrm{H}), 4.21-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.68$ $(\mathrm{dd}, 1 \mathrm{H}, J=6.0,15.4 \mathrm{~Hz}), 3.55(\mathrm{dd}, 1 \mathrm{H}, J=7.6,15.4 \mathrm{~Hz}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.02$ ($\mathrm{m}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.8,129.5,116.8,112.1,67.1,57.9,40.1,31.7,20.8,16.4$.
FT-IR (neat) 2968, 2914, 1600, 1507, 1362, 1210, 747, $692 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClN}$: 211.1, found: 211.1.

N-(2-Chloropropyl)- N-isopropylaniline. Synthesized from N-isopropylaniline (4.50 mL , 31.1 mmol) and 2-chloropropionyl chloride ($3.10 \mathrm{~mL}, 31.1 \mathrm{mmol}$). Purified by chromatography ($0 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes): $1.74 \mathrm{~g}(27 \%$ over 2 steps). Light-yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 4.17-$ $4.01(\mathrm{~m}, 1 \mathrm{H}), 3.99$ (septet, $1 \mathrm{H}, J=6.7 \mathrm{~Hz}), 3.50-3.45(\mathrm{dd}, 1 \mathrm{H}, J=5.2,14.8 \mathrm{~Hz}), 3.26-3.20(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.6,14.6 \mathrm{~Hz}), 1.50(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.20(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.0,129.4,118.8,116.8,55.2,52.4,52.1,23.2,20.9,20.0$.
FT-IR (neat) 2974, 1599, 1497, 1378, 1293, 1224, 1185, 1121, 1048, 1013, 910, 752, $696 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClN}$: 211, found: 211.

N-(2-Chloropropyl)- N-methylbiphenyl-4-amine. Synthesized from 4-biphenylamine (3.38 $\mathrm{g}, 20.0 \mathrm{mmol}$) and 2-chloropropanoyl chloride ($1.97 \mathrm{~mL}, 20.0 \mathrm{mmol}$). Purified by chromatography ($5 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes): 2.08 g (40% over 3 steps). White solid.
$\mathrm{mp} 157^{\circ} \mathrm{C}$ (dec.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.79-$ $6.73(\mathrm{~m}, 2 \mathrm{H}), 4.32($ sextet, $1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.68(\mathrm{dd}, 1 \mathrm{H}, J=6.5,15.2 \mathrm{~Hz}), 3.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=7.3,15.2$ $\mathrm{Hz}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 1.57(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.0,141.7,129.2,128.4,127.8,126.2,126.0,112.1,60.0,55.0$, 39.8, 23.2.

FT-IR (neat) 2924, 2845, 1612, 1505, 1456, 1201, 816, 761, $697 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ClN}$ 259.1, found: 259.1.

N -(2-Chloropropyl)-4-methoxy- N -methylaniline. Synthesized from 4-methoxy- N methylaniline ($2.17 \mathrm{~g}, 15.8 \mathrm{mmol}$) and 2-chloropropanoyl chloride ($1.5 \mathrm{~mL}, 15.5 \mathrm{mmol}$). Purified by chromatography ($5 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $): 2.89 \mathrm{~g}$ (86% over 2 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.24$ (sextet, $1 \mathrm{H}, \mathrm{J}=6.6$ Hz), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.4,15.0 \mathrm{~Hz}), 3.37(\mathrm{dd}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, 15.0 \mathrm{~Hz}), 2.97(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.0,143.7,115.1,114.0,62.3,56.0,55.4,40.3,23.2$.
FT-IR (neat) 2928, 1513, 1246, 1040, $814 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClNO}$ 213.1, found: 213.1.

N-(2-Chlorohexyl)-N,3-dimethylaniline. Synthesized from N-methyl-m-toluidine (2.00 g , 16.5 mmol) and 2-chlorohexanoyl chloride ($2.47 \mathrm{~mL}, 16.5 \mathrm{mmol}$). Purified by chromatography $\left(5 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $): 2.31 \mathrm{~g}(58 \%$ over 2 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.46(\mathrm{~m}, 3 \mathrm{H}), 4.20-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.63-$ $3.51(\mathrm{~m}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.25(\mathrm{~m}, 3 \mathrm{H})$, $0.91(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}^{\mathrm{CNMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.1,138.8,129.1,112.9,110.4,109.4,59.2,59.0,39.7,36.8,28.9$, 23.5, 22.2, 14.2.

FT-IR (neat) 2929, 2860, 1602, 1499, 1065, 764, 693, $668 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClN}$: 239.1, found: 239.1.

