New Candidaspongiolides, Tedanolide Analogs that Selectively Inhibit Melanoma Cell Growth

Emily L. Whitson, Kristen M. Pluchino, Matthew D. Hall, James B. McMahon, Tawnya C. McKee

Supporting Information

S3-S7	General Experimental Procedures, Biological Material, Extraction and Isolation, Compound Properties 1-8, Acetylation and Reduction Reaction Conditions, Bioassay Conditions
S8	Table S1. NMR Data for Candidaspongiolide A (3) in Acetone- d_{6}
S9	Table S2. NMR Data for Tedanolide (5) in CDCl_{3}
S10	Table S3. NMR Data for Tedanolide (5) in $\mathrm{CD}_{3} \mathrm{OD}$
S11	Table S4. NMR Data for 28-acetyl-precandidaspongiolide A (6) in $\mathrm{CD}_{3} \mathrm{OD}$
S12	Table S5. NMR Data for 11R-dihydro precandidaspongiolide $\mathrm{A}(7)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S13	Table S6. NMR Data for 11S-dihydro precandidaspongiolide A (8) in $\mathrm{CD}_{3} \mathrm{OD}$
S14	Figure S1. NCI 60-cell line screen, single dose ($10^{-5} \mathrm{M}$) of $\mathbf{1 / 2}$
S15	Figure S2. NCI 60-cell line screen, single dose ($10^{-5} \mathrm{M}$) of $\mathbf{1 / 2}$
S16	Figure S3. NCI 60-cell line screen, dose response curves for $\mathbf{1 / 2}$
S17	Figure S4. NCI 60-cell line screen, mean bar graphs for 1/2
S18	Figure S5. NCI 60-cell line screen, dose response curves for candidaspongiolide acyl ester mixture
S19	Figure S6. NCI 60-cell line screen, mean bar graphs for candidaspongiolide acyl ester mixture
S20	Figure S7. NCI 60-cell line screen, dose response curves for candidaspongiolide A (macrolide core)
S21	Figure S8. NCI 60-cell line screen, mean bar graphs for candidaspongiolide A (macrolide core)
S22	Table S7. Melanoma GI_{50} 's for candidaspongiolide acyl ester mixture Table S8. Melanoma GI_{50} 's for candidaspongiolide A (macrolide core)
S23	Figure S9. Melanoma IC_{50} curves for 1/2, 3/4, 5-8
S24	Figure S10. Breast and Lung IC_{50} curves for 1/2, 3/4, 5-8
S25	Figure S11. Precandidaspongiolides $\mathrm{A} / \mathrm{B}(1 / \mathbf{2})$ are $\mathrm{P}-\mathrm{gp}$ substrates
S26	${ }^{1} \mathrm{H}$ NMR Spectrum of Precandidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{1 / 2})$ in $\mathrm{CD}_{3} \mathrm{OD}$
S27	${ }^{13} \mathrm{C}$ NMR Spectrum of Precandidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{1} / \mathbf{2})$ in $\mathrm{CD}_{3} \mathrm{OD}$

S28	1H NMR Spectrum of Candidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{3} / 4)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S29	${ }^{13} \mathrm{C}$ NMR Spectrum of Candidaspongiolides $\mathrm{A} / \mathrm{B}(3 / 4)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S30	${ }^{1} \mathrm{H}$ NMR Spectrum of Candidaspongiolides A/B (3/4) in acetone- d_{6}
S31	HSQC Spectrum of Candidaspongiolides A/B (3/4) in acetone- d_{6}
S32	${ }^{1} \mathrm{H}$ NMR Spectrum of Tedanolide (5) in CDCl_{3}
S33	HSQC Spectrum of Tedanolide (5) in CDCl_{3}
S34	${ }^{1} \mathrm{H}$ NMR Spectrum of Tedanolide (5) in $\mathrm{CD}_{3} \mathrm{OD}$
S35	HSQC Spectrum of Tedanolide (5) in $\mathrm{CD}_{3} \mathrm{OD}$
S36	${ }^{1} \mathrm{H}$ NMR Spectrum of 28-Acetyl-precandidaspongiolide $\mathrm{A}(\mathbf{6})$ in $\mathrm{CD}_{3} \mathrm{OD}$
S37	${ }^{13} \mathrm{C}$ NMR Spectrum of 28-Acetyl-precandidaspongiolide $\mathrm{A}(6)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S38	${ }^{1} \mathrm{H}$ NMR Spectrum of $11 R$-dihydro-precandidaspongiolide $\mathrm{A}(7)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S39	${ }^{13} \mathrm{C}$ NMR Spectrum of $11 R$-dihydro-precandidaspongiolide $\mathrm{A}(7)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S40	ROESY Spectrum of $11 R$-dihydro-precandidaspongiolide $\mathrm{A}(7)$ in $\mathrm{CD}_{3} \mathrm{OD}$
S41	${ }^{1} \mathrm{H}$ NMR Spectrum of $11 S$-dihydro-precandidaspongiolide $\mathrm{A}(\mathbf{8})$ in $\mathrm{CD}_{3} \mathrm{OD}$
S42	${ }^{13} \mathrm{C}$ NMR Spectrum of $11 S$-dihydro-precandidaspongiolide $\mathrm{A}(\mathbf{8})$ in $\mathrm{CD}_{3} \mathrm{OD}$
S43	ROESY Spectrum of $11 S$-dihydro-precandidaspongiolide $\mathrm{A}(\mathbf{8})$ in $\mathrm{CD}_{3} \mathrm{OD}$

