Complete Facial Selectivity in the Diels-Alder Reaction of a 5amino-5-carboxycyclopentadiene derivative

Simon Kim, Marco A. Ciufolini*

Department of Chemistry, University of British Columbia

2036 Main Mall, Vancouver, BC V6T 1Z1, Canada

Supporting Information

Table of Contents

	62
B. Experimental Procedures and Characterization Data	83
Ethyl 1-(<i>tert</i> -butoxycarbonylamino)-4-oxocyclopent-2-enecarboxylate, 15 . S3	
Ethyl 2 5-bis(<i>tert</i> -butyldimethylsilyloxy)-4 6a-dihydro-3a <i>H</i> -cyclopenta-	
[d]oxazole-3a-carboxylate, 17 S3	
Diels-Alder adduct 19 S4	
Diels-Alder adduct 20 S4	
Diels-Alder adduct 21 S5	
3'-tosyl-6-oxaspiro[bicyclo[3.1.0]hexane-3,4'-oxazolidin]-2'-one, 25 S5	
3'-Tosyl-6-oxaspiro[bicyclo[3.1.0]hexane-3,4'-oxazolidin]-2'-one, 26 S6	
1-Tosyl-3-oxa-1-azaspiro[4.4]non-8-ene-2,7-dione, 28 S6	
Diels-Alder adduct 29 S7	

C. ¹ H and ¹³ C NMR spectra	S8
Compound 15	S8
Compound 17	S9
Compound 19	S10
Compound 20	S13
Compound 21	S16
Compound 25	S17
Compound 26	S18
Compound 28	S19
Compound 29	S20

A. Experimental Protocols.

Melting points are uncorrected. Unless otherwise indicated, ¹H (300 MHz) and ¹³C (75 MHz) NMR spectra were recorded at room temperature from CDCl₃ solutions. Chemical shifts are reported as ppm on the δ scale and coupling constants, *J*, are in Hz. Multiplicities are described as s (singlet), d / dd / dt (doublet / doublet of doublets / doublet of triplets), t (triplet), q (quartet), m (multiplet). Low- and high resolution mass spectra were obtained in the ESI mode. Infrared (IR) spectra (cm⁻¹) were recorded on a Fourier transform spectrometer from films deposited on NaCl plates or on a Universal Sampling Accessory. Elemental analyses were performed by the UBC Microanalysis laboratory. Chromatographic separations were effected over silica gel 60. Tetrahydrofuran was freshly distilled from Na/benzophenone and CH₂C;₂ freshly distilled from CaH₂. All other commercial reagents and solvents were used without purification. All reactions were performed under argon in flasks equipped with stirring bars and fitted with rubber septa for the introduction of substrates, reagents, and solvents via syringe.

Ethyl 1-(tert-butoxycarbonylamino)-4-oxocyclopent-2-enecarboxylate, 15. A

solution of the known (Hodgson, D. M.; Thompson, A. J.; Wadman, S.; Keats, C.

J. Tetrahedron 1999, 55, 10815) epoxide 13 (141 mg, 518 mmol) in THF (2.5 mL) was added dropwise to a cold (0°C), stirred solution of LDA (3 equiv), prepared just before use by addition of BuLi (1.6 M in hexanes, 1.0 mL, 1.6 mmol) to a solution of diisopropylamine (230 µL, 1.7 mmol) in THF (2.5 mL). The reaction mixture was stirred at 0°C for 40 min, and then it was poured into sat. aq. NH₄Cl (12 mL). The solution was extracted with EtOAc (3x15mL). The combined extracts were dried (MgSO₄) and concentrated in vacuo. To the orange oily residue was dissolved in CH₂Cl₂ (4.5 mL) and treated with Dess-Martin reagent (404 mg, 953 µmol). The mixture was stirred at RT for 3 hr, then it was washed with an aqueous solution composed of a 1:1 mixture of sat. aq. NaHCO₃ (15 mL) and sat. aq. NaS₂O₃ (15 mL). The aqueous phase was back-extracted with CH₂Cl₂ (2 x 20mL). The combined extracts were dried (MgSO₄) and concentrated in vacuo, and the residue was flash chromatographed (1:4 EtOAc:hex) to furnish 15 (96 mg, 69%) as an off-white solid, m.p. 84-86 °C. ¹H: 7.44 (d, 1H, J = 5.1), 6.34 (d, 1H, J = 5.6), 5.68 (s, 1H), 4.21 (q, 2H, J = 7.1), 3.09 - 2.50 (AB, 2H), 1.41 (s, 9H), 1.24 (t, 3H, J = 7.1). ¹³C: 205.3, 170.8, 159.7, 154.4, 135.8, 80.8, 65.1, 62.9, 46.0, 28.3, 14.0. **IR**: 3346, 2980, 1727, 1506, 1368, 1288, 1255, 1166, 1044, 817, 788. **MS**: 292.4 [M+Na]⁺. **HRMS**: calcd for $C_{13}H_{19}NO_5Na [M+Na]^+ 292.1161$; found: 292.1166.

