Cationic gold catalyses *@*-bromination of terminal alkynes and subsequent hydroaddition reactions.

Antonio Leyva-Pérez,^a* Paula Rubio-Marqués,^a Salem S. Al-Deyab,^b Saud I. Al-Resayes,^b and Avelino Corma^{a,b}*

- ^a Instituto de Tecnología Química. Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas. Avda. de los Naranjos s/n, 46022, Valencia, Spain.
- ^b Chemistry Department, College of Science, King Saud University B.O.
 BOX.2455 Riyadh 11451 Saudi Arabia.

Corresponding authors: anleyva@itq.upv.es, acorma@itq.upv.es Phone: +34963877800; Fax: +349638 77809.

Table of Contents:

-	Experimental section:			
	0	General S2		
	0	Reaction Procedures		
	0	Characterisation		
	0	References		
-	Table S1S7			
-	Spectr	aS8		

General.

Glassware was dried in an oven at 175 °C before use. Reagents and solvents were obtained from commercial sources and were used without further purification otherwise indicated. Gold (I) complexes AuPR₃NTf₂^{1,2} and **6a-c³** were prepared as previously reported, and complex 4a was prepared following a standard procedure for similar compounds.⁴ All the products obtained were characterised by GC-MS, ¹H- and ¹³C-NMR, and DEPT. When available, the characterisation given in the literature was used for comparison. Gas chromatographic analyses were performed in an instrument equipped with a 25 m capillary column of 5% phenylmethylsilicone. Nitrobenzene was used as external standard. GC/MS analyses were performed on a spectrometer equipped with the same column as the GC and operated under the same conditions. Column chromatography and TLC were performed over SiO₂. ¹H, ¹³C, DEPT and ³¹P-NMR were recorded in a 300 MHz instrument using CD₃CN, $1.4-d^8$ -dioxane, CD₂Cl₂ or CDCl₃ as solvents, containing TMS as internal standard. IR spectra of the compounds were recorded on a spectrophotometer as self-supported wafers or by impregnating the windows with a dichloromethane solution of the compound and leaving to evaporate before analysis.

Reaction Procedures.

Catalyst screening (Table 1). AuP^tBu₃NTf₂ (3.4 mg, 0.005 mmol) and NBS **2a** (97.8 mg, 0.55 mmol) were placed in a 2 ml vial equipped with a magnetic stirrer. CH₃CN or DCM (0.5 ml) and phenylacetylene **1a** (55 μ l, 0.5 mmol) were added, the vial was sealed and the resulting mixture was stirred for 20 h at room temperature. Then, ~200 μ l of the reaction mixture were taken and submitted to GC and GC-MS analysis after a) precipitation in a *n*-hexane : DCM mixture (3 : 1 in volume, 1 ml) and filtration if CH₃CN was the solvent of the reaction or b) precipitation in *n*-hexane (1 ml) and filtration if DCM was the solvent.

Isotopic experiments (Tables 2 and 3, and Schemes 2 and 3). The corresponding metal complex or substrate (typically 0.1 mmol), the corresponding succinimide and the catalyst (if proceeded) were placed in a 2 ml vial equipped with a magnetic bar. CD_3CN was added and then H₂O (if proceeded) or HNTf₂ (if proceeded) and the vial was sealed.

The reaction mixture was magnetically stirred at rt for the indicated time after which additional CD_3CN was added to analyse the mixture immediately by NMR spectroscopy.

Kinetics (Figure 1). AuP'Bu₃NTf₂ (17 mg, 0.025 mmol) and NBS **2a** (978 mg, 5.5 mmol) were placed in a vial equipped with a magnetic stirrer. DCM (5 ml) and phenylacetylene **1a** (550 μ l, 5 mmol) were added, the vial was closed with a septum cap and the resulting mixture was placed in a pre-heated oil bath at 28 °C and stirred for the indicated time. Aliquots (100-200 μ l) were periodically taken and submitted to GC analysis after precipitation in *n*-hexane (1 ml) and filtration.

Reaction procedure for the synthesis of 1-bromophenylacetylene **3a** (Table 4, entry 1). AuP^{*i*}Bu₃NTf₂ (13.6 mg, 0.02 mmol) and NBS **2a** (355.6 mg, 2 mmol) were placed in a vial equipped with a magnetic stirrer. DCM (2 ml) and phenylacetylene **1a** (220 µl, 2 mmol) were added, the vial was closed with a septum cap and the resulting mixture was stirred for 24 h at room temperature. Then, an aliquot was taken for GC analysis and *n*-hexane (20 ml) was added to the reaction mixture. The resulting suspension was stirred for 15 min, filtered and concentrated under vacuum to give **3a** (330 mg, >90 % purity, 83 % yield). Column chromatography of the reaction mixture lead to the analytically pure compound but significant weight loss was observed, probably by decomposition of the product on column. R_f (*n*-hexane): 0.56. MS (*m*/*z*, relative intensity): 182 (100), 180 (100), 101 (48), 75 (26). IR (ν , cm⁻¹): 2369-2320 (several peaks), 2200, 1697, 1221, 1176. ¹H NMR (δ , ppm): 7.37 (aromatic CH, 2H, mult), 7.26-7.23 (aromatic CH, 3H, mult). ¹³C NMR (δ , ppm): 132.0 (aromatic, 2CH), 128.7 (aromatic, CH), 128.3 (aromatic, 2CH), 122.7 (aromatic, C), 80.0 (alkyne, C), 49.7 (alkyne, C-Br).