N-(2-Chlorohexyl)-3-methoxy-N-methylaniline. Synthesized from 3-methoxyaniline (1.37 g, 10.0 mmol) and 2-chlorohexanoyl chloride ($1.69 \mathrm{~g}, 10.0 \mathrm{mmol}$). Purified by chromatography $\left(5 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /\right.$ hexanes $): 1.63 \mathrm{~g}(62 \%$ over 3 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.28(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}), 6.20(\mathrm{t}, 1 \mathrm{H}, J=$ $2.2 \mathrm{~Hz}), 4.17-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.01(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.25(\mathrm{~m}, 3 \mathrm{H}), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,150.2,130.2,105.2,101.5,98.8,60.9,60.2,55.3,40.2,35.9$, 28.8, 22.5, 14.2.

FT-IR (neat) 2956, 2931, 2872, 1612, 1577, 1500, 1456, 1247, 1169, 1056, 824, 750, $687 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{ClNO}$: 255.1, found: 255.1.

N-(2-Chlorohexyl)-3-fluoro- N-methylaniline. Synthesized from 3-fluoro- N -methylaniline ($1.13 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and 2-chlorohexanoyl chloride ($1.69 \mathrm{~g}, 10.0 \mathrm{mmol}$). Purified by chromatography ($5 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes): 1.78 g (74% over 2 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.45-6.38(\mathrm{~m}, 2 \mathrm{H}), 6.38-6.31(\mathrm{~m}, 1 \mathrm{H}), 4.18-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.64-1.21$ $(\mathrm{m}, 4 \mathrm{H}), 0.91(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4(\mathrm{~d}, \mathrm{~J}=243 \mathrm{~Hz}), 150.4,130.4(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}), 107.6(\mathrm{~d}, \mathrm{~J}=22$ $\mathrm{Hz}), 99.1(\mathrm{~d}, \mathrm{~J}=26 \mathrm{~Hz}), 60.7,60.0,40.2,35.8,28.7,22.5,14.1$.

FT-IR (neat) 2988, 2931, 2886, 1621, 1577, 1502, 1362, 1235, 1162, 1009, 822, 754, $682 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{13} \mathrm{H}_{19}$ ClFN: 243.1, found: 243.1.

N-(2-Chloro-3-cyclohexylpropyl)-2-fluoro-N-methylaniline. Synthesized from 2fluoroaniline ($1.44 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and 2-chloro-3-cyclohexylpropionyl chloride ($3.14 \mathrm{~g}, 15.0$ $\mathrm{mmol})$. Purified by chromatography ($5 \% \rightarrow 50 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $): 1.80 \mathrm{~g}$ (42% over 3 steps). Yellow oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.43-$ $3.35(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.47(\mathrm{~m}, 7 \mathrm{H}), 1.33-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.00-0.73(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8(\mathrm{~d}, J=304.8 \mathrm{~Hz}), 139.2(\mathrm{~d}, J=10.3 \mathrm{~Hz}), 124.6(\mathrm{~d}, J=4.2$ $\mathrm{Hz}), 121.0(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 119.2(\mathrm{~d}, J=4.5 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=26.5 \mathrm{~Hz}), 62.4(\mathrm{~d}, J=7.3 \mathrm{~Hz}), 59.2(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}), 43.8,41.3,34.9,34.2,32.1,26.9,26.5,26.2$.

FT-IR (neat) 2923, 2852, 1614, 1505, 1448, 1230, $746 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{23}$ CIFN: 283.2, found: 283.1.

N-(2-Chloropropyl)- N-methylnaphthalen-2-amine. Synthesized from 2-naphthylamine ($2.00 \mathrm{~g}, 14.0 \mathrm{mmol}$) and 2-chloropropionyl chloride ($1.38 \mathrm{~mL}, 14.0 \mathrm{mmol}$). Purified by chromatography ($0 \% \rightarrow 100 \% \mathrm{Et}_{2} \mathrm{O} /$ hexanes $): 1.82 \mathrm{~g}$ (55% over 3 steps). White solid. $\operatorname{mp} 153^{\circ} \mathrm{C}$ (dec.).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.09(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.87(\mathrm{~m}, 1 \mathrm{H}), 4.33$ (sextet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}), 3.76(\mathrm{dd}, 1 \mathrm{H}, J=6.6,15.2 \mathrm{~Hz}), 3.61$ (dd, $1 \mathrm{H}, J=7.3,15.2 \mathrm{~Hz}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.8,135.4,128.8,127.6,126.5,126.3,126.2,121.8,116.1,105.5$, 59.9, 55.2, 39.8, 23.8.

FT-IR (neat) 2924, 2855, 1629, 1512, $824,743 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClN}$: 233.1, found: 233.1.