dropwise to a cold (-78 °C), well stirred solution of **15** (54 mg, 200 µmol) and Hunig's base (100 µL, 570 µmol), in CH₂Cl₂ (1 mL), and then the solution was allowed to warm to RT. After stirring for 4 hr of, the mixture was quenched with H₂O (10 mL) and extracted with CH₂Cl₂ (3 x 6mL). The combined extracts were dried (MgSO₄) and concentrated *in vacuo*, and the residue was flash chromatographed (1:19 to 1:5, EtOAc:hexanes) on neutral alumina (Bockman grade I) to furnish **17** (29 mg, 33%) as a pale yellow oil. ¹H: 5.31 (t, 1H, J = 1.8), 4.82 (q, 1H, J = 1.8), 4.29 (q, 2H, J = 7.1), 3.36 (dd, 1H, J = 16.85, 1.8), 2.57 (dt, 1H, J = 16.9, 1.8), 1.00 (s, 9H), 0.95 (s, 9), 0.40 (s, 3H), 0.22 - 0.29 (overlapping s, 6H), 0.13 (s, 3H). ¹³C: 173.1, 161.7, 159.7, 100.9, 88.0, 70.5, 63.3, 45.7, 28.0, 26.0, 19.6, 18.8, 14.5, -4.2, -4.4, -4.5, -4.7. **IR**: 2932, 2859, 1749, 1646, 1338, 1354, 1201, 1056, 1022, 953, 839, 785. **MS**: 464.4 [M+Na]⁺. **HRMS**: calcd for C₂₁H₄₀NO₅SiNa [M+Na]⁺: 464.2445; found: 464.2304.

Diels-Alder adduct 19. Neat TBS-OTf (100 μ L, 440 μ mol) was added dropwise to a cold (-78 °C), well stirred solution of **15** (55 mg, 204 μ mol) and Et₃N (100 μ L, 780 μ mol), in CH₂Cl₂ (1 mL). The solution was then warmed to rt, and after 15 min it was adsorbed directly unto neutral alumina (Bockman grade I) and flash

chromatographed (0:1 to 1:19, EtOAc:hex) to afford 70 mg of a 1:1 mixture (¹H NMR) of **16** (32 mg, 42%, NMR) and **17** (38 mg, 42%, NMR) as a clear oil. A solution of this mixture and maleic anhydride (25 mg, 180 µmol) in CH₂Cl₂ (1 mL) was stirred at RT for 1.5 hr, and then the solvent was removed *in vacuo*. The oily residue was flash chromatographed (0:1 to 1:9, EtOAc:hex) to provide **19** (25 mg, 62% from **16**, 26% over two steps) as a white solid, m.p. 159-162°C. ¹H (acetone-*d*₆): 6.86 (br s, 1H), 4.87 (d, 1H, J = 2.0), 4.12 (q, 2H, J = 7.1), 4.02 (dd, 1H, J = 7.8, 4.6), 3.86 (dd, 1H, J = 7.7, 4.7), 3.70 (br s, 1H), 3.59 (br s, 1H), 1.40 (s, 9H), 1.22 (t, 3H, 7.1), 0.92 (s, 9H), 0.21 (s, 3H), 0.16 (s, 3H). ¹³C (acetone-*d*₆): 171.7, 170.8, 169.1, 158.8, 154.1, 97.6, 79.3, 78.8, 60.6, 54.0, 48.8, 48.4, 44.7, 27.4, 24.7, 17.5, 13.5, -6.0, -6.2. **IR:** 1781, 1735. **MS** (negative ion mode): 480.2 [M-1]. **HRMS (negative ion mode):** calcd for C₂₃H₃₄NO₈Si [M-1]: 480.2054; found: 480.2050.

