Supporting Information

Isolation and Characterization of Atropisomers of Seven-Membered-Ring Benzolactams

Hidetsugu Tabata, Naoya Wada, Yuko Takada, Tetsuta Oshitari, Hideyo Takahashi, and Hideaki Natsugari*
*E-mail address: natsu@pharm.teikyo-u.ac.jp

Contents

1. General Remarks 1
2. Stereochemical (Thermodynamic) Stability of Diastereomers 2-3
3. X-ray crystal structures of $5 \mathrm{~b}, 7 \mathrm{a}-\mathrm{A}(\mathrm{a} R, S)$, $7 \mathrm{a}-\mathrm{B}(a S, S), 7 \mathrm{~b}-\mathrm{A}(\mathrm{a} R, S)$ 3-4
4. ${ }^{1} \mathrm{H}$ NMR spectra (magnified) of 3a, $\mathbf{4 a -} \mathbf{- C O O H}, 5 \mathrm{a}-\mathrm{COOH}$, and $\mathbf{6 a - C O O H}$ 5
5. ${ }^{1} \mathrm{H}$ NMR spectra (magnified) of $7 \mathrm{a}-\mathrm{A}(\mathrm{aR}, S)$ and 7a-B (aS,S) 5
6. Temperature dependence of the ${ }^{1} \mathrm{H}$ NMR signals of 4 c 6
7. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra 7-39

1. General Remarks

NMR Spectra were recorded on a spectrometer at 400 MHz or 600 MHz for ${ }^{1} \mathrm{H}$ NMR, and 100 MHz or 150 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are given in parts per million (ppm) downfield from tetramethylsilane as an internal standard and coupling constants (J) are reported in hertz (Hz). Splitting patterns are abbreviated as follows: singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin) and multiplet (m). The high resolution mass spectra (HRMS) were obtained with an ionization mode of ESI. Melting points were taken on a melting point apparatus and are uncorrected. Optical rotations were determined with a digital polarimeter. Analytical thin layer chromatography was performed on pre-coated, glass-backed silica gel plates. Column chromatography was performed using silica gel ($45-60 \mu \mathrm{~m}$). Extracted solutions were dried over anhydrous MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvents were evaporated under reduced pressure.

2. Stereochemical (Thermodynamic) Stability of Diastereomers

The ΔG^{\ddagger} values sere determined according to the protocol reported for the literature: see ref. 17) in the main text.

Compd (axial chirality ${ }^{a}$)	$\Delta \mathrm{G}^{\ddagger}$ $\mathrm{kJ} / \mathrm{mol}$	condition for isomerization ${ }^{b}$	equilibrium ratio ($\mathbf{A}: \mathbf{B}$)
7a-A (aR)	102.5	$37^{\circ} \mathrm{C}, 10 \mathrm{~h}^{c}$	1:0.7
B (aS)	99.4	$37{ }^{\circ} \mathrm{C}, \quad 8 \mathrm{~h}$	
8a-A (aS)	106.9	$50^{\circ} \mathrm{C}, 14 \mathrm{~h}^{d}$	1:0.9
B $(\mathrm{a} R)$	105.8	$50^{\circ} \mathrm{C}, 12 \mathrm{~h}^{\text {e }}$	
7b-A (aR)	100.8	$37^{\circ} \mathrm{C}, \quad 8 \mathrm{~h}$	1:0.9
B (aS)	99.2	$37^{\circ} \mathrm{C}, \quad 7 \mathrm{~h}$	
7c-A (aR)	101.9	$37^{\circ} \mathrm{C}, \quad 9 \mathrm{~h}$	1:0.8
B (aS)	99.8	$37^{\circ} \mathrm{C}, \quad 8 \mathrm{~h}$	

${ }^{a}$ See, ref.14) in the main text. ${ }^{b}$ To the equilibrium state in toluene. ${ }^{c}$ At $50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$. ${ }^{d}$ At $37{ }^{\circ} \mathrm{C}$ after 7 h , isomerized to 71% de. ${ }^{e}$ At $37{ }^{\circ} \mathrm{C}$ after 7 h , isomerized to 60% de.