Cascade reaction (7*a*, *Scheme 5*). AuP^tBu₃NTf₂ (34 mg, 0.05 mmol) and NBS 2**a** (177.8 mg, 1 mmol) were placed in a vial equipped with a magnetic stirrer. DCM (1 ml) and phenylacetylene 1**a** (110 μ l, 1 mmol) were added, the vial was closed with a septum cap and the resulting mixture was stirred for 8 h at room temperature. Then, ethylene glycol (55.5 μ l, 1 mmol) was added and the vial stirred in a preheated oil bath at 35 °C for 24 h. The mixture was analyzed by GC and GC-MS.

Characterisation.

R_f (*n*-hexane): 0.56. MS (*m/z*, relative intensity): 182 (100), 180 (100), 101 (48), 75 (26). IR (ν , cm⁻¹): 2200, 1697, 1221, 1176. ¹H NMR (δ , ppm): 7.37 (aromatic CH, 2H, mult), 7.26-7.23 (aromatic CH, 3H, mult). ¹³C NMR (δ , ppm): 132.0 (aromatic, 2CH), 128.7 (aromatic, CH), 128.3 (aromatic, 2CH), 122.7 (aromatic, C), 80.0 (alkyne, C), 49.7 (alkyne, C-Br).

R_f (*n*-hexane): 0.38. MS (*m*/*z*, relative intensity): 228 (100), 101 (38), 75 (31). IR (υ, cm⁻¹): 2169, 1751, 1689, 1596, 1487, 1441, 1220. ¹H NMR (δ, ppm): 7.35 (aromatic CH, 2H, mult), 7.25-7.20 (aromatic CH, 3H, mult). ¹³C NMR (δ, ppm): 132.3 (aromatic, 2CH), 128.8 (aromatic, CH), 128.2 (aromatic, 2CH), 123.3 (aromatic, C), 94.1 (alkyne, C), 6.2 (alkyne, C-I).

R_f (*n*-hexane): 0.52. MS (*m*/*z*, relative intensity): 218 (62), 216 (100), 214 (100), 137 (18), 135 (57), 99 (71), 74 (38). IR (υ, cm⁻¹): 2197, 1489, 1397. ¹H NMR (δ, ppm; *J*, Hz): 7.29 (aromatic CH, 2H, dt, J= 8.8, 2.2), 7.20 (aromatic CH, 2H, dt, J= 8.8, 2.2). ¹³C NMR (δ, ppm): 134.8 (aromatic, C), 133.2 (aromatic, 2CH), 128.7 (aromatic, 2CH), 121.1 (aromatic, C), 78.9 (alkyne, C), 51.0 (alkyne, C-Br).

R_f (*n*-hexane: AcOEt, 8:2): 0.71. MS (*m*/*z*, relative intensity): 227 (100), 195 (33), 179 (44), 167 (36), 100 (54), 88 (10), 74 (39). IR (υ, cm⁻¹): 2195, 1591, 1507, 1403, 1350. ¹H NMR (δ, ppm; *J*, Hz): 8.13 (aromatic *CH*, 2H, dt, *J*= 9.1, 2.3), 7.64 (aromatic *CH*, 2H, dt, *J*= 9.1, 2.3). ¹³C NMR (δ, ppm): 149.5 (aromatic, C), 134.9 (aromatic, 2CH), 131.0 (aromatic, C), 125.6 (aromatic, 2CH), 80.1 (alkyne, C), 58.4 (alkyne, C-Br).

R_f (*n*-hexane): 0.49. MS (*m*/*z*, relative intensity): 262 (100), 260 (100), 258 (100), 181 (53), 179 (54), 100 (53), 74 (38). IR (υ, cm⁻¹): 2198, 1485, 1392. ¹H NMR (δ, ppm; *J*, Hz): 7.37 (aromatic CH, 2H, dt, *J*= 8.8, 2.2), 7.23 (aromatic CH, 2H, dt, *J*= 8.8, 2.2). ¹³C NMR (δ, ppm): 133.4 (aromatic, 2CH), 131.6 (aromatic, 2CH), 123.0 (aromatic, C), 121.6 (aromatic, C), 79.0 (alkyne, C), 51.2 (alkyne, C-Br).

