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Supporting Information 
Kinetic network model and transition path theory  

The time evolution of probabilities P(t) in a discretized state space is governed by the master 

equation 
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where K is the transition rate matrix consisting of M×M microscopic rate constants Kij for 

transition from state j to state i. To assign microscopic rate constants Kij, we employ a criteria 

based on structural similarity,1-3 i.e. a non-zero transition rate between two given nodes exists if 

(1) their Cα RMSD is smaller than the cutoff distance of 1.5 Å, or (2) any cluster member (see 

below) of one node is within the cutoff distance from the other node. The cutoff distance of 1.5 

Å corresponds to the average conformational change between sequential pairs of snapshots 

collected during a time interval of 1.5 ps along continuous REMD trajectories. 

    To also satisfy the detailed balance condition Kijpeq(j) = Kjipeq(i), we choose 
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where kij is the base rate for transitions between node i and j. Although kij is generally specific 

for each pair of nodes and it is possible to determine their values by calibrating against 

conventional MD simulations, in this study we choose to treat the kij’s as a single scaling 

constant kc. The value of kc sets the time scale of the network. As mentioned above, the cutoff 

distance for connecting two structurally similar nodes corresponds to the conformational changes 

occurred during 1.5 ps time interval. It is therefore reasonable to set the base rate kc between two 

connected conformations to (1.5 ps)-1. This is a rough estimate of the basic time scale and 



S3 

 

ignores the temperature dependence of the diffusional atomic motions over the replica exchange 

temperature range (285 K to 340 K). 

    To study the transitions between the reactant and the product, the nodes on the network are 

grouped into three subsets, i.e. A (reactant), B (product) and I (intermediate) states. The reactive 

flux Ji→j for transitions from node i to node j, can be expressed in terms of the committor 

probabilities pfold for node i and j4,5 

 )()(,)]()()[( ipjpipjpipKJ foldfoldfoldfoldeqjiji >−=→     (4)  

The pfold(i), a key concept in transition pathways analysis, is defined as the probability for the 

molecule at node i to reach B before it reaches A. By definition Aiip fold ∈=  ,0)(  and 

Biip fold ∈=  ,1)( . For the intermediate states, it can be shown that4-6  
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The set of linear equations Eq. (5) is solved numerically to obtain pfold(i), which are substituted 

into Eq. (4) to yield the reactive flux Ji→j between all pairs of nodes. The total macroscopic 

reactive flux across an arbitrarily chosen interface that divides A and B is therefore4,5 
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where A* and B* correspond to the states located on the A- and B- sides of the interface, 

respectively. 

The total flux J can be decomposed into a set of unidirectional transition pathways Pi, with 

each pathway contributing Ji to total flux J.4,5 We use the pathway decomposition algorithm5 in 

TPT to generate the pathways in descending order of Ji. The algorithm successively identifies the 

strongest pathway and removes it from the network along with its flux Ji. The key step in the 

process is to find the bottleneck edge, which is the one associated with the smallest flux Ji→j 
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(min-current) along a reactive pathway. The pathway carrying the largest flux is the one with the 

largest min-current.   

In addition to the calculation of pathways, the computed flux and commitor probabilities allow 

the estimation of the macroscopic rate constant of transition using the formula7 
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In the two-state limit where the I-state population is negligible, Eq. (7) reduces to the familiar 

formula k = J/Peq(A). 

    We are interested in computing the equilibrium and kinetic properties at some target 

temperature T0. In order to use the data sampled at temperatures other than T0, each sampled 

conformation i needs to be reweighted by a weight factor wi(T0) given by8,9 
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where Nk is the number of samples at each of the S replica exchange temperatures Tk, kB is the 

Boltzmann constant and Ei the potential energy of sample i. The constants fk’s are related to the 

partition function of the temperature replica Qk such that kkkk QQff // '' = . The fk’s are calculated 

from T-WHAM8 by iteratively solving the WHAM equations. The weight factor wi(T0) obtained 

by Eq. (8) are used to calculate the equilibrium probability peq(i) for each node in the network. 

