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1. Experimental Section

'H and "*C NMR spectra were recorded on a Bruker DRX 300 spectrometer in CDCl;, and
tetramethylsilane (TMS) was used as internal standard. The structures of the synthesized materials
were confirmed by TEM using a JEM-3010 transmission electron microscope operating at an
accelerating voltage of 300kv. Histograms of particle size distribution of Pd nanoparticles were
obtained from the TEM images by measuring more than 200 particles in each sample. The surface
area of the catalysts was determined from full nitrogen adsorption and desorption isotherms at
77K using a Sorptometer ST-03A. The catalysts were outgassed for four hours at 573K prior to
measurements. Infrared spectra were recorded with a FI-IR Bruker EQUINX-55 Spectrometer
equipped with a KBr beam splitter and a TGS detector. The chemical analyses of the content of
palladium, respectively, were carried out with an ICP-OES (inductively coupled plasma-optical
emission spectrometer) Vista (Varian). The samples (amount of about 10 mg) were digested in a
mixture of 1.5 mL of HCI (37%), 0.5 mL of HNO; (65%), and 1 mL of HF (40%) by heating.
Generally, the solutions were diluted to a volume of 50 mL using a volumetric flask. EDXA
measurements were performed on a Philips-FEI Quanta 200 scanning electron microscope. This
apparatus was equipped with a Si-Li energy dispersive, quantitative chemical analysis was
performed for Si and Pd. C, H and N elemental analysis were performed on a Perkin-Elmer 2400
CHN elemental analyzer. The powder XRD pattern of SiOz-BisILs[PFﬁ]-Pd0 (2¢) was recorded
on a Rigalcu D/Max-3c X-ray diffractometer (Cuka, Ni filter). Gas chromatography was
performed on an Agilent GC 6890N with a FID detector equipped with an DB-35 column (30 m

long, 0.25 mm inner diameter). Parameters were as follows: initial temperature 70 °C; initial time
3 min; ramp 8 °C-min’"; final temperature 180 °C; final time 2 min; injector temperature 220 °C;

detector temperature 250 °C; injection volume 1.0 pL. The high boiling point substrates and the

products were analyzed by using HPLC. All hydrogenated products were initially identified using

authentic commercial samples of the expected products. Melting point is uncorrected.

Materials. PdCl, (AR grade), imidazole (AR grade), sodium borohydride (AR grade),
1-chlorooctane (AR grade), KPF, silica gel (surface area, 385 ng'l), nitrobenzene, 4-nitrophenol,
2-nitrophenol and other aromatic nitro compounds were used as received. 1,4-dibromobutane and
3-chloropropyltriethoxy silane, purchased from Alfa Aesar. All organic solvents (toluene,
methanol, ethanol, and so on.) were dried under standard purification conditions.

2. General procedures
2.1. Preparation and characterization of the multiple layer ionic liquids.

The SiO, immobilized multiple layer ILs and the Pd nanoparticles catalysts involved in this
work are shown in Figure S1 and Table S1. The synthetic route of the catalysts, e.g., the bis-layer

ionic liquids catalyst 2¢, is shown in Scheme S1.
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Figure S1. Silica immobilized multilayer ionic liquids as the catalysts

Table S1: The catalysts used in this work

Constant of Constant of
Catalysts n R Catalysts n R
Pd(wt.%) Pd(wt.%)
Silica-Pd"(0) - - 1.0 Silica-BisILs[PF¢]-Pd’ (2¢-1) 1 CsHp 1.5
Silica-IL[PF¢]-Pd’ (1) 0 GCgHy 1.0 Silica-BisILs[PF¢]-Pd’ (2¢-2) 1 CsHp 2.0
Silica-BisILs[PF]-Pd°® (2a) 1 GHs 10 Silica-BisILs[PF]-Pd® (2d) 1 CpHs 1.0
Silica-BisILs[PF]-Pd°® (2b) 1 CH, 10 Silica-BisILs[PF]-Pd°’ (2¢) 1 CGHy 1.0
Silica-BisILs[PF,]-Pd’ (2¢) 1 GCgHyy 10 Silica-TrilLs[PF¢]-Pd’ (3) 2 CgHp 1.0
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Scheme S1. The route of synthesizing the catalyst SiO,-BisILs[PF¢]-Pd"

2.1.1 Preparation of the multilayer ionic liquids portion.
2.1.1.1 Synthesis of 1,4-bis(imidazole-1-yl)butane.

1,4-Bis(imidazole-1-yl)butane was synthesized according to the literature.®"! m.p. 61-63°C, 'H

