Supporting information

Synthesis and Characterization of a Series of Model Complexes of the Active Site of [Fe]-Hydrogenase (Hmd)

Dafa Chen,[†] Annegret Ahrens-Botzong,[‡] Volker Schünemann,[‡] Rosario Scopelliti,[†] and Xile $Hu^{*^{\dagger}}$

[†] Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) SB-ISIC-LSCI, BCH 3305, Lausanne, CH 1015, Switzerland

[‡] Fachbereich Physik Technische Universität Kaiserslautern D-67663 Kaiserslautern, Germany

* To whom correspondence should be addressed. E-mail: xile.hu@epfl.ch

A. Crystallographic Details for [Fe(CO)₂(PPh₃)I(hp)] (2)

A total of 15689 reflections (-17 $\le h \le 17$, -10 $\le k \le 10$, -24 $\le l \le 24$) were collected at T = 140(2) K in the range of 2.55 to 26.37° of which 4755 were unique ($R_{int} = 0.0220$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 0.352 and -0.233 eA⁻³, respectively. The absorption coefficient was 2.056 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0202, $wR(F^2) = 0.0432$ and a GOF = 1.014 ($I > 2\sigma(I)$). C₂₅H₁₉FeINO₃P, Mw = 595.13, space group $P2_1/c$, Monoclinic, a = 14.0180(4), b = 8.8000(2), c = 19.9447(5) Å, $\beta = 107.747(3)$ °, V = 2343.26(10) Å³, Z = 4, $\rho_{calcd} = 1.687$ Mg/m³.

B. Crystallographic Details for [Fe(CO)₂(PPh₃)I(hpp)] (3)

A total of 20330 reflections ($-14 \le h \le 14$, $-18 \le k \le 19$, $-17 \le l \le 18$) were collected at T = 140(2) K in the range of 2.91 to 26.02° of which 5313 were unique ($R_{int} = 0.0399$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 0.845 and -0.339 eA⁻³, respectively. The absorption coefficient was 1.787 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0304, $wR(F^2) = 0.0657$ and a GOF = 0.991 ($I > 2\sigma(I)$). C₃₁H₂₃FeINO₃P, Mw = 671.22, space group $P2_1/n$, Monoclinic, a = 12.1692(7), b = 15.9364(8), c = 14.6654(9) Å, $\beta = 107.473(6)$ °, V = 2712.9(3) Å³, Z = 4, $\rho_{calcd} = 1.643$ Mg/m³.

C. Crystallographic Details for [Fe(CO)₂(PEt₃)I(hmp)] (4)

A total of 14550 reflections ($-9 \le h \le 9$, $-17 \le k \le 21$, $-18 \le l \le 17$) were collected at T = 140(2) K in the range of 2.87 to 27.88° of which 4094 were unique ($R_{int} = 0.0334$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 0.464 and -0.407 eA⁻³, respectively. The absorption coefficient was 2.764 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0246, $wR(F^2) = 0.0531$ and a GOF = 1.035 ($I \ge 2\sigma(I)$). C₁₄H₂₁FeINO₃P, Mw = 465.04, space group $P2_1/n$, Monoclinic, a = 7.49550(10), b = 16.4875(4), c = 14.0187(3) Å, $\beta = 95.2490(17)$ °, V = 1725.19(6) Å³, Z = 4, $\rho_{calcd} = 1.790$ Mg/m³.

D. Crystallographic Details for $[Fe(CO)_2(PPh_3)(hmp){S(2-iPr-C_6H_4)}]$ (6)

A total of 12233 reflections (-13 $\leq h \leq 13$, -14 $\leq k \leq 13$, -18 $\leq l \leq 18$) were collected at T = 140(2) K in the range of 2.77 to 26.02° of which 6506 were unique ($R_{int} = 0.1119$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 2.170 and -0.974 eA⁻³, respectively. The absorption coefficient was 0.764 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.1128, $wR(F^2) = 0.2409$ and a GOF = 0.930 ($I > 2\sigma(I)$). C₃₆H₃₄Cl₂FeNO₃PS, Mw = 718.42, space group *P*-1, Triclinic, a = 11.0759(19), b = 11.5177(14), c = 15.082(2) Å, $\alpha = 71.085(12)$, $\beta = 78.739(13)$, $\gamma = 66.159(14)$ °, V = 1660.2(4) Å³, Z = 2, $\rho_{calcd} = 1.437$ Mg/m³.