1-(2-Chlorohexyl)indoline. Synthesized from indoline ($1.12 \mathrm{~mL}, 10.0 \mathrm{mmol}$) and 2chlorohexanoyl chloride ($1.69 \mathrm{~g}, 10.0 \mathrm{mmol}$). Purified by chromatography ($0 \% \rightarrow 50 \%$ $\mathrm{Et}_{2} \mathrm{O} /$ hexanes): 1.09 g (46% over 2 steps). Clear oil.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.44(\mathrm{~m}, 1 \mathrm{H}), 4.13-$ $4.04(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, 1 \mathrm{H}, J=6.6,14.3 \mathrm{~Hz}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=6.6,14.3 \mathrm{~Hz})$, $3.05-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 152.4,129.5,127.5,124.7,117.9,106.5,61.6,57.6,54.7,35.9,28.9$, 28.8, 22.5, 14.2.

FT-IR (neat) 2956, 2930, 2859, 1607, 1489, 1267, $743 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{ClN}$: 237.1, found: 237.1.

III. Stereoconvergent Suzuki Cross-Coupling Reactions

General procedure (conducted in a glovebox; however, see the note below). The trialkylborane was prepared by adding $9-\mathrm{BBN}$ dimer ($440 \mathrm{mg}, 1.80 \mathrm{mmol}$), $i-\mathrm{Pr}_{2} \mathrm{O}(1.0 \mathrm{~mL})$, and the alkene (3.60 mmol) in turn to a $4-\mathrm{mL}$ vial. The vial was capped and removed from the glovebox. The reaction mixture was stirred at $60^{\circ} \mathrm{C}$ for 1 h , and then it was allowed to cool to r.t. The vial was taken back into the glovebox, and the reaction mixture was diluted with $i-\operatorname{Pr}_{2} \mathrm{O}$ to furnish a 1.5 M solution. Next, a portion of this solution ($0.9 \mathrm{~mL}, 1.35 \mathrm{mmol}$) was added to a solution of KOt - $\mathrm{Bu}(101 \mathrm{mg}, 0.900 \mathrm{mmol})$ in n-hexanol ($188 \mu \mathrm{~L}, 1.50 \mathrm{mmol}$) in a $4-\mathrm{mL}$ vial. The resulting mixture was stirred at r.t. for 30 min .

A solution of $\mathrm{NiBr}_{2} \cdot$ diglyme $(26.7 \mathrm{mg}, 0.075 \mathrm{mmol})$ and $(1 R, 2 R)-N^{1}, N^{2}$-dimethyl-1,2-di(naphthalen-1-yl)ethane-1,2-diamine ($30.8 \mathrm{mg}, 0.090 \mathrm{mmol}$) in $i-\mathrm{Pr}_{2} \mathrm{O}(5.5 \mathrm{~mL})$ in a $20-\mathrm{mL}$ vial was stirred at r.t. for 30 min . Next, the electrophile (0.75 mmol) was added, along with an i $\mathrm{Pr}_{2} \mathrm{O}$ rinsing (0.5 mL), and then the solution of the activated trialkylborane was added dropwise over 2 min . The reaction mixture was stirred at r.t. for 40 h , and then it was filtered through silica gel, eluting with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The solvent was removed by rotary evaporation, and the
residue was diluted with hexanes (10 mL). The resulting solution was filtered through an acrodisc and then concentrated by rotary evaporation.

A second run was performed with the $(1 S, 2 S)$ enantiomer of ligand 1.
Note: For the sake of convenience, the stereoconvergent Suzuki cross-couplings described in Table 1 were conducted in a glovebox. However, this method does not require the use of a glovebox. When carried out without a glovebox, the coupling illustrated in entry 1 of Table 1 proceeded in 88% ee and 82% yield.

(S)-N-Methyl-N-(2-methyloctyl)aniline (Table 1, entry 1). N -(2-Chloropropyl)- N methylaniline ($138 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 1-hexene with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Clear oil. First run: $146 \mathrm{mg}(83 \%, 88 \%$ ee). Second run (6 mmol scale): 1.20 g ($86 \%, 88 \%$ ee).

The ee was determined by HPLC on an OJ-H column (hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=9.0$ \min (minor), 9.7 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 3 \mathrm{H}), 3.21(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6,14.5$ $\mathrm{Hz}), 3.02$ (dd, $1 \mathrm{H}, \mathrm{J}=8.1,14.5 \mathrm{~Hz}$), $2.95(\mathrm{~s}, 3 \mathrm{H}), 1.98-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.04(\mathrm{~m}, 10 \mathrm{H}), 0.92-0.83$ (m, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,129.3,115.7,112.0,60.1,39.7,35.0,32.5,32.1,29.9,27.3$, 22.9, 18.0, 14.3.

FT-IR (neat) 2956, 2926, 2856, 1729, 1600, 1507, 1465, 992, 746, $691 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}$: 233.2, found: 233.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+7.3^{\circ}\left(\mathrm{c} 0.0075, \mathrm{CHCl}_{3}\right)$.

