Supporting Information

Improving the Carbon Resistance of Ni-based Steam Reforming Catalyst by Alloying with Rh. A Computational Study Coupled with Reforming Experiments and EXAFS Characterization

Jiahua Guo^{a,b}, Chao Xie^{a,c}, Kyungtae Lee^d, Neng Guo^e, Jeffrey T.

Miller^e, Michael J. Janik^{a,d*}, Chunshan Song^{a,b,d*}

^a Clean Fuels and Catalysis Program, EMS Energy Institute, 209 Academic Projects

Building, The Pennsylvania State University, University Park, PA 16802, USA

^b Department of Energy & Mineral Engineering, The Pennsylvania State University,

University Park, PA 16802, USA

^c Department of Materials Science and Engineering, The Pennsylvania State University,

University Park, PA 16802, USA

^d Department of Chemical Engineering, The Pennsylvania State University, University

Park, PA 16802, USA

^e Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700

South Cass Avenue, Argonne, IL 60439, USA

*Corresponding author: E-mail: csong@psu.edu (C.S. Song); Tel: 814-863-4466

E-mail: mjanik@psu.edu (M.J. Janik); Tel: 814-308-3798

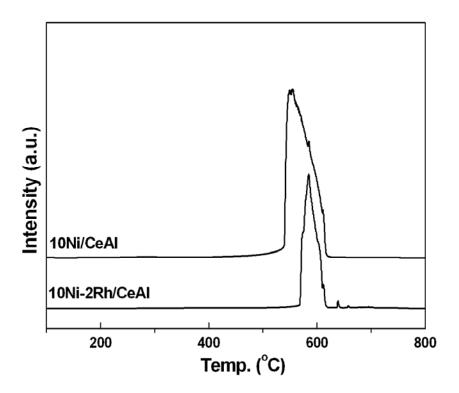


Figure S-1. TPO profiles of used 10wt%Ni/CeAl and 10wt%Ni-2wt%Rh/CeAl catalysts after steam reforming of Norpar13 at 550 °C for 55 h.

Table S-1. Calculated activation energies and reaction energies for the oxidation

of hydrogenated carbon (CH-O formation) and dehydrogenated carbon (C-O

	Reaction energy (eV)	Activation energy (eV)	Relative rate *
CH-O formation			
Ni(111)	0.096	1.15	1.0
Ni ₈ Rh ₁ /Ni(111)_near	0.017	1.31	0.10
Ni ₈ Rh ₁ /Ni(111)_far	0.017	1.14	1.2
$Ni_2Rh_1(111)$	0.13	1.14	1.2
Rh(111)	0.12	1.37	0.045
C-O formation			
Ni(111)	-1.75	1.18	1.0
Ni ₈ Rh ₁ /Ni(111)_near	-1.83	1.41	0.039
Ni ₈ Rh ₁ /Ni(111)_far	-1.72	1.29	0.21
$Ni_2Rh_1(111)$	-1.66	1.16	1.3
Rh(111)	-1.43	1.37	0.069

formation) over (111) surfaces.

 * at a temperature of 550 °C