Diels-Alder adduct 20. Neat TBSOTf (85 μ L, 370 μ mol) was added dropwise to a cold (-78 °C), well-stirred solution of **15** (50 mg, 186 μ mol) and Et₃N (85 μ L, 650 μ mol) in CH₂Cl₂ (1 mL), and the mixture was then warmed to rt. After 15 min at rt the mixture was adsorbed directly unto neutral alumina (Bockman grade

I) and flash chromatographed (0:1 to 1:19, EtOAc:hex) to afford 62 mg of a 1.2:1 mixture (¹H NMR) of **16** (32 mg, 44%, NMR) and **17** (30 mg, 37%) as a clear oil. A solution of this material and N-methylmaleimide (17 mg, 176 μ mol) in CH₂Cl₂ (1 mL) was stirred at rt for 2 hr, then the solvent was removed *in vacuo*. The oily residue was flash chromatographed (0:1 to 1:9, EtOAc:hex) yielding **30** (38 mg, 92% from **16**, 41% over two steps) as a white solid, m.p. 161-

165°C. ¹H (benzene-*d*₆): 4.44 (dd, 1H, J = 3.5, 1.4), 3.84 - 4.01 (m, 2H), 3.79 (br s, 1H), 3.39 (br s, 1H), 2.98 - 2.91 (m, 1H), 2.88, (br s, 1H), 2.71 (s, 3H), 1.37 (s, 9H), 0.96 (t, 3H, J = 7.1), 0.06 (s, 3H), -0.01 (s, 3H). ¹³C (benzene-*d*₆): 176.5, 175.4, 170.2, 158.7, 154.4, 97.52, 78.76, 61.1, 53.9, 48.6, 47.1, 43.5,30.2, 28.3, 25.5, 24.5, 18.1, 14.2, -5.1 (2 overlapping peaks). **IR**: 3337, 1705, 1618. **MS**: 517.3 [M+Na]⁺. **HRMS**: calcd for C₂₄H₃₈N₂O₇SiNa [M+Na]⁺ 517.2346; found 517.2344. **EA**: calcd for C₂₄H₃₈N₂O₇Si N 5.66%, C 58.27%, H 7.74%, found: N 5.51%, C 58.57%, H 7.80%.

Et. O NHBoc COOEt TBS-O **Diels-Alder adduct 21.** Neat TBS-OTf (70 μ L, 300 μ mol) was added dropwise to a cold (-78 °C), well stirred solution of **15** (42 mg, 156 μ mol) and Et₃N (70 μ L, 500 μ mol) in CH₂Cl₂ (750 μ L). The mixture was then warmed to rt, and after 15 min at rt it was applied directly to a column of neutral alumina (Bockman grade I) and flash chromatographed (0:1 to 1:19,

EtOAc:hex) to give 58 mg of a 1:1 mixture (¹H NMR) of **16** (27 mg, 45%, NMR) and **17** (31 mg, 45%, NMR) as a clear oil. A solution of this material and diethyl but-2-ynedioate (40 μ L, 200 μ mol) in CH₂Cl₂ (1mL) was stirred at RT for 15 hr, then the solvent was removed *in vacuo*. The residue was flash chromatographed (0:1 to 1:9, EtOAc:hex) to afford 33 mg of **21** (86% from **16**, 39% over two steps) as a pale yellow oil. ¹H (benzene-*d*₆): 5.33 (s, 1H), 5.13 (dd, 1H, *J* = 3.7, 1.4), 4.50 (br s, 1H), 4.33 (br s, 1H), 4.23 - 3.70 (m, 6H), 1.34 (s, 9H), 0.94 - 1.05 (m, 9H), 0.91 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H). ¹³C (benzene-*d*₆): 169.9, 169.8, 164.8, 164.3, 154.4, 151.2, 146.6, 103.9, 91.7, 79.9, 62.3, 61.0 (3 overlapping peaks), 56.9, 30.2, 28.2, 25.7, 18.3, 14.1(2 overlapping peaks), -4.8 (2 overlapping peaks). IR: 3350, 1716, 1618. MS: 576.5 [M+Na]⁺. HRMS: calcd for C₂₇H₄₃NO₉SiNa 576.2608 [M+Na]⁺; found: 576.2605. EA: calcd for C₂₇H₄₃NO₉Si C 58.86%, H 7.91%, N 2.67%; found: C 58.57%, H 7.83%, N 2.53%.