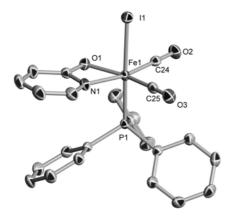
E. Crystallographic Details for $[Fe(CO)_2(PPh_3)(hmp){S(2,4,6-Me_3C_6H_2)}](7)$

A total of 7201 reflections ($-20 \le h \le 19$, $-18 \le k \le 18$, $-18 \le l \le 19$) were collected at T = 100(2) K in the range of 3.38 to 27.54° of which 7201 were unique ($R_{int} = 0.0000$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 1.150 and -0.464 eA⁻³, respectively. The absorption coefficient was 0.634 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0653, $wR(F^2) = 0.1390$ and a GOF = 1.191 ($I \ge 2\sigma(I)$). C₃₅H₃₂FeNO₃PS, Mw = 633.50, space group $P2_1/c$, Monoclinic, a = 15.649(3), b = 13.890(2), c = 14.8057(13) Å, $\beta = 102.833(10)$ °, V = 3137.9(8) Å³, Z = 4, $\rho_{calcd} = 1.341$ Mg/m³.

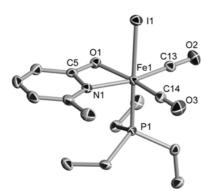
F. Crystallographic Details for *cis*-(I, PPh₃)-Fe(CO)₂(PPh₃)I(OMe-PyS) (10a)

A total of 43518 reflections (-11 $\leq h \leq$ 11, -25 $\leq k \leq$ 25, -22 $\leq l \leq$ 22) were collected at T = 100(2) K in the range of 3.09 to 27.50 ° of which 6737 were unique ($R_{int} = 0.0947$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 2.401 and -2.651 eA⁻³, respectively. The absorption coefficient was 1.885 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0619, $wR(F^2) = 0.1595$ and a GOF = 1.302 ($I > 2\sigma(I)$). C₂₆ H₂₁FeINO₃PS•CH₂Cl₂, Mw = 726.14, space group $P2_1/c$, Monoclinic, a = 8.7884(8), b = 19.780(2), c = 17.558(3) Å, $\beta = 103.934(8)^\circ$, V = 2962.3(7) Å³, Z = 4, $\rho_{calcd} = 1.628$ Mg/m³.

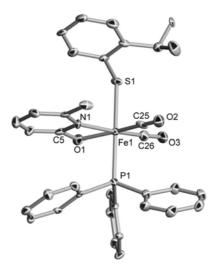
G. Crystallographic Details for *trans*-(I, PPh₃)-Fe(CO)₂(PPh₃)I(OMe-PyS) (10b)

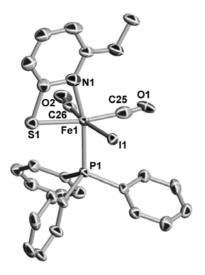

A total of 23989 reflections (-10 $\leq h \leq 10$, -16 $\leq k \leq 16$, -17 $\leq l \leq 17$) were collected at T = 100(2) K in the range of 3.06 to 25.00 ° of which 5759 were unique ($R_{int} = 0.0854$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 1.395 and -0.632 eA⁻³, respectively. The absorption coefficient was 1.700 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0807, $wR(F^2) = 0.1879$ and a GOF = 1.323 ($I > 2\sigma(I)$). C₂₆ H₂₁FeINO₃PS•CH₂Cl₂, Mw = 726.14, space group *P*-1, Triclinic, a = 8.7114(15), b = 14.042(3), c = 15.126(3) Å, $\alpha = 109.470(17)$, $\beta = 92.157(15)$, $\gamma = 107.654(14)^\circ$, V = 1642.4(5) Å³, Z = 2, $\rho_{calcd} = 1.468$ Mg/m³.