    To build the network, we cluster a total of 96000 conformational snapshots, obtained from 

REMD at a range of temperatures, into a smaller set of conformational states. Reducing the 

number of nodes by clustering simplified the tasks of numerically solving large matrix equations 

Eq. (5) for computing pfold. The clustering is performed based on the Cα-RMSD of the flaps 

between any pair of replica exchange snapshots, using a cutoff radius of 0.8 Å. This value yields 
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a manageable number of clustered nodes for further analysis. The neighboring nodes found 

within the cutoff RMSD from a selected central node are merged to create a large composite 

node, whose equilibrium probability is the sum of the weights of the neighboring nodes. The 

resulting composite nodes typically consist of contributions from several original snapshots 

observed at different temperatures. The resulting kinetic network contains ≈ 32000 nodes and 7.8 

× 106 edges. 

    Depending on the number of nodes on the network, the number of pathways calculated 

using the path decomposition algorithm can be large, e.g. on the order of 103-104. To obtain 

mechanistic insights into the transition, it is necessary to group the many pathways into a much 

smaller set of clustered pathways, with each corresponding to many (e.g. 101 - 103) similar 

unclustered pathways. To perform clustering in the pathway space, we use average RMSD 

between nodes on two pathways as a measure for their dissimilarity, i.e. 
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with 
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Here r(i, path2) is the minimum Cα-RMSD between node i on pathway 1 and the nodes on 

pathway 2. We calculate the pair-wise dissimilarities defined by Eq. (9) for all pairs of 

unclustered pathways and then use hierarchical clustering algorithm to compute the clustered 

pathways. 

Stochastic simulation  
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Stochastic simulations were carried out on the network using the Gillespie algorithm.10 In this 

algorithm, the waiting time at a given node i is an exponential random variable whose mean 

equals the inverse of the sum of the exiting rates from that node. The probability that the system 

subsequently lands on a connected node j is proportional to the microscopic rate from node i to 

node j. It can be shown that the algorithm generates realizations of random walks that satisfy the 

master equation, Eq. (1).10 

To obtain the transition flux between two macrostates A and B, we start from a randomly 

chosen node and run a long equilibrium trajectory which contains numerous transition events. 

The total flux is the number of transition events divided by the total simulation time. We can also 

record the first passage time (FPT) for each individual transitions and compute the mean first 

passage time (MFPT). Both total flux and MFPT can be compared with the corresponding TPT 

calculations using Eq. (6) for total flux and Eq. (7) for transition rate constant, respectively. A 

more detailed comparison between the stochastic simulation and TPT pathway calculation can be 

made by projecting each reactive trajectory onto a TPT pathway and examine whether the flux 

distributions obtained from the two methods agree with each other. First, many reactive 

trajectories are collected, each containing a distinct transition event from reactant to product. A 

procedure is then used to associate a reactive trajectory with a structurally similar pathway, using 

a definition of trajectory-pathway distance similar to Eq. (9) 
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where Nx is the number of nodes on trajectory x, r(i, pathy) is the minimum Cα-RMSD between 

node i on trajectory x and the nodes on pathway y. A reactive trajectory x is considered to belong 

to pathway y if dist(trajx, pathy) = min{dist(trajx, pathz)}, z = 1,…, Npath and dist(trajx, pathy) < 
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cutoff. Here the value of cutoff is chosen to be 1.6 Å, which corresponds to the lower limit of the 

distance between any two clustered pathways. Note that recrossing in trajectory is not included 

in the calculation of trajectory-pathway distance, i.e. if a same node is visited twice along a 

trajectory, then all the nodes in between are excluded from the distance calculation using Eq. 

(10). 

Replica exchange simulation 

REMD simulations were performed on HIV-1 PR using the molecular simulation package 

IMPACT.11 Twelve replicas were run in parallel at temperatures between 285 and 340 K for a 

total of 13 ns for each replica with a time step of 1.5 fs. The last 12 ns were collected for 

analysis. Exchanges between adjacent temperatures were attempted every 1000 MD steps. The 

MD trajectories were saved every 1.5 ps. The unliganded semi-open crystal structure 1HHP was 

used as the starting conformation for all the replicas. The protein in aqueous solution was 

modeled by the OPLS-AA force field12 version 2005 and the AGBNP implicit solvent model13 

which includes a novel nonpolar hydration free energy estimator. The AGBNP implicit solvent 

model has been used in a wide range of studies from protein and peptide folding,3,14 protein 

conformational transitions,15 and protein-ligand interactions.16 For the current study, we used a 

modified nonpolar surface tension coefficient of 0.03 kcal mol-1 Å-2 (reduced from the original 

value of 0.08 kcal mol-1 Å-2) in the AGBNP solvent model, which yields physically correct 

dissociation/unfolding temperatures for the HIV-1 PR dimer. Because the melting temperature of 

HIV-1 PR (Tm ≈ 333 K17) is within the REMD temperature range, weak structural restraints were 

used to prevent partial unfolding at the highest temperatures. To choose an appropriate set of 

restraints, an unrestrained REMD simulation was performed in the same temperature range. 

