Spin-Selective Correlation Experiment for Measurement of Long-Range
J Couplings and for Assignment of (R/S) Enantiomers from the Residual
Dipolar Couplings and DFT

Nilamoni Nath ${ }^{\text {a, b,c }}$ and N. Suryaprakash ${ }^{\text {b\# }}$
${ }^{a}$ Solid State and Structural Chemistry Unit, ${ }^{\text {b }}$ NMR Research Centre, Indian Institute of Science, Bangalore 560012, India

1. C-HETSERF spectrum of the Cyclosporine A :

The 800 MHz 2D C-HETSERF spectrum of cyclosporine A. Eight scans are accumulated for each one of the $200 t_{1}$ increments and the number of the data points in t_{2} was set to 4608 . The spectral widths in both dimensions were 7700 Hz . Prior to Fourier transformation, zero filling to 4 K in F_{1} and 16 K points in F_{2} and sine squared window function in both dimensions were applied. The recycle delay was set to 3.5 s

2. C-HETSERF spectrum of the (R / S)-propylene carbonate :

The 2D C-HETSERF spectrum of (R/S)-propylene carbonate in $\mathrm{PBLG}^{2} \mathrm{CDCl}_{3}$ solvent was recorded at 300 K . The delay Δ was 1.8 ms . The flip angle used was 26°. Eight scans were accumulated for each of the $512 t_{1}$ increments and the number of the data points in t_{2} was set to 8332. The spectral widths in both the F_{2} and F_{1} dimensions are 2000 Hz . Zero filling to 2048 in F_{1} and 8192 points in F_{2} and sine squared window function in both dimensions were applied before processing. The recycle delay was set to 3 s . The eleven couplings used within the PALES program are given by the separations "a-i".

The separations "a-i" represent the couplings $a={ }^{3} T_{\mathrm{C} 1 \mathrm{H} 6}, b={ }^{3} \mathrm{~T}_{\mathrm{ClH7} 7}, \mathrm{c}^{2} \mathrm{~T}_{\mathrm{C} 1 \mathrm{H} 5, ~} \mathrm{~d}^{1} \mathrm{~T}_{\mathrm{C} 3 \mathrm{H} 6}, \mathrm{e}={ }^{1} \mathrm{~T}_{\mathrm{C} 3 \mathrm{H} 7}$, $f={ }^{1} T_{\mathrm{C} 2 \mathrm{H} 5}, g={ }^{2} \mathrm{~T}_{\mathrm{C} 2 \mathrm{H} 6}, \mathrm{~h}==^{2} \mathrm{~T}_{\mathrm{C} 2 \mathrm{H} 7,}, \mathrm{i}^{2} \mathrm{~T}_{\mathrm{C} 3 \mathrm{H} 5}$, respectively for both the enantiomers. The magnitudes of couplings are given in the text.

3. INADEQUATE experiment of the (R/S)-propylene carbonate :

All the two-dimensional ${ }^{13} \mathrm{C}^{13} \mathrm{C}$ INADEQUATE spectra were recorded on an 800 MHz spectrometer at 300 K using a recycle delay time of 3 sec . The spectral widths of 24 K Hz in F_{1} and 12 K Hz in F_{2} were used. 128 scans are accumulated for each of the $96 \mathrm{t}_{1}$ increments and the number of the data points in t_{2} was set to 776 . Prior to Fourier transformation, zero filling to 512 in F_{1} and 2 K points in F_{2} and sine squared window function in both dimensions were applied. The recycle delay was set to 4 s .

Traces from the two-dimensional ${ }^{13} \mathrm{C}-{ }^{13} \mathrm{C}$ INADEQUATE experiment of (R / S)-propylene carbonate in both PBLG/CDCl3 solvent and CDCl_{3}. The following figures show ${ }^{1} T_{\mathrm{CC}}$ and ${ }^{1} J_{\mathrm{CC}}$.