N -(2-Isopropyl-5-(2-methoxyphenyl)pentyl)- N -methylaniline (Table 1, entry 2). N -(2-Chloro-3-methylbutyl)- N -methylaniline ($155 \mathrm{mg}, 0.73 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 2-allylanisole with $9-\mathrm{BBN}$ dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90$ $\mathrm{mL}, 1.32 \mathrm{mmol}$) were used with $\mathrm{NiBr}_{2} \cdot$ diglyme ($51.6 \mathrm{mg}, 0.146 \mathrm{mmol}$) and ($1 R, 1 R$) $-\mathrm{N}^{1}, \mathrm{~N}^{2}-$ dimethyl-1,2-di(naphthalen-1-yl)ethane-1,2-diamine ($59.8 \mathrm{mg}, 0.176 \mathrm{mmol}$). The product was purified by flash chromatography on reverse-phase silica gel (10%
acetonitrile/water \rightarrow acetonitrile). Yellow oil. First run: 126 mg ($53 \%, 95 \%$ ee). Second run: 123 $\mathrm{mg}(52 \%, 98 \%$ ee).

The ee was determined by SFC on an OJ-H column ($5 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0 \mathrm{~mL} / \mathrm{min}, 100 \mathrm{bar}$) with $\mathrm{t}_{\mathrm{r}}=10.6 \mathrm{~min}$ (minor), 12.7 min (major).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.68(\mathrm{~m}, 3 \mathrm{H}), 3.83(\mathrm{~s}$, $3 \mathrm{H}), 3.28(\mathrm{dd}, 1 \mathrm{H}, J=7.2,14.8 \mathrm{~Hz}), 3.20(\mathrm{dd}, 1 \mathrm{H}, J=7.4,14.6 \mathrm{~Hz}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H})$, $1.89-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8$ $\mathrm{Hz}), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,149.9,130.1,129.7,129.0,126.8,120.3,115.5,111.9,110.1$, $55.2,54.5,41.9,39.3,30.7,28.3,27.9,27.6,19.5,18.3$.

FT-IR (neat) 2955, 2361, 1600, 1507, 1465, 1359, 1242, 1128, 1051, 1033, 992, 929, 858, 749, 692 cm^{-1}.

MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}: 325$, found: 325 .
$[\alpha]^{24}{ }_{\mathrm{D}}=+8.6^{\circ}\left(\mathrm{c} 0.0095, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-N-Isopropyl-N-(5-(2-methoxyphenyl)-2-methylpentyl)aniline (Table 1, entry 3). N -(2-Chloropropyl)- N -isopropylaniline ($158 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 2-allylanisole with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35$ $\mathrm{mmol})$ were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: $167 \mathrm{mg}(69 \%, 81 \%$ ee). Second run: 182 mg (75%, 82% ee).

The ee was determined by HPLC on an OD-H column (100% hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=$ 20.6 min (major), 23.8 min (minor).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz})$, 3.97 (septet, $1 \mathrm{H}, J=6.8 \mathrm{~Hz}$), $3.79(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, 1 \mathrm{H}, J=6.2,14.2 \mathrm{~Hz}), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=8.0,14.4$ $\mathrm{Hz}), 2.65-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.13(\mathrm{~d}, 3 \mathrm{H}, J=$ $6.4 \mathrm{~Hz}), 1.09(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,149.8,131.1,129.8,128.7,126.8,120.2,117.1,116.3,110.1$, $55.1,51.9,49.9,34.9,30.7,30.5,27.3,20.3,19.8,17.9$.

FT-IR (neat) 2930, 1599, 1496, 1464, 1362, 1290, 1243, 1195, 1126, 1051, 1032, 752, $696 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}: 325$ found: 325.
$[\alpha]^{24}{ }_{\mathrm{D}}=-33^{\circ}\left(\mathrm{c} 0.011, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; from $\left.(1 S, 2 S)-\mathbf{1}\right)$.

(S)-N-(5-Cyclohexyl-2-methylpentyl)- N -methylbiphenyl-4-amine (Table 1, entry 4). N -(2-Chloropropyl)-N-methylbiphenyl-4-amine ($195 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of allylcyclohexane with $9-\mathrm{BBN}$ dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90$ $\mathrm{mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reversephase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: $184 \mathrm{mg}(70 \%, 85 \%$ ee). Second run: $172 \mathrm{mg}(66 \%, 85 \%$ ee).

