Non-orthogonality problem and effective electronic coupling calculation: Application to charge transfer in π stacks relevant to biochemistry and molecular electronics.

Agostino Migliore^{*,†}

[†] School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel. Phone: +972-3-6407634. Fax: +972-3-6409293.

* E-mail: migliore@post.tau.ac.il

TITLE RUNNING HEAD: electronic couplings in molecular charge transfer.

CORRESPONDING AUTHOR: Agostino Migliore. School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel. Phone: +972-3-6407634. Fax: +972-3-6409293. E-mail: migliore@post.tau.ac.il

This file includes the values of the effective electronic couplings (or charge-transfer integrals) and the diabatic energy differences for the different conformations of the perylenediimide (PDI) π -stack (Table S1) and the quinol-semiquinone redox couple at different donor-acceptor distances R_{QA} (Table S2). The overlap integrals are also reported for the latter system.

Table S1. Charge-transfer integrals for hole $(V_{IF}^{(h)})$ and electron transfer $(V_{IF}^{(e)})$ in a PDI stack (x shift = 1.60 Å, y shift = 0.94 Å, z shift = 3.40 Å), and pertinent diabatic energy differences $(\Delta E_{IF}^{(h)})$ and $\Delta E_{IF}^{(e)}$, respectively), at the nuclear coordinate sets $Q_j = Q_t + j \, \delta Q/10$ (j = 1, ..., 10), where Q_t is the transition state coordinate and $Q_t + \delta Q$ is the coordinate after geometry optimization on the H atoms of one PDI molecule at the BHH/6-31g* computational level. The geometry optimization was not performed with a basis set of high accuracy, because the only purpose of this optimization was to move the system away from Q_t . These results were obtained by using the M06-2X hybrid function and the 6-311g** basis set. All the energy quantities are given in meV.

j	$\Delta E_{ m IF}^{(h)}$	$V_{ m IF}^{(h)}$	$\Delta E_{ m IF}^{(e)}$	$V_{ m IF}^{(e)}$
1	0.04	35.9	0.10	129.7
2	0.08	35.7		
3	0.12	35.6		
4	0.16	35.4		
5	0.20	35.6	0.48	128.8
6	0.24	35.4		
7	0.28	35.4		
8	0.32	35.4		
9	0.36	35.4		
10	0.40	35.2	0.95	127.6

Table S2. Effective electronic couplings (V_{IF}) , diabatic energy differences $(|\Delta E_{IF}| = |E_I - E_F| = -\Delta E_{IF})$, and overlap integrals $(S_{IF} = \langle \psi_I | \psi_F \rangle)$ for electron transfer in the quinol-semiquinol redox couple at the indicated donor-acceptor distances (R_{QA}) . The pertinent calculations were performed using the M06-HF XC hybrid functional, with the aug-cc-pVTZ basis set for the O atoms and the cc-pVTZ basis set for the other atoms. All the energy quantities are reported in eV.

$R_{\scriptscriptstyle D\!\!\!\!\!\mathcal{A}}(\mathrm{\AA})$	$V_{ m IF}$	$-\Delta E_{\rm IF}$	$S_{\rm IF}$
1.54	17.2	0.005	0.949
2.0	7.9	0.113	0.915
2.5	1.5	0.298	0.628
3.0	3.9×10^{-1}	0.371	0.356
3.5	1.3×10^{-1}	0.401	0.173
4.0	5.9×10^{-2}	0.412	8.39×10^{-2}
4.5	2.9×10^{-2}	0.417	3.81×10^{-2}
5.0	1.4×10^{-2}	0.419	1.68×10^{-2}
5.5	6.1×10^{-3}	0.422	7.04×10^{-3}
6.0	2.3×10^{-3}	0.424	2.79×10^{-3}
6.5	6.2×10^{-4}	0.427	8.56×10^{-4}
7.0	7.7×10^{-5}	0.427	1.13×10^{-4}