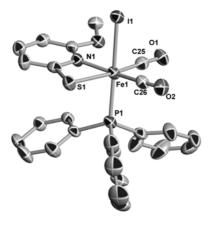
H. Crystallographic Details for $[Fe(CO)_2(PPh_3)_2 \{S(6-Me-C_5H_3N)\}]^+(PF_6)^- \cdot 3CH_3CN$ (11)

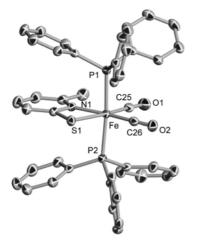

A total of 21507 reflections (-14 $\leq h \leq 14$, -18 $\leq k \leq 18$, -18 $\leq l \leq 18$) were collected at T = 140(2) K in the range of 2.85 to 26.02 ° of which 9450 were unique ($R_{int} = 0.0305$); Mo_{Ka} radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 0.400 and -0.286 eA⁻³, respectively. The absorption coefficient was 0.522 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0441, $wR(F^2) = 0.0983$ and a GOF = 1.037 ($I > 2\sigma(I)$). C₅₀H₄₅F₆FeN₄O₂P₃S, Mw = 1028.72, space group P-1, Triclinic, a = 11.6427(3), b = 14.8175(5), c = 14.9136(5) Å, $\alpha = 76.110(3)$, $\beta = 76.397(3)$, $\gamma = 81.470(3)^\circ$, V = 2416.00(14) Å³, Z = 2, $\rho_{calcd} = 1.414$ Mg/m³.

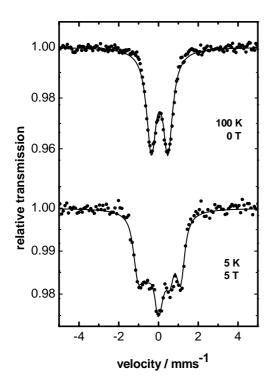
I. Crystallographic Details for $[Fe(CO)_2I(2,6-Me_2C_6H_3NC)(SC_5H_4N-CO)]$ (13)

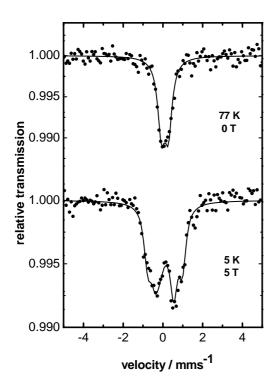

A total of 14104 reflections ($-9 \le h \le 9$, $-22 \le k \le 22$, $-17 \le l \le 17$) were collected at T = 140(2) K in the range of 2.72 to 26.37 ° of which 3751 were unique ($R_{int} = 0.0568$); $Mo_{K\alpha}$ radiation ($\lambda = 0.71073$ Å). The structure was solved by the direct methods. All non-hydrogen atoms were refined anisotropically, and hydrogen atoms were placed in calculated idealized positions. The residual peak and hole electron densities were 3.010 and -1.176 eA⁻³, respectively. The absorption coefficient was 2.612 mm⁻¹. The least squares refinement converged normally with residuals of R(F) = 0.0567, $wR(F^2) = 0.1521$ and a GOF = 1.020 ($I > 2\sigma(I)$). $C_{17}H_{13}FeIN_2O_3S$, Mw = 508.10, space group $P2_1/n$, Monoclinic, a = 7.5304(9), b = 17.855(2), c = 13.8288(15) Å, $\beta = 95.161(10)^\circ$, V = 1851.8(4) Å³, Z = 4, $\rho_{calcd} = 1.823$ Mg/m³.

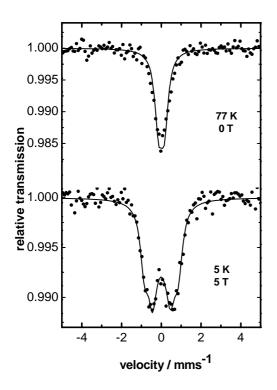

Figure S1. Solid-state structure of **2**. The thermal ellipsoids are displayed in 50% probability. Selected bond distances (Å) and angles (°): Fe1-N1, 1.9575(16); Fe1-O1, 2.0274(13); Fe1-P1, 2.2556(6); Fe1-C24, 1.794(2); Fe1-C25, 1.778(2); Fe1-I1, 2.6536(3); C24-O2, 1.136(2); C25-O3, 1.140(2); C5-O1, 1.309(2); C5-N1, 1.349(2); C1-N1, 1.342(3); C24-Fe1-C25, 94.74(9); O1-Fe1-N1, 66.42(6).