NMR (300 MHz, DMSO-ds, ppm ): 6 1.61 (m, 4H), 3.96 (m, 4H), 6.89 (s, 2H), 7.14 (s, 2H), 7.62
(s, 2H); *C NMR (300 MHz, DMSO-dj, ppm) & 28.1, 39.4, 39.6, 39.9, 40.2, 40.5, 45.7, 119.7,

128.9, 137.7.
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2.1.1.2 Synthesis of 1-octylimidazolium.
1-Octylimidazolium was synthesized according to the literature.®*' 'TH NMR (300 MHz, CDCl;,
ppm ): 0.42-1.30 (m, 15H), 3.48-3.43 (t, 2H), 6.46 (d, 1H), 6.59 (d, 1H), 7.00 (s, 1H); °C NMR
(300 MHz, CDCl;, ppm) 6 13.7,22.3, 26.2, 28.7, 28.8, 30.8, 31.4, 46.7, 118.5, 128.9, 136.7.
Né\NH 1) NaH, THF, 273K to r.t Né\N,CgH17
\—/ 2) CHg(CH,)gCH,Br, reflux, 2h \—/

2.1.1.3 Synthesis of 1-(4-bromododecyl)-3-octylimidazolium bromide.
1-(4-Bromododecyl)-3-octylimidazolium bromide was synthesized according to the literature.'>*!

'H NMR (300 MHz, CDCls, ppm ) & 0.87-0.85(t, 3H), 1.49-1.13(m, 10H), 2.15-1.79(m, 6H),

4.60-4.37(m, 6H), 7.65-7.33(m, 2H), 10.01(s, 1H); "C NMR (300 MHz, CDCl;, ppm) & 13.8,

22.3,26.0,26.3,26.7, 28.8, 28.9, 30.1, 31.5, 32.5, 46.6, 50.0, 122.2, 122.3, 136.6.

Né_\N/cus + Br(CHy),Br _CHeClz reflux, 10h Can\N@N/B(r(}HzMBr
2.1.2 Preparation and characterization of the Catalyst: SiOZ-BisILs[PF6]-Pd0.
2.1.2.1 Functionalization of silica: Silica 1.

The functionalization of the silica was performed according to the literature,'>*! while the white
color of the solid support changed to pale yellow, denoted as Silica 1. Sggr (mz/g): 385. IR: (KBr
disk) 2958, 2930, 2871 cm™ v(C-H, aliphatic).
2.1.2.2 Modification of the Silica 1 with 1,4-bis(imidazole-1-yl)butane.

1,4-Bis(imidazole-1-yl)butane (4.3 g, 22.5mmol), synthesized according to the literature,’! was
mixed with Silica 1 (4.5 g)in 15 mL dry toluene. And then the mixture was refluxed for 96 h. It
was then filtered and washed thoroughly with toluene followed by methanol in a Soxhlet
apparatus. After drying under high vacuum, 5.1 g of resulting solid was obtained. Sggr (m*/ 2): 236.
IR: (KBr disk) 3155, 3120 cm’ v(C-H, aromatic), 2947, 2871 cm™ v(C-H, aliphatic), 1555, 1456
cm’ v(C=N). Elemental analysis for the resulting solid was found to be (%): C, 14.79; H, 2.574; N,
4.212, revealing that 1.50 mmol of imidazolium /g.
2.1.2.3 Alkylation of 1,4-bis (imidazole-1-yl) butane modified Silica 1: Silica 2.

A mixture of the above modificated silica (5g, 1.50 mmol of imidazolium /g) and
1-chlorooctane (5 g, 34 mmol) in toluene was refluxed for 24 h under nitrogen atmosphere. After
the reaction mixture was cooled to room temperature the solid was filtered off and washed with
toluene followed by ethanol in a Soxhlet apparatus., then dried under vacuum, 5.4 g of resulting
solid was obtained, denoted as Silica 2. Sggr (mZ/g): 181. IR: (KBr disk) 3151, 3084 cm’ v(C-H,
aromatic), 2936, 2855 cm’ v(C-H, aliphatic), 1568, 1458 cm’ v(C=N). Elemental analysis for
Silica 2 was found to be (%): C, 14.06; H, 2.335; N, 3.545; revealing that 1.27 mmol of
imidazolium /g.
2.1.2.4 Synthesis of SiO,-BisILs-PdCl,.