(h)

(h)

HPLC condition: type: YMC-Pack SIL-06
$250 \times 6.0 \mathrm{~mm}$ I.D.
eluent: 10 \% EtOH in Hexane flow: $1.000 \mathrm{~mL} / \mathrm{min}$ retention time
7a-A: 26.5 min
7a-B: 31.6 min

HPLC condition:
type: YMC-Pack SIL-06
$250 \times 6.0 \mathrm{~mm}$ I.D.
eluent: 10% EtOH in Hexane
flow: $1.000 \mathrm{~mL} / \mathrm{min}$
retention time
8a-A: 22.1 min
8a-B: 26.4 min

3. X-ray crystal structures of $5 \mathrm{~b}, 7 \mathrm{a}-\mathrm{A}(\mathrm{a} R, S)$, 7a-B (aS,S), 7b-A (aR,S)

5b (racemate): ($\mathrm{a} R$)-form (left) and ($\mathrm{a} S$)-form (right) present in a unit cell.
(note: Structure for $\mathbf{5 b}$ is presented as Figure 4 in the manuscript)

7a-A (aR,S): [note: Structure for 7a-A is presented as Figure 5 (left) and in the manuscript and Table of Contents]

7a-B (aS,S): [note: Structure for 7a-B is presented as Figure 5 (right) in the manuscript and Table of Contents]

$\mathbf{7 b} \mathbf{- A}(\mathbf{a R}, \boldsymbol{S})$: [note: Structure for $\mathbf{7 b} \mathbf{- A}$ is presented as Figure 7 in the manuscript]

4. ${ }^{1} \mathrm{H}$ NMR spectra (magnified) of $3 \mathrm{a}, \mathbf{4 a - C O O H}, 5 \mathrm{a}-\mathrm{COOH}$, and $\mathbf{6 a - C O O H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (note: This chart is presented as Figure 3 in the manuscript)

5. ${ }^{1} \mathrm{H}$ NMR spectra (magnified) of $7 \mathrm{a}-\mathrm{A}(\mathrm{a} R, S)$ (upper) and $7 \mathrm{a}-\mathrm{B}(\mathrm{aS}, S)$ (lower) (400 MHz , $\mathbf{C D C l}_{3}$) (note: This chart is presented as Figure 6 in the manuscript)

6. Temperature dependence of the ${ }^{1} \mathrm{H}$ NMR signals of $\mathbf{4 c}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\begin{aligned}
& \Delta \mathrm{G}^{\ddagger}=56.3 \mathrm{~kJ} / \mathrm{mol}^{*} \\
& \mathrm{Tc}=273 \mathrm{~K}
\end{aligned}
$$

* determined by the method reported by Boiadjiev et al.,
lit. Boiadjiev, S. E.; Lightner, D. A. Tetrahedron 2002, 58, 7411-7421.

FiWadaiAZPNW-2-174-34-carbon:als

(
F.WWara2PNW2.175-38-carbon.als

(

FiTabata"\%/42.JHN2-100-25H.als

FiTabatal'/4A2JHN2-108-25C.als

	ต \longrightarrow	䜶			
	\cdots -	4	2		

FiTabata'\%42.JHN2-109-39C.als

$$
\begin{gathered}
10500.0 \mathrm{~Hz} \\
32768 \\
\end{gathered}
$$

$$
\begin{aligned}
& 32768 \\
& 8000.0 \mathrm{~Hz} \\
& 32
\end{aligned}
$$

$$
\begin{gathered}
32 \\
4.096 \mathrm{sec}
\end{gathered}
$$

$$
\begin{aligned}
& 4.096 \mathrm{sec} \\
& 2.904 \mathrm{sec}
\end{aligned}
$$

$$
\begin{gathered}
2.904 \mathrm{sec} \\
6.2 \mathrm{us}
\end{gathered}
$$

$1 \mathrm{H}_{2}$
${ }^{1 \mathrm{H}} 22.0 \mathrm{c}$
$\mathrm{COCL}_{0.3}$ 0.00 ppm
0.12 Hz ${ }_{21}^{0.12 \mathrm{~Hz}}$

2c-regio isomer

FITakadaicarboni42YYT1-87-24als

1H
$\mathrm{CDCL}^{21.9 \mathrm{C}}$
DCL3
0.00 ppm
0.12 Hz
${ }_{18}^{0.12 \mathrm{~Hz}}$

3a
F.MWadai42PNWW-2-187-35-cattonals

FITabatal $1 / 142$ JJNW3-23-34C.als

10.0

21
11/242.JNW3-26-47C.als

(

FWadai42PNW3-18-30-carbonal

DFLLE
COMNT
DATM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
PONT
FREQU
SCANS
ACQTM
PD
PWI
IRNUC
CTEMP
SVNT
EXREF
BFEF
RGAIN
Frin 10001
Fri Nov 06 05:30:3
${ }^{13 \mathrm{C}} \mathrm{BCM}$
$\begin{array}{r}100.40 \mathrm{MHz} \\ \hline\end{array}$
10500.0 Hz
32768

32768
27173.9 Hz
27173.9 Hz
512

512
1.206 sec
1.206 sec
1.794 sec
$\mathrm{H}^{4.6 \text { us }}$
${ }_{c}^{23.8}$
$\mathrm{CDCL}_{77.00 \mathrm{ppm}}^{0.12}$
77.00 ppm
0.12 Hz
25