The ee was determined by HPLC on an OJ-H column (1% isopropanol/hexanes, 1.0 $\mathrm{mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=19.3 \mathrm{~min}$ (minor), 23.8 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47$ (m, 2H), 7.42-7.36 (m, 2H), 7.27$7.22(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=6.6,14.6 \mathrm{~Hz}), 3.07(\mathrm{dd}, 1 \mathrm{H}, J=8.1,14.6 \mathrm{~Hz}), 3.01$ (s, 3H), 2.00-1.90 (m, 1H), 1.74-1.53 (m, 4H), 1.47-1.06 (m, 10H), $0.92(\mathrm{~d}, 3 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 0.94-$ 0.80 (m, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 149.2,141.5,128.8,128.4,127.9,126.4,126.0,112.1,60.0,39.8$, 38.1, 37.9, 35.2, 33.8, 33.6, 32.5, 31.1, 27.0, 26.7, 24.5, 18.0.

FT-IR (neat) 2922, 2850, 1612, 1525, 1490, 1200, 816, 761, $696 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}$: 349.3, found: 349.3.
$[\alpha]^{23}{ }_{\mathrm{D}}=+7.6^{\circ}\left(\mathrm{c} 0.0060, \mathrm{CHCl}_{3}\right)$.

(S)-4-Methoxy-N-methyl-N-(2-methyloctyl)aniline (Table 1, entry 5). N-(2-Chloropropyl)-4-methoxy- N-methylaniline ($160 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 1-hexene with $9-\mathrm{BBN}$ dimer (1.5 M solution in i - $\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: 152 mg ($77 \%, 88 \%$ ee). Second run: 148 $\mathrm{mg}(75 \%, 86 \%$ ee).

The ee was determined by HPLC on an OJ-H column (1% isopropanol / hexanes, 1.0 $\mathrm{mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=7.4 \mathrm{~min}$ (major), 8.3 min (minor).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{dd}, 1 \mathrm{H}, J$ $=6.6,14.3 \mathrm{~Hz}), 2.93(\mathrm{dd}, 1 \mathrm{H}, J=8.1,14.3 \mathrm{~Hz}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.00(\mathrm{~m}, 10 \mathrm{H})$, $0.91-0.84(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 151.3,145.3,114.9,113.9,61.3,56.1,40.1,35.0,32.5,32.1,29.9$, 27.3, 22.9, 18.1, 14.4.

FT-IR (neat) 2955, 2926, 2855, 1513, 1464, 1244, 1181, 1043, $811 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}: 263.2$, found: 263.2.
$[\alpha]^{23}{ }_{\mathrm{D}}=+4.4^{\circ}\left(\mathrm{c} 0.0051, \mathrm{CHCl}_{3}\right)$.

(S)-N-(2,6-Dimethylheptyl)-4-methoxy-N-methylaniline (Table 1, entry 6). N-(2-Chloropropyl)-4-methoxy- N -methylaniline ($160 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 4-methylpent-1-ene with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O}$; $0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reversephase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: $150 \mathrm{mg}(76 \%, 84 \%$ ee). Second run: $155 \mathrm{mg}(79 \%, 85 \%$ ee).

The ee was determined by SFC on an OD-H column $\left(2.5 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0 \mathrm{~mL} / \mathrm{min}, 100\right.$ bar) with $\mathrm{t}_{\mathrm{r}}=5.7 \mathrm{~min}$ (minor), 6.0 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, 1 \mathrm{H}, J$ $=6.8,14.4 \mathrm{~Hz}), 2.93(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0,14.4 \mathrm{~Hz}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.58-1.46(\mathrm{~m}, 1 \mathrm{H})$, $1.42-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.01(\mathrm{~m}, 3 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 151.3,145.3,115.0,113.9,61.3,56.1,40.1,39.6,35.2,32.3,28.2$, 25.0, 23.0, 22.8, 18.1.

FT-IR (neat) 2954, 2928, 2868, 1514, 1244, 1181, 1043, 811, $700 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}: 263.2$, found: 263.1.
$[\alpha]^{23}{ }_{\mathrm{D}}=+4.3^{\circ}\left(\mathrm{c} 0.0080, \mathrm{CHCl}_{3}\right)$.

(S)-N-(2-(3-(tert-Butyldimethylsilyloxy)propyl)hexyl)-N,3-dimethylaniline (Table 1, entry 7). N -(2-Chlorohexyl)-N,3-dimethylaniline ($180 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of allyloxy(tert-butyl)dimethylsilane with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile/ water \rightarrow acetonitrile). Yellow oil. First run: 166 mg ($59 \%, 90 \%$ ee). Second run: 191 mg ($67 \%, 92 \%$ ee).

The ee was determined by HPLC of the corresponding desilylated alcohol ${ }^{3}$ on an $\mathrm{OJ}-\mathrm{H}$ column (1% isopropanol / hexanes, $1.0 \mathrm{~mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=21.5 \mathrm{~min}$ (major), 23.0 min (minor).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.48-6.47(\mathrm{~m}, 3 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz})$, 3.15-3.12 (m, 2H), $2.90(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.54-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.27(\mathrm{~m}, 8 \mathrm{H})$, 0.87 (s, 12 H$), 0.02$ (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.9,138.6,128.9,116.6,112.6,109.2,63.6,57.6,39.5,36.4,31.3$, 29.8, 28.7, 27.6, 26.0, 23.2, 22.0, 18.3, 14.1, -5.3.