A typical procedure of the catalysts was as follows: to a yellow solution of PdCl, (0.017 g, 0.09
mmol) in 10 ml of freshly distilled acetonitrile, the Silica 2 (1.0 g, 1.27 mmol of ionic liquid
portion/g) was added and the suspension was refluxed for 96 h under nitrogen atmosphere. The
solid material was filtered off and washed repeatedly with methanol in a Soxhlet apparatus and
dried under vacuum, 1.013 g of resulting solid was obtained, denoted as SiQ,-BisILs-PdCly, Sggr
(mz/g): 227. Elemental analysis for SiOQ,-BisILs-PdCl, was found to be (%): C, 13.58; H, 2.39; N,



2.85, revealing that 1.02 mmol of imidazolium /g.
2.1.2.5 Synthesis of SiOz-BisILs[Cl]-PdO: Silica 3.

The saffron yellow solid, SiO,-BisILs-PdCly (1 g, 1.02 mmol of imidazolium /g) was
suspended in EtOH (10 mL) at 303 K under nitrogen atmosphere. Then, a stoichiometric amount
of sodium borohydride (NaBH,) ethanol solution was added dropwisely, and the reaction mixture
changed to black colored indicating a reduction of Pd (II) to Pd (0). The resulting product was
filtered, washed with EtOH in a Soxhlet apparatus and dried under vacuum to give 0.96 g
SiOZ-BisILs[Cl]-Pd0 as a black solid, denoted as Silica 3. Sggr (mz/ g): 212. Elemental analysis for
SiOZ-BisILs[Cl]-Pd0 was found to be (%): C, 13.85; H, 2.615; N, 3.245, revealing that 1.15 mmol
of imidazolium /g.
2.1.2.6 Synthesis of the catalyst with expected anions by exchanging CI' to PFq:
SiO,-BisILs[PF]-Pd’ (2c).

To a solution of KPF4 (2.1 g, 11.5 mmol) in acetone (50 mL, 0.1 mol/L), Silica 3 (1.0 g, 1.15
mmol of imidazolium /g) was added and the mixture was stirred for 48 h under nitrogen
atmosphere at room temperature. The solid material was filtered off and washed repeatedly with
acetone, distilled water and acetone, followed by extraction with ethanol in a Soxhlet apparatus,
and then dried under vacuum to give 1.2 g black solid, which was the expected catalyst, denoted
as SiOZ-BisILs[PFﬁ]-Pd0 (2¢). Sger (mz/g): 110. IR: (KBr disk) 3167, 3120 cm’ v(C-H, aromatic),
2948, 2876 cm™  v(C-H, aliphatic), 1567, 1468 cm™ v(C=N), 842 cm™ v(P-F). Elemental analysis
for SiOz-BisILs[PFﬁ]-Pd0 (2¢) was found to be (%): C, 12.62; H, 2.552; N, 2.946, revealing that
1.05 mmol of imidazolium /g. EDXA: Pd, 1.0 %.
2.1.2.7 Supporting data for structural characteristics of SiOz-BisILs[PFG]-Pd0 2¢)
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Figure S2. powder XRD pattern of SiO,-BisILs[PF4]-Pd" (2¢)

The powder XRD pattern, shown in the Figure S2, exhibited typical diffused rings, which could
be assigned to (111), (200), and (220) reflections of face centered cubic structure corresponding to
metallic Pd. The particle size calculated from the line broadening of (111) reflection using the
Scherrer formula was 1 nm, which matched very well with TEM data (Figure 2).5% One broad
reflection (26=10-30°) is also observed in the XRD pattern, which is attributed to the reflection of
amorphous SiO,.

2.1.3 Synthesis of the other catalysts used in this work.



The other catalysts, as shown in Table S1, were prepared via the same procedure or, if

necessary, via those with a slight modification. All the elemental analyses were shown in Table

S2.
Table S2: The elemental analysis of the catalysts used in this work
) Loading of imidazolium
Catalysts Sger (m/g) N (wt.%) C (Wt.%) H (wt.%)
(mmol/g)

Silica-Pd’ (0) 395 - - 0.743 -
Silica-IL[PF,]-Pd’ (1) 241 1.943 11.44 1.734 0.69
Silica-BisILs[PF¢]-Pd" (2a) 173 3.131 11.98 1.760 1.12
Silica-BisILs[PF¢]-Pd’ (2b) 136 3.112 12.28 1.520 1.11
Silica-BisILs[PF¢]-Pd’ (2c) 110 2.946 12.62 2.552 1.05
Silica-BisILs[PF¢]-Pd’ (2d) 35 3.020 19.33 2.656 1.08
Silica-BisILs[PF¢]-Pd’ (2¢) 127 3.038 12.16 2.368 1.09
Silica-TrilLs[PF,]-Pd’ (3) 227 1916 12.23 2.294 0.68

2.2. The procedures for hydrogenation reactions under mild conditions.
2.2.1 A typical procedure for hydrogenation of nitrobenzene under solvent-free condition.