From this trial run, we identified the regions that showed the largest displacement from the 
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native structure. These involved the inter-strand β-sheet residues V11-G16 and I62-I66. Flat-

bottomed distance restraints were then applied on 6 native H-bond donor/acceptor pairs to 

stabilize this β sheet. The distance-restrained atom pairs are: T12O-C67N, K14N-E65O, K14O-

E65N, T12’O-C67’N, K14’N-E65’O and K14’O-E65’N. Note that none of the distance restraints 

are across the dimer interface, and the atoms involved are located at > 28 Å away from the flaps 

and > 12.5 Å away from the elbow region (residues 39-41). Furthermore, the distance restraint 

potential used in the simulation is flat-bottomed, with a relatively large width of 6 Å in the flat 

bottom region. Thus these restraints are only activated in high temperature replicas to prevent 

unfolding; in fact, they have essentially zero energy contribution at low to medium temperatures. 

The restraints are therefore not expected to affect the dynamics in the flaps region or the stability 

of the homodimer except at the highest temperature. 

We have examined the 12 continuous walker trajectories spanning the temperature range 285 

K to 340 K and found a total of 41 transition events among the three macrostates (semi-open, 

closed, fully-open) in these trajectories. Among these, four are between semi-open and closed 

states, and the rest of the transitions are for the semi-open ↔ fully-open and closed ↔ fully-open 

states. The number of transitions is sufficient to ensure that the reversible conformational 

transition can be modeled using the kinetic network model constructed from these trajectory 

data. We have also examined the convergence of the conformational equilibrium between 

different states by plotting the ratio of the closed and semi-open populations, and the ratio 

between the fully-open and semi-open states as functions of trajectory segments: see Fig. S6. The 

result indicates reasonable convergence of the equilibrium populations between the semi-open 

and closed states, especially after the first three nanoseconds. The relative populations between 

the semi-open and fully open states show larger fluctuation with simulation time. This is mainly 
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because the population of the fully open state is small (≈3.5% at 314 K), and thus shows 

relatively large fluctuations. Taken together, we think that the number of transition events 

contained in the continuous trajectories and the reasonably convergence in the equilibrium 

populations provided a good basis for the kinetics calculations.  

 

Figure S1 

 

Fig. S1 Crystal structure 1TW7 (blue flaps) superimposed onto an intermediate structure (orange 

flaps) along the second dominant pathway at T = 285 K. Left: side view. Right: top view. 

 

 

Figure S2 

 

 

 

Fig. S2 A bent (blue) flap tip is superimposed onto an uncurled (brown) flap tip. 
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Fig. S3 

semi-open closed
 

 

Fig. S3 Intermediate conformations along the pathway for the semi-open ↔ closed transition at 

T = 285 K. Upper: top view; Lower: side view. 
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Figure S4(a) 
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Figure S4(b) 
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Fig. S4 Flux distributions for the semi-open → closed transition calculated using TPT formula 
and stochastic simulations. (a) T = 314 K; (b) T = 334 K. 
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Figure S5(a) 
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Figure S5(b) 
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Fig. S5 Flux distributions for the semi-open → fully open transition calculated using TPT 
formula and stochastic simulations. (a) T = 285 K; (b) T = 334 K. 
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Fig. S6(a) 
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Fig. S6(b) 
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Fig. S6 (a) Ratio of the populations of the closed and semi-open states obtained using different 
trajectory segments. (b) Ratio of the populations of the fully-open and semi-open states. T = 314 
K. 

 

 

 



S14 

 

References 

1. Ozkan S. B.; Dill K. A.; Bahar I. Fast-folding protein kinetics, hidden intermediates, and 

the sequential stabilization model, Protein Sci., 2002, 11, 1958-1970. 