Figure S2. Solid-state molecular structure of complex **4**. The thermal ellipsoids are displayed at 50% probability. Selected bond distances (Å) and angles (°): Fe1-N1, 1.973(2); Fe1-O1, 2.0104(16); Fe1-P1, 2.2477(6); Fe1-C13, 1.787(3); Fe1-C14, 1.774(2); Fe1-I1, 2.6752(3); C13-O2, 1.135(3); C14-O3, 1.140(3); C5-O1, 1.307(3); C5-N1, 1.355(3); C13-Fe1-C14, 90.57(11); O1-Fe1-N1, 66.63(7).


Figure S3. Solid-state molecular structure of complex **6**. The thermal ellipsoids are displayed at 50% probability. Selected bond distances (Å) and angles (°): Fe1-N1, 1.967(8); Fe1-O1, 2.001(6); Fe1-P1, 2.273(3); Fe1-C25, 1.808(11); Fe1-C26, 1.812(10); Fe1-S1, 2.365(3); C25-O2, 1.128(10); C26-O3, 1.123(10); C5-O1, 1.323(12); C5-N1, 1.373(12); C25-Fe1-C26, 93.6(4); O1-Fe1-N1, 67.3(3).


Figure S4. Solid-state molecular structure of complex **10a**. The thermal ellipsoids are displayed at 50% probability. One CH_2Cl_2 molecule was omitted. Selected bond distances (Å) and angles (°): Fe1-I1, 2.6716(9); Fe1-N1, 2.002(6); Fe1-P1, 2.2769(16); Fe1-C25, 1.823(9); Fe1-C26, 1.788(6); Fe1-S1, 2.3888(19); C25-O1, 1.021(9); C26-O2, 1.135(8); C25-Fe1-C26, 89.8(3).


Figure S5. Solid-state molecular structure of complex **10b**. The thermal ellipsoids are displayed at 50% probability. One CH_2Cl_2 molecule was omitted. Selected bond distances (Å) and angles (°): Fe1-I1, 2.6777(16); Fe1-N1, 2.005(8); Fe1-P1, 2.257(3); Fe1-C25, 1.784(13); Fe1-C26, 1.790(11); Fe1-S1, 2.365(3); C25-O1, 1.167(13); C26-O2, 1.134(12); C25-Fe1-C26, 90.3(5).


Figure S6. Solid-state molecular structure of complex **11**. The thermal ellipsoids are displayed at 50% probability. Selected bond distances (Å) and angles (°): Fe1-N1, 1.997(2); Fe1-P1, 2.3146(8); Fe1-P2, 2.3045(8); Fe1-C25, 1.807(3); Fe1-C26, 1.779(3); Fe1-S1, 2.3322(8); C25-O2, 1.131(3); C26-O3, 1.144(3); C25-Fe1-C26, 89.58(12).

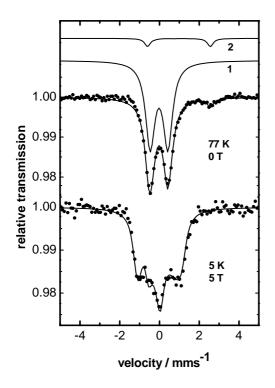

Fig. S7. (Top) Mössbauer spectrum of complex **5** taken at 100 K. The isomer shift is $\delta = 0.06$ (±0.02) mms⁻¹, the quadrupole splitting is $\Delta E_Q = (-) 0.83 (\pm 0.02) \text{ mms}^{-1}$ and the linewidth is $\Gamma = 0.58 (\pm 0.02) \text{ mms}^{-1}$. (Bottom) Mössbauer spectrum of complex **5** taken at 5 K with a magnetic field of 5 T perpendicular to the γ -ray. The isomer shift is $\delta = 0.04 (\pm 0.02) \text{ mms}^{-1}$, the quadrupole splitting is $\Delta E_Q = -0.87 (\pm 0.03) \text{ mms}^{-1}$ and the linewidth is $\Gamma = 0.44 (\pm 0.02) \text{ mms}^{-1}$.