All hydrogenation reactions were carried out under standard conditions (30 °C, 1 atm of H,). A

round bottom flask (25 mL), charged with the supported Pd” catalyst (10 pmol) and a magnetic
stirrer, was connected to a gas burette (500 mL) with a flask to balance the pressure. The flask was
closed by a septum, and the system was filled with hydrogen. Nitrobenzene (3.5x107 mol) was
injected through the septum, and the mixture was stirred (1500 min™"). The reaction was monitored
by the volume of gas consumed and by gas chromatography. At the end of the reaction, the two
phases were separated by decantation and the solid phase was reused in a second run. The liquid
phase was collected and divided into two equal parts. One was used for the determination of the
Pd content by ICP analysis and the other one was used for detection. ICP analysis indicated
absence of any palladium within the detection limits (i.e., less than 0.1pg/mL). The rates of the
products were determined and checked by GC.
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Figure S3. The yield against the reaction time in the hydrogenation of nitrobenzene with 2¢

In the course of hydrogenation of nitrobenzene, it was found that the maximal speed could be
got with about 50% conversion; but the speed was slower after the conversion reached to 80% and



the speed turned slowest when the conversion exceeded 98%. The results, to our great delight,
show that the hydrogenation reaction of nitrobenzene was proceeded smoothly and completely to
give aniline in quantitative yields.

Encouraged by these excellent results, we compared the catalyst 2¢ with the Pd catalysts
reported in literatures'™® for the hydrogenation of nitrobenzene (Table S3). In the result, 2¢ has
unprecedented activity in nitrobenzene hydrogenation under organic solvent-free, atmospheric
pressure and room temperature conditions, while Pd/SiO, cannot promote the reaction to be

(5% and PS-DVB-Pd catalyzes the reaction with a rather low rates’™™ even under

complete
rigorous conditions. Although PVPA-Pd exhibits a higher activity, its catalytic activity decreases
significantly after reusing for 4 cycles.[sgc] EnPdCl,Cat could be recycled three times without
deactivation, but its catalytic activity was too low. 5841 I addition, all of these Pd catalysts
reported must be employed in methanol, ethanol or hexane. The reasons might be that the ionic
liquid brushes provide a fence protecting nanoparticles from aggregation and a suitable reaction

environment as mentioned above.

Table S3. Comparison of standard catalysts versus the catalyst 2¢ for the hydrogenation of nitrobenzene

Catalys Subs/Pd T P t Yield  Rate® ! Ret
(mol/g) (K) (atm) (h) (%)  (mol/gh)™
Pd/Si0,"! 19.6 ethanol 393 10 4.7 80 3.33 [S8a]
PS-DVB-Pd"! 3.54 methanol 303 1 10.0 100 0.35 [S8b]
PVPA-Pd" 4.70 ethanol 308 1 13 100 3.61 [S8c]
EnPdCLCatl¢] 0.78 hexane 303 1 2 100 0.39 [S8d]
Si0,-BisILs[PF4]-Pd’ (2c) 33 - 303 1 8.5 100 3.88 This work

[a] The rate based on total metal (mol aniline formed per g Pd per hour). [b] 1.0 g Pd/SiO, with Pd loading of 0.5 wt.%, 40 mL
ethanol, 10 mL nitrobenzene. [c] Polymer (styrene divinyl benzene co-polymer) anchored 2.58x10° mol Pd, 20 mL methanol,
9.72x10* mol nitrobenzene. [d] Palladium complex of a random copolymer of 4-vinylpyridine with acrylic acid, Reaction
conditions: 15 mL of ethanol, 0.1 mol/L of KOH. [e] 1.8x10™ mol PdCl, loaded on the microcapsule, 5 mL hexane, 1.5%107 mol

nitrobenzene.