N

4. Alignment tensor elements

The alignment tensor for the R-propylene carbonate in $\mathrm{PBLG} / \mathrm{CDCl}_{3}$ liquid crystalline phase. Below are the values of the alignment tensor for the RDCs of set-I fitted to R-structure.

n (RDC)	8	11
Da/ Hz	-3.45×10^{-3}	-3.08×10^{-3}
DaNH / Hz	-37.3	-33.3
R	0.39	0.37
Axx	7.15×10^{-4}	6.70×10^{-4}
Ayy	2.74×10^{-3}	2.41×10^{-3}
Azz	-3.45×10^{-3}	-3.08×10^{-3}
EV Axx	$-0.03 ;-0.34 ; 0.93$	$-0.01 ;-0.35 ; 0.93$
EV Ayy	$0.78 ;-0.58 ;-0.18$	$0.78 ;-0.58 ;-0.21$
EV Azz	$0.61 ; 0.73 ; 0.29$	$0.62 ; 0.72 ; 0.27$
RMSD	2.409	3.781
CORR	0.995	0.988

Da: axial component of alignment tensor and DaNH : axial component of the alignment tensor normalized to NH vectors

R: rhombicity
Axx, Ayy, Azz: main axes of the alignment tensor
EV Axx, EV Ayy, EV Azz : Eigenvectors for the corresponding main axes of the tensor $n(R D C)$: number of RDCs used for the calculation of the parameters with PALES.
5. Table 1. The experimental and back-calculated RDCs obtained using the optimized structure of R within the PALES.

Coupling	Set-I		Set-II	
	Experimental	${ }^{\text {a }}$ Theoretical	Experimental	${ }^{\mathrm{b}}$ Theoretical
C1H5	2.0	-7.6	2.9	-7.3
C1H7	3.7	-5.7	3.3	-7.2
C1H6	2.3	-5.4	2.7	-6.1
C2H5	27.7	27.5	26.3	26.5
C2H7	1.9	1.0	0.00	-1.9
C2H6	2.0	-7.3	1.9	-9.9
C3H5	2.5	0.3	3.1	-2.7
C3H6	23.5	24.8	30.0	31.4
C3H7	14.5	15.5	9.4	10.8
C1C2	-9.8	-8.9	-9.2	-8.4
C2C3	-7.7	-6.2	-10.7	-8.8

${ }^{\text {a }}$ theoretical RDCs when the eleven RDCs of Set-I are used
${ }^{\mathrm{b}}$ theoretical RDCs when the eleven RDCs of Set-II are used.
6. Table 2. Tabulation of the each of experimental and back-calculated RDCs derived using the optimized structure of S enantiomer using the PALES.

Coupling	Set-I		Set-II	
	Experimental	${ }^{\text {a }}$ Theoretical	Experimental	${ }^{\mathrm{b}}$ Theoretical
C2H5	27.7	27.0	26.3	25.5
C2H7	1.9	-8.6	0.00	0.5
C2H6	2.0	-7.7	1.9	-1.9
C3H5	2.5	-0.6	3.1	2.6
C3H6	23.5	25.3	30.0	30.8
C3H7	14.5	15.4	9.4	10.2
C1C2	-9.9	-6.8	-9.2	-9.4
C2C3	-7.7	-9.8	-10.7	-9.6

${ }^{\text {a }}$ theoretical RDCs when the eight RDCs of Set-I were used. ${ }^{\text {b }}$ theoretical RDCs when the eight RDCs of Set-II were used.
7. Additional confirmation using SERF spectrum of (R / S)-propylene carbonate :

The SERF experiment for (R / S)-propylene carbonate was recorded and presented above. From the SERF spectrum, the outer triplet in the indirect dimension could be assigned to the R enantiomer whereas inner one for the S enantiomer as the sample is R enriched. Looking at intensities of different cross sections, peaks can be assigned unambiguously for R enantiomer in the direct dimension. The direct dimension represents the one dimensional proton spectrum of the methyl region. With the help of this information, the whole 2 D spectrum could be assigned. The assignments obtained by this method are exactly same as what is described in this article. This further vindicates the applicability of the present method.