4a

FtWada42PNW1-60-25-carbonals

F.Takadal42Y-YT1-182-35.als

$$
\begin{aligned}
& 32768 \\
& 9009.0 \mathrm{~Hz}
\end{aligned}
$$

$$
{ }_{64}^{9009.0 ~ H z ~}
$$

$$
\begin{aligned}
& 64 \\
& 3.637 \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& 3.637 \mathrm{sec} \\
& 4.000 \mathrm{sec} \\
& 6.2 \mathrm{us}
\end{aligned}
$$

$$
1 \mathrm{H}_{2}^{\circ}
$$

$$
\mathrm{CDCL}^{22.7 \mathrm{c}}
$$

$$
\begin{gathered}
\text { CDCL3 } \\
0.00 \mathrm{D}
\end{gathered}
$$

$$
\begin{aligned}
& 0.0 \mathrm{ppm} \\
& 0.12 \mathrm{~Hz}
\end{aligned}
$$

$$
{ }_{20}^{0.12 \mathrm{H}}
$$

4b-COOH

F:ITakadalcarbon142YYT1-52-20.als

4b-COOH

F:ITabatalHta9142JHTA9-106-35C.als

$4 \mathrm{c}-\mathrm{COOH}$

F:ITakadalcarboni42Y-YT1-67-20.als

FiWadaH2PNW-a-138-28-carbon als

F:Whadai42PNW-2-122-40-carbon.ain

Filakadalcarbon142YYT1-174-32.als

'P:ITakadalcarbonl42YYT1-99-40.als

DFILE
COMNT
DATIM
OBNUC
EXMOD
OBFRQ
OBSET
OBFIN
POINT
FREQU
SCANS
ACQTM
PD
PW1
IRNUC
CTEMP
SLVNT
EXREF
BF
RGAIN

G:INatsugaril4

Sat Jan 12 13: 1 H
NON
399.65 MH : 124.00 KHz
10500.0 Hz 10500.0 Hz
32768 8000.0 Hz 64 4.096 sec
2.904 sec 6.2 us
${ }^{24.8} \mathrm{c}$ 0.00 ppm 0.20 Hz

$5 b-\mathrm{COOH}$
ć
CO

F:Takadaicarbonk
Tue Aug 10 09:52:13 C
BCM
BCM
100.40 MHz
100.40 MHz
125.00 KHz
125.00 KHz
10500.0 Hz
10500.0 Hz
32768
37173.9 Hz
256

256
1.206 sec
1.794 sec
4.6 us

1 H
$\mathrm{CDCL}^{24.6 \mathrm{c}}$
77.00 ppm
${ }_{0}^{71.12 \mathrm{~Hz}}$

5b-COOH

FATabatalHta9142.JHTA9-60-37-C als

$5 \mathrm{c}-\mathrm{COOH}$

x

\qquad

(

F.WWada/42PNW-2-117-25-carton a/s

F-WadalaZPNW-2-189-39-carbon.als

 DATIM
OBNUC

Tue Mar 08 15:51: EXMOD
OBFRQ OBFRQ
OBSET
OBFIN OBFIN
POINT
FREQU FREQU
SCANS
ACQTM ACQTM
PD
PW1 PRNUC
CTEMP CTEMP
SLVNT
EXREF EXREF
BF
RGAIN

6b
[Q] COOCH_{3}

F:TTabataiHta9142.
Tue Mar 08 16:24; 13C BCM 100.40 MHz 125.00 KHz 10500.0 Hz 32768 27173.9 Hz 512 1.206 sec 1.794 sec 4.6 us 1H 24.3 c CDCL3 77.00 ppm 0.12 Hz 24

6b

F.TTabatailta9142.JHTA9-64-35C.als

FiWhada42PNW2-69-35-carbon.als

FWWadal42PNW2-69-51-carbon als

C.iALICE95IDATAITakadalcarbonM2YYT1-167-31c.als

(

510 20.10.243/40042TABATAY\%/42JHN-12ALS

FiltabatalHta9142JHTA9-61-36-a.als

(((((((((((((((

F:TTabatalHta9142

FilabatalHta9442.JHTA9-61-36-aC.als

DFILE
COMNT COMMT
DATIM DATIM
OBNUC OBNUC
EXMOD EXMOD
OBFRQ OBFRE
OBFIN OBSIN
OBINT
PREQU FREQU
SCANS SCANS
ACQTM ACQTM
PD
PW1 PD
PW1
IRNUG IRNUC
CTEMP CTEMP
SLVNT

8a-A(aS)

F:WadaM2PNW3-3-37-carbon.als

(

FiWadal42PNW3-3-39-carbon.als