2.2.2 A typical procedure for hydrogenation of various substrates in water.
All hydrogenation reactions were carried out under standard conditions (30 °C, 1 atm of H,). A

round bottom flask (25 mL), charged with the supported Pd” catalyst (10 pmol), 3 mL H,O, and a
magnetic stirrer, was connected to a gas burette (500 mL) with a flask to balance the pressure. The
appropriate substrate (3.5x10” mol) was added, and the flask was closed by a septum, then the
mixture was stirred (1500 min™). The reaction was monitored by the volume of gas consumed. At
the end of the reaction, the two phases were separated by decantation and the solid phase was
reused in a second run. The liquid phase mixture was extracted with CH,Cl, (10mLx4 times). The
organic phase was collected and divided into two equal parts. One was used for the determination
of the Pd content by ICP analysis and the other one was used for detection. ICP analysis indicated
absence of any palladium within the detection limits (i.e., less than 0.1pg/mL) both organic liquid
and the aqueous phase. The products were checked by HPLC.

All hydrogenation of the other aromatic nitro compounds could be carried out according to this
process.



2.2.3 Recycle and reuse of SiOZ-BisILs[PFG]-Pd0

The durability of the catalytic system was investigated by employing it in several successive
hydrogenations. For this, nitrobenzene was again selected as a reference substrate. After a first
cycle, the solid phase containing the catalysis was separated from the product by filtering, and
followed by that either washing with the purpose of quantitative detection or not, then reused in a
second run. In the same way, the catalytic suspension was recovered for a third, fourth and fifth
hydrogenation cycle. After 15 times of repeated catalytic hydrogenation of nitrobenzene given in

entry 14 in Table 1, no deactivation of the catalytic activity was observed (Figure S4).
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Figure S4. Kinetic data for SiO,-BisILs[PF4]-Pd’ (2¢) followed by 15 recycles

3. Experimental characterization data for products (Table x-y means Entry x, Table y, for
example, Table 1-1 = Entry 1, Table 1)

NH, Aniline: The reaction of nitrobenzene (2.154 g, 17.5 mmol) and the brush (0.053g, 5
umol) under constant hydrogen pressure (1 atm) at 303 K in distilled water (5 mL)
produced 1.6298 g (100%) of aniline.

Colorless oil, bp. 84 °C, 'H NMR (300 MHz, CDCl3) 6 (ppm): 7.02-6.97(t, 2H),
6.57-6.48(m, 3H), 4.97(s, 2H), °C NMR (75.45 MHz, CDCl3) 5(ppm): 149.0, 129.3, 116.2, 114.4.

NH. 2-Toluidine (Table 3-1): 2-Nitrotoluene (2.400 g, 17.5 mmol) and the brush
@ (0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced 1.8751 g
CH; (100%) of 2-toluidine.
Light yellow oil, bp. 199-200 °C, 'H NMR (300 MHz, CDCl3) & (ppm): 6.99 (d,
J = 6.0Hz, 2H), 6.69-6.56 (m, 2H), 3.45 (s, 2H), 2.08(s, 3H), °C NMR (75.45 MHz, CDCl;)
d(ppm): 144.9, 130.6, 127.1, 122.5, 118.7, 115.1, 17.5.
NH»
3-Toluidine (Table 3-2): 3-Nitrotoluene (2.400 g, 17.5 mmol) and the brush
(0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced 1.8751 g (100%)
CHj of 3-toluidine.
Colorless oil, bp. 203-204 °C. 'H NMR (300 MHz, CDCl3) 6 (ppm): 7.06-7.01 (t, 1H),
6.59-6.48 (m, 3H), 3.51 (s, 2H), 2.26(s, 3H), >C NMR (75.45 MHz, CDCl;) 8(ppm): 146.3, 139.1,
129.2,119.5, 116.0, 112.3, 21.4.



brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm) produced
1.8751 g (100%) of 4-toluidine.
Colorless plate-like crystal, bp. 200-202 °C. 'H NMR (300 MHz, CDCl;) 6 (ppm): 6.96-6.94 (d,
J = 7.8Hz, 2H), 6.59-6.57 (d, J = 8.1Hz, 2H), 3.46 (s, 2H), 2.23(s, 3H), °C NMR (75.45 MHz,
CDCls): 6(ppm) 143.9, 129.8 (2), 127.8, 115.3(2), 20.5.

/©/NH2 4-Toluidine (Table 3-3): 4-Nitrotoluene (2.400 g, 17.5 mmol) and the
H,C

NH> 2-Aminophenol (Table 3-4): 2-Nitrophenol (2.434 g, 17.5 mmol) and the brush
@ (0.053g, 5 pumol) under constant hydrogen pressure (1 atm) produced 1.9098 g
(100%) of 2-aminophenol.
Off-white crystal power, mp. 172-177 °C (EtOH). 'H NMR (300 MHz, d¢-DMSO) 6 (ppm):
8.92 (s, 1H), 6.64-6.36 (m,4H), 4.45 (s, 2H), ’C NMR (75.45 MHz, d;-DMSO) d(ppm): 144.5,
137.0, 120.0, 117.0, 115.0, 114.9.