FT-IR (neat) 2928, 1602, 1499, 1255, 1099, 835, 774, $692 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{NOSi}$: 377, found: 377.
$[\alpha]^{24}{ }_{\mathrm{D}}=-7.9^{\circ}\left(\mathrm{c} 0.011, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$; from $\left.(1 S, 2 S)-1\right)$.

(S)-N-(2-Butyl-6-(2-methyl-1,3-dioxolan-2-yl)hexyl)-3-methoxy-N-methylaniline (Table 1, entry 8). N -(2-Chlorohexyl)-3-methoxy- N -methylaniline ($180 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 2-(but-3-enyl)-2-methyl-1,3-dioxolane with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile/water \rightarrow acetonitrile). Yellow oil. First run: 229 mg ($85 \%, 94 \%$ ee). Second run: 238 mg ($88 \%, 93 \%$ ee).

The ee was determined by SFC on an OD-H column ($5 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l) \rightarrow 20 \%$ $\mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0 \mathrm{~mL} / \mathrm{min}, 100 \mathrm{bar}$) with $\mathrm{t}_{\mathrm{r}}=7.2 \mathrm{~min}$ (minor), 8.8 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{t}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 6.29-6.26(\mathrm{~m}, 1 \mathrm{H}), 6.23-6.18(\mathrm{~m}, 2 \mathrm{H})$, $3.91-3.89(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.62-1.59(\mathrm{~m}$, $2 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 15 \mathrm{H}), 0.86(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.7,151.1,129.6,110.1,105.1,100.4,98.3,64.6,57.6,55.0,39.6$, 39.2, 36.6, 31.6, 31.3, 28.7, 26.8, 24.6, 23.7, 23.2, 14.1.

FT-IR (neat) 2930, 1611, 1502, 1378, 1244, 1169, 1057, 948, 828, 750, $688 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{NO}_{3}: 363$, found: 363 .
$[\alpha]^{23}{ }_{\mathrm{D}}=-4.6^{\circ}\left(\mathrm{c} 0.011, \mathrm{CH}_{2} \mathrm{Cl}_{2} ;\right.$ from $\left.(1 S, 2 S)-1\right)$.
(3) The silyl ether was treated with TBAF in THF (1 M; 5 equiv) and stirred for 2 h at room temperature.

(S)-3-Fluoro- N -(2-(3-(2-methoxyphenyl)propyl)hexyl)- N -methylaniline (Table 1, entry 9). N -(2-Chlorohexyl)-3-fluoro- N -methylaniline ($180 \mathrm{mg}, 0.74 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 2-allylanisole with $9-\mathrm{BBN}$ dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90$ $\mathrm{mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reversephase silica gel (10% acetonitrile/ water \rightarrow acetonitrile). Yellow oil. First run: 183 mg ($69 \%, 92 \%$ ee). Second run: $187 \mathrm{mg}(71 \%, 92 \%$ ee).

The ee was determined by SFC on an OJ column (gradient $5 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0$ $\mathrm{mL} / \mathrm{min}, 100 \mathrm{bar}$) with $\mathrm{t}_{\mathrm{r}}=5.9 \mathrm{~min}$ (minor), 6.9 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.93(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.0$ $\mathrm{Hz}), 6.46-6.37(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz})$, 1.90 (br s, 1H), 1.72-1.59 (m, 3H), 1.47-1.33 (m, 7H), 0.94 (t, 3H, J = 6.4 Hz).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.1(\mathrm{~d}, J=240 \mathrm{~Hz}), 157.4,151.3(\mathrm{~d}, J=11 \mathrm{~Hz}), 130.8,129.9(\mathrm{~d}, J$ $=10 \mathrm{~Hz}), 129.7(\mathrm{~d}, J=11 \mathrm{~Hz}), 126.9,120.3,110.1,107.3(\mathrm{~d}, J=2 \mathrm{~Hz}), 101.8(\mathrm{~d}, J=21 \mathrm{~Hz}), 98.5(\mathrm{~d}, J$ $=25 \mathrm{~Hz}), 57.3,55.1(\mathrm{~d}, J=4 \mathrm{~Hz}), 39.4,36.2,31.4,31.2,30.7,28.6,26.6,23.1,14.1$.

FT-IR (neat) 2929, 1620, 1579, 1504, 1465, 1360, 1290, 1243, 1158, 1128, 1051, 1032, 1010, 910, 821, 752, 683, $649 \mathrm{~cm}^{-1}$.

MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{FNO}$ 357, found: 357.
$[\alpha]^{24}{ }_{\mathrm{D}}=+6.3^{\circ}\left(\mathrm{c} 0.010, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(R)-N-(2-(Cyclohexylmethyl)-5-(2-methoxyphenyl)pentyl)-2-fluoro-N-methylaniline
(Table 1, entry 10). N -(2-Chloro-3-cyclohexylpropyl)-2-fluoro- N -methylaniline ($215 \mathrm{mg}, 0.75$ mmol) and a solution of the reagent prepared by hydroboration of 2-allylanisole with 9-BBN dimer (1.5 M solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile/ water \rightarrow acetonitrile). Yellow oil. First run: 242 mg ($80 \%, 72 \%$ ee). Second run: 252 mg ($84 \%, 70 \%$ ee).

The ee was determined by SFC on an OJ column (gradient $5 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0$ $\mathrm{mL} / \mathrm{min}, 100 \mathrm{bar}$) with $\mathrm{t}_{\mathrm{r}}=6.8 \mathrm{~min}$ (minor), 7.4 min (major).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.87-$ $6.80(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}), 1.90-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.44-1.10(\mathrm{~m}, 8 \mathrm{H}), 0.92-0.77(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,155.2(\mathrm{~d}, J=243 \mathrm{~Hz}), 140.7(\mathrm{~d}, J=8 \mathrm{~Hz}), 131.1,129.7$, $126.8,124.1(\mathrm{~d}, J=3 \mathrm{~Hz}), 120.4(\mathrm{~d}, J=8 \mathrm{~Hz}), 120.3(\mathrm{~d}, J=7 \mathrm{~Hz}), 119.2(\mathrm{~d}, J=4 \mathrm{~Hz}), 116.1(\mathrm{~d}, J=21$ $\mathrm{Hz}), 110.1,59.6(\mathrm{~d}, J=4 \mathrm{~Hz}), 55.1,40.4(\mathrm{~d}, J=2 \mathrm{~Hz}), 40.2,34.9,34.1,33.5,32.7,32.2,30.6,26.7$, 26.4.

FT-IR (neat) 2922, 1612, 1503, 1450, 1290, 1242, 1116, 1033, 909, 823, $749,649 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{FNO}$ 397, found: 397.
$[\alpha]^{24}{ }_{\mathrm{D}}=+5.8^{\circ}\left(\mathrm{c} 0.0115, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

(S)-N-(5-(4-Methoxyphenyl)-2-methylpentyl)- N -methylnaphthalen-2-amine (Table 1, entry 11). N-(2-Chloropropyl)- N-methylnaphthalen-2-amine ($176 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 4 -allylanisole with 9 -BBN $\operatorname{dimer}(1.5 \mathrm{M}$ solution in i $\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}, 1.35 \mathrm{mmol}$) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: 180 mg ($69 \%, 83 \%$ ee). Second run: 185 mg ($71 \%, 83 \%$ ee).

The ee was determined by HPLC on an OD-H column (1% isopropanol/hexanes, 1.0 $\mathrm{mL} / \mathrm{min}$) with $\mathrm{t}_{\mathrm{r}}=17.1 \mathrm{~min}$ (major), 18.6 min (minor).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.84-$ $6.76(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J=6.8,14.6 \mathrm{~Hz}), 3.14(\mathrm{dd}, 1 \mathrm{H}, J=8.0,14.6 \mathrm{~Hz}), 3.01(\mathrm{~s}$, $3 \mathrm{H}), 2.56-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.03-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.21-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~d}, 3 \mathrm{H}, J=$ 6.4 Hz).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,147.8,135.4,134.8,129.4,128.8,127.6,126.5,126.3,126.2$, $121.8,116.1,113.9,113.7,105.5,59.9,55.4,39.8,35.4,34.4,32.4,31.1,29.4,17.9$.

FT-IR (neat) 2929, 2857, 1628, 1600, 1512, 1245, 1177, 1036, 823, $744 \mathrm{~cm}^{-1}$.
MS (EI) $m / z\left(\mathbf{M}^{+}\right)$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}: 347.2$, found: 347.2.
$[\alpha]^{23}=+11.9^{\circ}\left(\mathrm{c} 0.0072, \mathrm{CHCl}_{3}\right)$.

(S)-1-(2-(3-(4-Fluorophenyl)propyl)hexyl)indoline (Table 1, entry 12). 1-(2-

Chlorohexyl)indoline ($180 \mathrm{mg}, 0.75 \mathrm{mmol}$) and a solution of the reagent prepared by hydroboration of 1-allyl-4-fluorobenzene with $9-\mathrm{BBN} \operatorname{dimer}\left(1.5 \mathrm{M}\right.$ solution in $i-\mathrm{Pr}_{2} \mathrm{O} ; 0.90 \mathrm{~mL}$, 1.35 mmol) were used. The product was purified by flash chromatography on reverse-phase silica gel (10% acetonitrile / water \rightarrow acetonitrile). Yellow oil. First run: 154 mg (55%, 90% ee). Second run: $152 \mathrm{mg}(59 \%, 93 \%$ ee).