3'-tosyl-6-oxaspiro[bicyclo[3.1.0]hexane-3,4'-oxazolidin]-2'-one, 25. Commercial LiBH₄ in THF (2M, 16.1 mL, 32.2 mmol) was added to a cold (0 °C), stirred solution of the known [(a) Hodgson, D. M.; Thompson, A. J.; Wadman, S.; Keats, C. J., *Tetrahedron* **1999**, *55*, 10815. (b) Varie, D. L.; Beck, C.; Borders, S. K.; Brady, M. D.; Cronin, J. S.; Ditsworth, T. K.; Hay, D. A.; Hoard, D. W.; Hoying, R. C.; Linder, R. J.; Miller, R. D.; Moher, E. D.; Remacle, J. R.; Rieck, J. A.; Anderson, D. D.; Dodson, P. N.; Forst, M. B.; Pierson, D. A.; Turpin, J. A., *Org. Proc. Res. Dev.* **2007**, *11*, 546) cyclopentene **12** (5.2 g, 20.3 mmol) in THF (200 mL). After 15 min at 0°C, the mixture was warmed to rt and stirred for an additional 24 hr, then it was cooled back to 0°C and carefully quenched with sat. aq. NH₄Cl (100 mL; **CAUTION**: evolution of flammable H₂ gas) followed by deionized water (100 mL). The mixture was then extracted with CH₂Cl₂ (1 x 200 mL, 2 x 150 mL) and the combined extracts were dried (MgSO₄) and concentrated *in vacuo*. The residue was dissolved in THF (100 mL), cooled to 0°C and carefully treated with NaH (60% oil dispersion, 2.5 g, 63 mmol; **CAUTION**: evolution of flammable H₂ gas), added portionwise with good stirring. The mixture was warmed to rt and stirred for 19 hr, then it was again cooled to 0 °C and solid TsCl (9.0 g, 46 mmol) was added as a single portion. The mixture was warmed to rt and stirred for 15 hr, then it was cooled back to 0°C and carefully poured into sat. aq. NH₄Cl (100 mL; **CAUTION**: vigorous reaction, evolution of flammable H₂ gas). The aqueous mixture was extracted with EtOAc (3x100 mL) and the combined extracts were evaporated *in vacuo* to yield a brown residue, which was flash chromatographed (2:8 to 1:1, EtOAc:hex) to fusnish the title compound (2.8 g, 47%) as a white solid, m.p. 131-134 °C. ¹H: 7.96 (d, 2H, J = 8.4), 7.34 (d, 2H, J = 8.5), 5.73 (s, 2H), 4.19 (s, 2 H), 3.49 (d, 2H, J = 15.3), 2.52 (d, 2H, J = 15.0), 2.44 (s, 3H). ¹³C: 152.8, 145.6, 135.8, 129.7, 128.9, 128.3, 79.1, 70.7, 43.9, 21.8. **IR**: 1785, 1596, 1363, 1285. **MS**: 294.3 [M+H]⁺. **HRMS**: calcd for C₁₄H₁₆NO₄S [M+H]⁺: 294.0800; found: 294.0793 [M+H]⁺.

3'-Tosyl-6-oxaspiro[bicyclo[3.1.0]hexane-3,4'-oxazolidin]-2'-one, 26. A solution of **25** (770 mg, 2.6 mmol) and *m*CPBA (70%, 830 mg, 3.1 mmol) in CH₂Cl₂ (12 mL) containing suspended NaHCO₃ (534 mg, 6.4 mmol) was stirred at RT for 24 hr, then it was diluted with CH₂Cl₂ (18 mL) and washed with sat. aq. NaHSO₃ (100 mL). The aqueous phase was further extracted with CH₂Cl₂ (2 x 30 mL). The combined organic phases were washed with H₂O (2x30 mL), dried (MgSO₄), and concentrated *in vacuo* to yield epoxide **26** (784 mg, 97%) as a white solid. ¹H: 7.90 (d, 2H, J = 8.3), 7.33 (d, 2H, J = 8.1), 4.03 (s, 2 H), 3.61 (s, 2 H), 3.03 (d, 2H, J = 14.1), 2.43 (s, 3H), 2.25 (d, 2H, J = 14.1). ¹³C: 152.2, 145.7, 129.7, 128.8, 79.5, 66.8, 54.6, 38.7, 21.8. **IR**: 1758, 1364. **MS**: 332.3 [M+Na]⁺. **HRMS**: calcd for C₁₄H₁₅NO₅SNa [M+Na]⁺ 332.0569; found 332.0577 [M+Na]⁺.