NH, 3-Aminophenol (Table 3-5): 3-Nitrophenol (2.434 g, 17.5 mmol) and the brush
(0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced 1.9098 g
(100%) of 3-aminophenol.
OH White crystal, mp: 120-121 °C (EtOH). 'H NMR (300 MHz, ds-DMSO) & (ppm):
8.87 (s, 1H), 6.82-6.77 (m,1H), 6.03 (d, J = 7.20Hz, 2H), 5.98 (d, J = 7.8Hz, 1H), 4.84 (s, 2H), °C
NMR (75.45 MHz, ds-DMSO) &(ppm): 158.5, 150.2, 130.0, 106.0, 104.0, 101.5.

brush (0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced
1.9098 g (100%) of 4-aminophenol.
White plate-like crystal, bp. 186-189 °C. 'H NMR (300 MHz, d-DMSO) & (ppm): 8.36 (s, 1H),
6.47 (s, 2H), 6.43(s, 2H), 4.42 (s, 2H), °C NMR (75.45 MHz, d¢-DMSO) 8(ppm): 148.8, 141.0,
116.0(2), 115.8(2).

: NH, 4-Aminophenol (Table 3-6): 4-Nitrophenol (2.434 g, 17.5 mmol) and the
HO

and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm)
COOH produced 2.4000 g (100%) of 2-aminobenzoic acid.
White crystal power, mp. 145-147 °C (EtOH). '"H NMR (300 MHz, d-DMSO) & (ppm): 11.96
(s, 1H), 7.68-7.66 (m, 2H), 6.61-6.58(m, 1H), 6.33 (d, ] = 7.80Hz, 1H), 5.85 (s, 2H), °C NMR
(75.45 MHz, d¢-DMSO) 6(ppm): 168.3, 149.3, 131.8, 129.3, 118.5, 117.2, 115.0.

©1NHQ 2-Aminobenzoic acid (Table 3-7): 2-Nitrobenzoic acid (2.925 g, 17.5 mmol)

NH, 3-Aminobenzoic acid (Table 3-8): 3-Nitrobenzoic acid (2.925 g, 17.5 mmol)
and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm) produced
2.4000 g (100%) of 3-aminobenzoic acid.
COOH White crystal, mp. 174 °C. 'H NMR (300 MHz, d¢-DMSO) & (ppm): 12.52 (s,
1H), 7.09-7.17 (m, 3H), 6.76(s, 1H), 5.33(s, 2H), °C NMR (75.45 MHz, d;-DMSO) d(ppm):
167.9, 148.8, 131.3, 128.9, 118.0, 116.6, 114.4.

NH» 4-Aminobenzoic acid (Table 3-9): 2-Nitrobenzoic acid (2.925 g, 17.5
/O/ mmol) and the brush (0.053g, 5 umol) under constant hydrogen pressure (1
HOOC

9



atm) produced 2.4000 g (100%) of 4-aminobenzoic acid.

White crystal, mp. 186-189 °C (EtOH). 'H NMR (300 MHz, ds-DMSO) & (ppm): 11.96 (s, 1H),
7.68-7.65 (d, 2H), 6.61-6.58(d, 2H), 5.85 (s, 2H), *C NMR (75.45 MHz, d.-DMSO) 8(ppm):168.0,
153.6,131.7, 117.5, 113.1.

NH 2-Methoxyaniline (Table 3-10): 2-Nitroanisole (2.680 g, 17.5 mmol) and the

@ brush (0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced
OCHsz  2.1551 g (100%) of 2-methoxyaniline.

Light yellow oil, bp. 224-225 °C. 'H NMR (300 MHz, d-DMSO) & (ppm): 6.78-6.75 (d, 1H),

6.69-6.61(m, 2H), 6.53-6.50(t, 1H), 4.64(s, 2H), 3.74(s, 3H), °C NMR (75.45 MHz, d;-DMSO)
d(ppm): 146.4, 137.6, 120.8, 116.2, 113.8, 110.6, 55.2.

NH» 3-Methoxyaniline (Table 3-11): 3-Nitroanisole (2.680 g, 17.5 mmol) and the
brush (0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced 2.1551
g (100%) of 3-methoxyaniline.
Light yellow oil, bp. 251 °C. 'H NMR (300 MHz, d¢-DMSO) & (ppm):
6.93-6.87(t, 3H), 6.18-6.15(d, 2H), 6.10-6.07(d, 1H), 5.01(s, 2H), 3.64(s, 1H), °C NMR (75.45
MHz, de-DMSO) d(ppm): 160.3, 149.9, 129.5, 106.9, 101.5, 99.5, 54.5.