The ee was determined by SFC on an OJ column (gradient $5 \% \rightarrow 20 \% \mathrm{MeOH} / \mathrm{CO}_{2}(l), 3.0$ $\mathrm{mL} / \mathrm{min}, 100 \mathrm{bar}$) with $\mathrm{t}_{\mathrm{r}}=7.3 \mathrm{~min}$ (major), 7.8 min (minor).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.62(\mathrm{t}$, $1 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.41(\mathrm{~d}, 1 \mathrm{H}, J=7.7 \mathrm{~Hz}), 3.36-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{t}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 2.88(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.2 \mathrm{~Hz}), 2.58(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}), 1.76-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.49-1.23(\mathrm{~m}, 8 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.4(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 153.6,138.4(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.9(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}), 129.8,127.5,124.5,117.2,115.1(\mathrm{~d}, \mathrm{~J}=21.0 \mathrm{~Hz}), 106.5,54.7,54.4,37.1,35.7,31.8,31.7,29.1$, 28.9, 28.8, 23.4, 14.3.

FT-IR (neat) 2928, 2857, 1607, 1510, 1489, 1460, 1221, 1156, 832, 743, $714 \mathrm{~cm}^{-1}$.
MS (APCI + ESI) $m / z\left(\mathrm{M}^{+}\right)$calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{FN}$: 339.2, found: 339.1.
$[\alpha]_{\mathrm{D}}^{23}=+0.97^{\circ}\left(\mathrm{c} 0.0071, \mathrm{CHCl}_{3}\right)$.

IV. Assignment of Absolute Stereochemistry

These procedures have not been optimized.

88% ee, from $(1 R, 1 R)-\mathbf{1}$

$[\alpha]^{21} \mathrm{D}=-9.0^{\circ}$
$[\alpha]^{21} \mathrm{D}=-8.4^{\circ} ;>95 \%$ ee (lit.)
(S)-2-Methyloctan-1-amine (derived from the product of Table 1, entry 5). Anhydrous calcium oxide ($476 \mathrm{mg}, 8.5 \mathrm{mmol}$) was added to a solution of 4-methoxy- N -methyl- N -(2methyloctyl)aniline ($150 \mathrm{mg}, 0.57 \mathrm{mmol}$) in a mixture of THF (anhydrous; 3.2 mL) and MeOH (anhydrous; 2.4 mL) in a $20-\mathrm{mL}$ vial. The mixture was cooled to $0^{\circ} \mathrm{C}$, and a solution of iodine ($635 \mathrm{mg}, 2.5 \mathrm{mmol}$) in THF (1 mL) was added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 3.5 h . Next, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$, and the reaction was quenched by the addition of aqueous sodium thiosulfate (15%; 50 mL). The organic layer was separated and then washed
with water $(20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by rotary evaporation to give a dark-brown oil. The oil was dissolved in a mixture of acetonitrile (0.8 mL) and water $(0.8 \mathrm{~mL})$, and then trichloroisocyanuric acid ($116 \mathrm{mg}, 0.50 \mathrm{mmol}$) was added in a single portion, followed by aqueous $\mathrm{HCl}(2 \mathrm{M} ; 1 \mathrm{~mL})$. The reaction mixture was stirred at r.t. for 4 h , and then the acetonitrile was removed by rotary evaporation. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solution was concentrated on a rotary evaporator. The product was purified by Kugelrohr distillation (oven temperature: $90^{\circ} \mathrm{C} ; 9$ torr), which provided the product as a colorless oil ($34 \mathrm{mg}, 42 \%$). The absolute stereochemistry was determined to be (S) by comparison with a reported optical rotation. ${ }^{4}$

(S)-2,6-Dimethylheptan-1-amine (derived from the product of Table 1, entry 6). The same conditions employed for the synthesis of (S)-2-methyloctan-1-amine were used, except with N -(2,6-dimethylheptyl)-4-methoxy- N -methylaniline ($150 \mathrm{mg}, 0.57 \mathrm{mmol}$) as the starting material. Yield (unoptimized): $31 \mathrm{mg}, 38 \%$. The absolute stereochemistry of the cross-coupling product obtained with ligand $(1 R, 1 R) \mathbf{- 1}$ was determined to be (S) by comparison with a reported optical rotation. ${ }^{4}$
(4) Enders, D.; Schubert, H. Angew. Chem Int. Ed. Engl. 1984, 23, 365-366.
V. ${ }^{1} \mathrm{H}$ NMR Spectra