Fig. S8. (Top) Mössbauer spectrum of complex **9** taken at 77 K. The isomer shift is $\delta = 0.10$ (±0.01) mms⁻¹, the quadrupole splitting is $\Delta E_Q = -0.35$ (±0.03) mms⁻¹ and the linewidth is $\Gamma = 0.45$ (±0.05) mms⁻¹. (Bottom) Mössbauer spectrum of complex **9** taken at 5 K with a magnetic field of 5 T perpendicular to the γ -ray. The isomer shift is $\delta = 0.11$ (±0.02) mms⁻¹, the quadrupole splitting is $\Delta E_Q = -0.36$ (±0.03) mms⁻¹ and the linewidth is $\Gamma = 0.40$ (±0.02) mms⁻¹.

Fig. S9. (Top) Mössbauer spectrum of complex **13** taken at 77 K. The isomer shift is $\delta = 0.01$ (±0.02) mms⁻¹, the quadrupole splitting is $\Delta E_Q = (+) 0.29$ (±0.02) mms⁻¹ and the linewidth is $\Gamma = 0.45$ (±0.05) mms⁻¹. (Bottom) Mössbauer spectrum of complex **13** taken at 5 K with a magnetic field of 5 T perpendicular to the γ -ray. The isomer shift is $\delta = 0.01$ (±0.02) mms⁻¹, the quadrupole splitting is $\Delta E_Q = + 0.29$ (±0.04) mms⁻¹ and the linewidth is $\Gamma = 0.47$ (±0.03) mms⁻¹.

Fig. S10. (Top) Mössbauer spectrum of complex **17** taken at 77 K. There are two different components. The isomer shift for the first component is $\delta = -0.02 (\pm 0.02) \text{ mms}^{-1}$, the quadrupole splitting is $\Delta E_Q = (+) 0.89 (\pm 0.02) \text{ mms}^{-1}$ and the linewidth is $\Gamma = 0.57 (\pm 0.02) \text{ mms}^{-1}$. The relative contribution of this component is 94 %. The isomer shift for the second component is $\delta = 0.98 (\pm 0.02) \text{ mms}^{-1}$, the quadrupole splitting is $\Delta E_Q = 3.16 (\pm 0.02) \text{ mms}^{-1}$ and the linewidth is $\Gamma = 0.35 (\pm 0.02) \text{ mms}^{-1}$. The iron is therefore in a Fe(II) S = 2 state. The relative contribution of this component is 6 %. (Bottom) Mössbauer spectrum of complex **17** taken at 5 K with a magnetic field of 5 T perpendicular to the γ -ray. The isomer shift is $\delta = -0.01 (\pm 0.02) \text{ mms}^{-1}$, the quadrupole splitting is $\Delta E_Q = + 0.91 (\pm 0.03) \text{ mms}^{-1}$ and the linewidth is $\Gamma = 0.47 (\pm 0.02) \text{ mms}^{-1}$. The minor component splits into multiple lines at high field and is therefore not detectable under high field conditions.

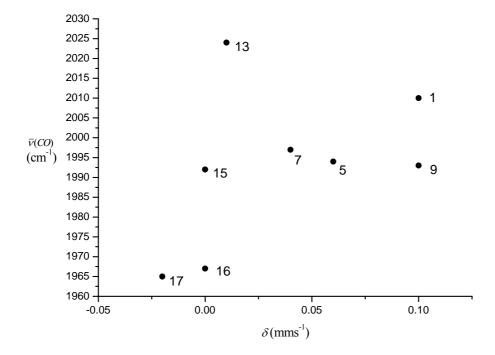


Fig. S11. Correlation of Mössbauer isomeric shifts with the averaged ν (CO) frequencies of 8 model complexes.