OCHj

NH 4-Methoxyaniline (Table 3-12): 4-Nitroanisole (2.680 g, 17.5 mmol)
and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm)
H3CO produced 2.1551 g (100%) of 4-methoxyaniline.
White solid, mp. 57 °C. '"H NMR (300 MHz, ds-DMSO) 6 (ppm): 6.65-6.63(d, 2H), 6.53-6.50(d,
2H), 4.57(s, 2H), °C NMR (75.45 MHz, d-DMSO) 8(ppm): 3.61(s, 3H), 150.7, 142.3, 115.0,
114.5,55.3.

NH, 2-Chloroaniline (Table 3-13): 2-Chloronitrobenzene (2.757 g, 17.5 mmol) and
@ the brush (0.053g, 5 umol) under constant hydrogen pressure (1 atm) produced
Cl 1.6677 g (74.7 %) of 2-chloroaniline.
Amber liquid, bp. 208-211 °C. 'H NMR (300 MHz, CDCl;) 6 (ppm): 7.22-7.20 (d, J = 7.8Hz,
1H), 7.05-7.00 (m, 1H), 6.70-6.65 (m, 2H), 3.95 (s, 2H), °C NMR (75.45 MHz, CDCl;) d(ppm):
143.1,129.5, 127.7, 119.3, 119.1, 116.0.

NH,» 1,3-Diaminobenzene (Table 3-14): 1, 3-Dinitrobenzene (2.942 g, 17.5 mmol)
and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm) produced
1.8925 g (100%) of 1,3-diaminobenzene.

Colorless acicular crystal, mp. 63-65°C (EtOH). 'H NMR (300 MHz, de-DMSO)

& (ppm): 6.70-6.68 (m, 1H), 5.80-5.83 (d, J = 7.8Hz, 3H), 4.58(s, 4H); °C NMR (75.45 MHz,

ds-DMSO) &(ppm): 149.5, 129.7, 103.7, 100.6.

NH,

mmol) and the brush (0.053g, 5 umol) under constant hydrogen pressure (1
atm) produced 2.3826 g (100%) of 4-aminobenzamide.
White power, mp. 180-182 °C. '"H NMR (300 MHz, d-DMSO) & (ppm): 7.61-7.58(d, 2H),

/©/NH2 4-Aminobenzamide (Table 3-15): 4-Notrobenzamide (2.908 g, 17.5
H,NOC
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7.53(s, 1H), 6.85(s, 1H), 6.54-6.51(d, 2H), 5.60(s, 2H), °C NMR (75.45 MHz, ds-DMSO)
d(ppm):167.6, 151.2, 128.6, 120.5, 112.0.
NH, 4-Aminophenyl alcohol (Table 3-16): 4-Nitrobenzyl alcohol(2.680 g,
Q/ 17.5 mmol) and the brush (0.053g, 5 pmol) under constant hydrogen
HOH,C pressure (1 atm) produced 2.1551 g (100%) of 4-Aminophenyl alcohol.
Yellow solid, mp. 60-63 °C. 'H NMR (300 MHz, ds-DMSO) § (ppm): 6.97-6.95(d, 2H),
6.52-6.50(d, 2H), 4.91(s, 1H), 4.82-4.79(t, 1H), 4.30-4.28(d, 2H), "C NMR (75.45 MHz,
de-DMSO) &(ppm): 147.4, 129.7, 127.9, 113.6, 63.1.
NH; 4’-Aminoacetophenone (Table 3-17): 4’-Nitroacetophenone (2.890 g,
/©/ 17.5 mmol) and the brush (0.053g, 5 pmol) under constant hydrogen
HsCOC pressure (1 atm) produced 2.3655 g (100%) of 4’-aminoacetophenone.
Yellow acicular crystal, mp. 106 °C. '"H NMR (300 MHz, d.-DMSO) & (ppm): 7.65-7.63(d, 2H),

6.56-6.52(d, 2H), 6.01(s, 2H), 2.37(s, 3H), °C NMR (75.45 MHz, d,-DMSO) d(ppm): 194.9,
153.6, 130.5, 124.9, 112.5, 25.8.