R_f (*n*-hexane): 0.51. MS (*m*/*z*, relative intensity): 196 (100), 194 (100), 115 (100), 89 (32). IR (υ, cm⁻¹): 2195, 1488, 1455. ¹H NMR (δ, ppm; *J*, Hz): 7.33 (aromatic *CH*, 1H, dmult, *J*= 7.5), 7.15 (aromatic *CH*, 1H, td, *J*= 7.2, 1.5), 7.10 (aromatic *CH*, 1H, dmult, *J*= 7.5), 7.04 (aromatic *CH*, 1H, tmult, *J*= 7.2), 2.35 (*CH*₃, 3H, s). ¹³C NMR (δ, ppm): 140.8 (aromatic, C), 132.3 (aromatic, CH), 129.4 (aromatic, CH), 128.6 (aromatic, CH), 125.5 (aromatic, CH), 122.5 (aromatic, C), 79.1 (alkyne, C), 52.8 (alkyne, C-Br), 20.5 (methyl, CH₃).

R_f (*n*-hexane): 0.62. MS (*m/z*, relative intensity): 274 (<5), 272 (<5), 193 (<5), 162 (10), 161 (10), 160 (10), 159 (10), 95 (100), 81 (100), 67 (92), 55 (88). IR (υ, cm⁻¹): 2925, 2854, 2220, 1466. ¹H NMR (δ, ppm; *J*, Hz): 2.12 (CH₂, 2H, t, *J*= 7.0), 1.42 (CH₂, 2H, quint, *J*= 7.1), 1.32-1.16 (9CH₂s, 18H, mult), 0.81 (CH₃, 3H, t, *J*= 6.7). ¹³C NMR (δ, ppm): 80.5 (alkyne, C), 37.4 (alkyne, C-Br), 31.9 (CH₂), 29.6 (3CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.1 (CH₂), 28.8 (CH₂), 28.3 (CH₂), 22.7 (CH₂), 19.7 (CH₂), 14.1 (methyl, CH₃).

IR (υ , cm⁻¹): 3050-2850 (several peaks), 2114, 1484. ¹H NMR (δ , ppm; *J*, Hz): 7.43 (aromatic C*H*, 2H, mult), 7.18-7.08 (aromatic C*H*, 3H, mult), 1.46 (3^tBu, 27H, d, *J*_{H-P}= 13.2). ¹³C NMR (δ , ppm; *J*_{C-P}, Hz): 136.4, 134.7, 132.2 (2C), 127.6 (2C), 126.3, 103.1 (*J*_{C-P}= 23.1), 38.9 (3C, *J*_{C-P}= 18.1), 32.3 (9C, *J*_{C-P}= 4.4). ³¹P NMR (δ , ppm): 91.48.

¹H NMR (CD₃CN, δ, ppm; *J*, Hz): 2.47 (cyclic C*H*₂, 4H, s), 1.49 (3^{*t*}Bu, 27H, d, *J*_{H-P}= 13.6). ¹³C NMR (CD₃CN, δ, ppm; *J*_{C-P}, Hz): 188.2 (2C), 39.8 (3C, *J*_{C-P}= 21.4), 32.4 (9C, *J*_{C-P}= 4.4), 32.2 (2C, *J*_{C-P}= 3.2). ³¹P NMR (δ, ppm): 87.47.

References.

¹ Leyva, A.; Corma, A. J. Org. Chem. 2009, 74, 2067.

- ² Corma, A.; Ruiz, V.; Leyva-Pérez, A.; Sabater, M. J. Adv. Synth. Catal. 2010, 352, 1701.
- ³ Hooper, T. N.; Green, M.; Russell, C. A. Chem. Commun. 2010, 46, 2313.
- ⁴ Cross, R. J.; Davidson, M. F. J. Chem. Soc. Dalton Trans. 1986, 411.

Table S1.

Table S1. Results for the metal-catalyzed formation of 3a in different solvents.

	Conversion (%) ^{a)}			
Catalyst /	$AuP^{t}Bu_{3}NTf_{2}$ (1 mol%)	AgNO ₃		
Solvent		1 mol%	10 mol%	
DCM	100 ^{b)}	61 ^{b)}	100	
CH ₃ CN	98	10	100	
H ₂ O	99	0	100	
1,4-dioxane	91	0 ^{c)}	0 ^{c)}	
Diethyl ether	94	0 ^{c)}	8 ^{c)}	
Acetone	33	100	100	
<i>n</i> -hexane	0	0	0	

^{a)} GC yield. Selectivity to **3a** typically accounts for >80 %. ^{b)} For 0.1 mol% catalyst, AuP'Bu₃NTf₂: 22 %,

 $AgNO_{3}: 17 \ \%; \ AuP'Bu_{3}NTf_{2} + AgNO_{3} \ (0.1 \ mol\% \ each). \ 40 \ \%. \ ^{c)} \ Bromination \ of \ the \ solvent \ was \ found.$

Spectra.

200 175 150 125 100 75 50 25 0

S16