1-Tosyl-3-oxa-1-azaspiro[4.4]non-8-ene-2,7-dione, 28. Neat TMS-OTf (1.1 mL, 6.0 mmol) was added dropwise at rt to a stirred solution of 26 (1.2 g, 4.0 mmol) and TEA (2.2 mL,1.6 mmol) in CH₂Cl₂ (12 mL). The mixture was stirred at RT for 1.5 hr, and then DBU (3 mL, 20 mmol) was added dropwise. The mixture was stirred for an additional 6 hr, then it was diluted with CH₂Cl₂ (30 mL) and poured into sat. aq. NH₄Cl (30mL). The organic phase was separated and the aqueous phase was extracted with more CH₂Cl₂ (3 x 20 mL). The combined organic phases were washed with H₂O (3 x 50mL), dried (MgSO₄) and concentrated *in vacuo* to furnish a dark oily residue. A solution of this material in a CH₂Cl₂ (12 mL) containing PCC (2.5 g, 11.6 mmol) was stirred at rt for 4 hr, then it was filtered over florisil and concentrated *in vacuo*. The residue was flash chromatographed (1:9 to 1:2 to 1:0 EtOAc:hex) to yielding **28** (838 mg, 68%) as a white solid, m.p. 203-205°C. ¹H (**dichloromethane-d**₂): 7.91 (d, 2H, J = 8.4), 7.47 (d, 1H, J = 5.6), 7.42 (d, 2H, J = 8.2), 6.45 (d, 1H, J = 5.6), 4.33 (d, 2H, J = 8.5), 3.30 (d, 1H, J = 18.4), 2.64 (d, 1H, J = 18.4), 2.49 (s, 3 H). ¹³C (**dichloromethane-d**₂): 202.4. 157.6, 151.6, 146.5, 136.8, 134.8, 129.9, 128.9, 72.3, 69.3, 53.52 (CD₂Cl₂), 45.9, 21.6. **IR**: 1770, 1716, 1364. **MS**: 330.3 $[M+Na]^+$. **HRMS**: calcd for C₁₄H₁₃NO₅Na $[M+Na]^+$ 330.0412; found 330.0418 $[M+Na]^+$.

Diels-Alder adduct 29. Neat TBS-OTf (110 μ L, 480 μ mol) was added dropwise to a cold (-78 °C), well-stirred solution of **28** (80 mg, 261 μ mol) and Et₃N (110 μ L, 790 μ mol) in CH₂Cl₂ (7 mL), then the mixture was

^{TBSO} warmed to rt. After stirring at rt for 1.5 hr, MeOH (0.5 mL) was added, and then the mixture was concentrated *in vacuo*. The residue was dissolved in diethyl acetylene dicarboxylate (1.5 mL, 12 mmol) and the solution was stirred at 60 °C (bath temperature) for 6 hr. The resulting orange oil was flash chromatographed (1:9 to 2:8, EtOAc:hex) to give **29** (71 mg, 46%) as a yellow oil. ¹**H** (acetone-*d*₆): 7.97 (d, 2H, *J* =8.4), 7.44 (d, 2H, *J* = 8.1), 4.90 (dd, 1H, *J* = 3.5, 1.0), 4.40 (d, 2H, *J* = 4.6), 4.18 - 4.27 (m, 4 H), 3.96 (t, 1H, *J* = 3.4), 3.85 (dd, 1H, *J* = 3.2, 1.1), 2.45 (s, 3 H), 1.27 (td, 6H, *J* = 7.1, 2.9), 0.94 (s, 9 H), 0.19 (s, 3 H), 0.09 (s, 3 H). ¹³C-APT (benzene-*d*₆): 169.0, 164.3, 163.2, 154.5, 152.9, 144.5, 144.2, 138.2, 129.3, 128.4, 104.7, 97.8, 70.5, 61.4, 61.3, 59.6, 57.8, 25.7, 21.3, 18.3, 14.1, 14.0, -3.91, -4.88. IR: 1798, 1714, 1621. MS: 614.4 [M+Na]⁺. HRMS: calcd for C₂₈H₃₇NO₉SSiNa [M+Na]⁺ 614.1856; found 614.1851.

¹H NMR Spectrum of Compound **15**

¹³C NMR Spectrum of Compound **15**

¹H NMR Spectrum of Compound **17**

¹³C NMR Spectrum of Compound **17**

¹³C NMR Spectrum of Compound **19**

Full 2D-NOESY NMR Spectrum of Compound 19

Expansions of the 2D-NOESY NMR Spectrum of Compound 19

¹H NMR Spectrum of Compound **20**

¹³C NMR Spectrum of Compound **20**

Full 2D-NOESY NMR Spectrum of Compound 20

Expansions of the 2D-NOESY NMR Spectrum of Compound ${f 20}$

¹H NMR Spectrum of Compound **21**

¹³C NMR Spectrum of Compound **21**

¹³C-APT NMR Spectrum of Compound **29**

Full 2D-NOESY NMR Spectrum of Compound 29

Expansions of the 2D-NOESY NMR Spectrum of Compound 29