NH, 2-Naphthylamine (Table 3-18): 2-Nitronaphthalene (3.030 g, 17.5 mmol)

and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm)
produced 2.5058 g (100%) of 2-naphthylamine.

White plate-like crystal, bp. 111-113 °C. 'H NMR (300 MHz, dg-DMSO) 6 (ppm): 8.07-8.05(d,

1H), 7.73-7.71(d, 1H), 7.42-7.35(m, 2H), 7.22-7.17(t, 1H), 7.08-7.05(d, 2H), 6.69-6.67(d, 2H),

5.69(s, 2H), °C NMR (75.45 MHz, d;-DMSO) d(ppm): 145.1, 134.7, 128.3, 127.2, 126.0, 124.1,
123.2,122.8, 115.8, 107.9.

NHZ 4-Aminobiphenyl (Table 3-19): 4-Nitrobiphenyl (3.486 g, 17.5 mmol)
and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm)

produced 2.9614 g (100%) of 4-aminobiphenyl.
Chocolate brown power, bp. 52-54 °C."H NMR (300 MHz, d¢-DMSO) & (ppm): 7.54-7.52(d,
2H), 7.39-7.34(t, 4H), 7.23-7.18(t, 1H), 6.67-6.64(d, 2H), 5.22(s, 2H), °C NMR (75.45 MHz,

de-DMSO) d(ppm): 148.8, 141.1, 129.2, 128.0, 127.6, 126.1, 125.8, 114.8.

NH, 3-Aminobiphenyl (Table 3-20): 4-Nitrobiphenyl (3.486 g, 17.5 mmol)
and the brush (0.053g, 5 pmol) under constant hydrogen pressure (1 atm)
produced 2.9614 g (100%) of 3-aminobiphenyl.
Acicular crystal, bp. 30-32 °C. '"H NMR (300 MHz, d-DMSO) & (ppm):
7.56-7.54(d, 2H), 7.45-7.40(m, 2H), 7.36-7.30(m, 1H), 7.13-7.08(t, 1H), 6.86(s, 1H), 6.79-6.77(d,

2H), 6.59-6.57(d, 2H), 5.16(s, 2H), °C NMR (75.45 MHz, d-DMSO) d(ppm): 148.6, 140.6,
140.5, 128.9, 128.3, 126.6, 126.0, 113.9, 112.7, 111.7.
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4. Copies of the IR, '"H and *C NMR spectra of the catalysts.
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Figure S14 IR spectra of SiO,-BisILs[PFg]-Pd” (2¢)
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Figure S15 'H NMR spectra of Aniline
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Figure S27 'H NMR spectra of 4-Aminophenol (Table 3-6)
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Figure S31 'H NMR spectra of 3-Aminobenzoic acid (Table 3-8)
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Figure S33 'H NMR spectra of 4-Aminobenzoic acid (Table 3-9)
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Figure S35 'H NMR spectra of 2-Methoxyaniline (Table 3-10)
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Figure S37 'H NMR spectra of 3-Methoxyaniline (Table 3-11)
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Figure S39 'H NMR spectra of 4-Methoxyaniline (Table 3-12)
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Figure S41 'H NMR spectra of 2-Chloroaniline (Table 3-13)
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Figure S42 °C NMR spectra of 2-Chloroaniline (Table 3-13)
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Figure S43 'H NMR spectra of 1,3-Diaminobenzene (Table 3-14)
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Figure S44 "C NMR spectra of 1,3-Diaminobenzene (Table 3-14)
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Figure S45 'H NMR spectra of 4'-Aminobenzamide (Table 3-15)
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Figure $46 °C NMR spectra of 4-Aminobenzamide (Table 3-15)
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Figure S47 'H NMR spectra of 4-Aminophenyl alcohol (Table 3-16)
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Figure S48 “C NMR spectra of 4-Aminophenyl alcohol (Table 3-16)
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Figure S49 'H NMR spectra of 4’-Aminoacetophenone (Table 3-17)
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Figure S50 “C NMR spectra of 4’-Aminoacetophenone (Table 3-17)
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Figure S51 'H NMR spectra of 2-Naphthylamine (Table 3-18)
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Figure $52 °C NMR spectra of 2-Naphthylamine (Table 3-18)
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Figure S53 'H NMR spectra of 4-Aminobiphenyl (Table 3-19)
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Figure S54 “C NMR spectra of 4-Aminobiphenyl (Table 3-19)
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Figure S55 'H NMR spectra of 3-Aminobiphenyl (Table 3-20)
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Figure $56 '°C NMR spectra of 3-Aminobiphenyl (Table 3-20)
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