2. Andrec M.; Felts A. K.; Gallicchio E.; Levy R. M. Protein Folding Pathways from Replica 

Exchange Simulations and a Kinetic Network Model. Proc. Natl. Acad. Sci. USA, 2005, 

102, 6801-6806. 

3. Zheng W; Gallicchio E.; Deng N; Andrec M.; Levy, R. M. Kinetic network study of 

diversity and temperature dependence of Trp-Cage folding pathways: combining transition 

path theory and stochastic simulations. J. Phys. Chem. B, 2011, 115, 1512-1523. 

4. Berezhkovskii A.; Hummer G.; Szabo A. Reactive flux and folding pathways in network 

models of coarse-grained protein dynamics, J. Chem. Phys., 2009, 130, 205102. 

5. Metzner P.; Schütte C.; Vanden-Eijnden E. Transition Path Theory for Markov Jump 

Processes, Multiscale Model. Simul. 2009, 7, 1192-1219. 

6. Singhal N.; Snow C. D.; Pande V. S. Using path sampling to build better Markovian state 

models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J 

Chem Phys. 2004, 121, 415-425. 

7. Noé F.; Schütte C.; Vanden-Eijndenb E.; Reichc L.; Weikl T. R.; Constructing the 

equilibrium ensemble of folding pathways from short off-equilibrium simulations, Proc. 

Natl. Acad. Sci. USA, 2009, 106, 19011-19016.  



S15 

 

8. Gallicchio E.; Andrec M.; Felts A. K.; Levy, R. M. Temperature Weighted Histogram 

Analysis Method, Replica Exchange, and Transition Paths. J. Phys. Chem. B, 2005, 109, 

6722-6731. 

9. Zheng W.; Andrec M.; Gallicchio E.; Levy R. M. Recovering Kinetics from a Simplified 

Protein Folding Model Using Replica Exchange Simulations: A Kinetic Network and 

Effective Stochastic Dynamics, J. Phys. Chem. B, 2009, 113, 11702-11709. 

10. Gillespie D. T., Markov processes: An introduction for physical scientists. Academic Press, 

Boston, 1992. 

11. Banks, J. L.; Beard H.S.; Cao Y.; Cho A. E.; Damm W.; Farid R.; Felts A. K.; Halgren T. 

A.; Mainz D. T.; Maple J. R.; Murphy R.; Philipp D. M.; Repasky M. P.; Zhang L. Y.;  

Berne B. J.; Friesner R. A.; Gallicchio E.; Levy R. M. Integrated Modeling Program, 

Applied Chemical Theory (IMPACT). J. Comput. Chem., 2005, 26, 1752-1780. 

12. Jorgensen W. L.; Maxwell D. S.; Tirado-Rives J. Development and Testing of the OPLS 

All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids, J. 

Am. Chem. Soc., 1996, 118, 11225-11236. 

13. Gallicchio E.; Levy R. M. AGBNP: an analytic implicit solvent model suitable for 

molecular dynamics simulations and high-resolution modeling. J. Comput. Chem., 2004, 

25, 479-499. 

14. Felts A. K.; Harano Y.; Gallicchio E.; Levy R. M. Free energy surfaces of beta-hairpin and 

alpha-helical peptides generated by replica exchange molecular dynamics with the AGBNP 



S16 

 

implicit solvent model. Proteins: Structure, Function, and Bioinformatics, 2004, 56, 310-

321. 

15. Ravindranathan K. P.; Gallicchio E.; Levy R. M. Conformational Equilibria and Free 

Energy Profiles for the Allosteric Transition of the Ribose Binding Protein. J. Mol. Biol., 

2005, 353, 196-210. 

16. Ravindranathan K.P.; Gallicchio E.; Friesner R. A.; McDermott A. E.; Levy R. M. 

Conformational equilibrium of cytochrome P450 BM-3 complexed with N-

Palmitoylglycine: A replica exchange molecular dynamics study. J. Am. Chem. Soc., 2006, 

128, 5786-5791. 

17. Todd M. J.; Semo N.; Freire E. The structural stability of the HIV-1 protease, J. Mol. Biol., 

1998, 283, 475-488. 

 