General Experimental Procedures. Optical rotations were measured on a Perkin-Elmer 241 polarimeter. UV spectra were acquired in spectroscopy grade MeOH using a Varian Cary 50 UV-Vis spectrophotometer. NMR data were collected using an Avance III $600\left({ }^{1} \mathrm{H} 600 \mathrm{MHz}\right.$, ${ }^{13} \mathrm{C} 150 \mathrm{MHz}$) NMR spectrometer (Bruker Biospin) with a 3-mm PATXI probe, referenced to residual solvent. MS spectra were measured with an Agilent Technologies 6510 Q-TOF LC-MS and an Applied Biosystems, Inc. QSTAR XL hybrid triple-quad time-of-flight (QqTOF) mass spectrometer. Initial fractionation was performed on Diol SPE cartridges (Applied Separations) and Sephadex LH-20 resin (Amersham Biosciences). HPLC purification was performed on a Rainin SD-1/UV-1 system.

Biological Material. Two different collections from Papua New Guinea (0CDN1808 and 0CDN5955), used in this investigation, were initially identified as Euryspongia sp. They were subsequently compared to Great Barrier Reef specimens of C. flabellata (the original source of the candidaspongiolides) and reclassified as Candidaspongia sp. ${ }^{1}$ The Papua New Guinea specimens are a darker color and have somewhat sharper conules, while the C. flabellata specimens from Australia had thicker fibers and a thicker sand coat on the surface. Vouchers for the Papua New Guinea collections are maintained at the Smithsonian Sorting Center, Suitland, Maryland.

Extraction and Isolation. The Papua New Guinea Candidaspongia sp. specimens were repeatedly extracted according to the methodology outlined in $\mathrm{McCloud}^{2}$ to give the aqueous crude extracts. A portion of this extract (520 mg) was subjected to size-exclusion chromatography on Sephadex LH-20 ($2.5 \times 90 \mathrm{~cm}$) using hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2: 5: 1)$ to yield seven fractions (141A-141G). Fraction 141 F was chromatographed on $\mathrm{C}_{18}(2.0 \times 17 \mathrm{~cm})$

[^0]using $50 / 5050 \% \mathrm{CH}_{3} \mathrm{CN} / 50 \% \mathrm{H}_{2} \mathrm{O}(+0.1 \% \mathrm{AcOH})$ to yield precandidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{1} / \mathbf{2}$, $11.2 \mathrm{mg})$. Fraction 141 C was chromatographed on $\mathrm{C}_{18}(2.0 \times 17 \mathrm{~cm})$ using $55 \% \mathrm{CH}_{3} \mathrm{CN} / 45 \%$ $\mathrm{H}_{2} \mathrm{O}(+0.1 \% \mathrm{AcOH})$ to yield seven fractions (154A-154G). Fraction 154 F was purified by HPLC using a Rainin Dynamax C_{18} column ($250 \times 10 \mathrm{~mm}$) employing a gradient of 35% $\mathrm{CH}_{3} \mathrm{CN} / 65 \% \mathrm{H}_{2} \mathrm{O}(+0.1 \% \mathrm{AcOH})$ to $85 \% \mathrm{CH}_{3} \mathrm{CN}$ at $4.5 \mathrm{~mL} / \mathrm{min}$ over 20 min to yield candidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{3} / \mathbf{4}, 0.9 \mathrm{mg})$. Fraction 141D was purified by HPLC utilizing the same method to yield tedanolide (5, 0.4 mg).

Precandiaspongiolides A and B(1/2): $[\alpha]^{25}{ }_{\mathrm{D}}+58.3(c 0.23, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log$ ع) $205(3.69) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $m / z 665.3146[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{13} \mathrm{Na}, 665.3144$).

Candidaspongiolides A and B (3/4): $[\alpha]^{25}{ }_{\mathrm{D}}+20.0(c 0.11, \mathrm{MeOH})$; UV (MeOH) $\lambda_{\max }(\log \varepsilon)$ 204 (3.48) nm; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table 1; HRESIMS $m / z 707.3235[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{Na}, 707.3249$).
(+)-Tedanolide (5): $[\alpha]^{25}{ }_{\mathrm{D}}+20(c 0.02, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 204(3.79) \mathrm{nm} ;{ }^{1} \mathrm{H}$
NMR and ${ }^{13} \mathrm{C}$ NMR data in CDCl_{3} and $\mathrm{CD}_{3} \mathrm{OD}$, see Tables S 2 and S 3 ; HRESIMS $\mathrm{m} / \mathrm{z} 633.3232$ $[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{11} \mathrm{Na}, 633.3245\right)$.

Acetylation of Precandidaspongiolides A and B(1/2). A stock solution of AcCl was prepared on ice by dissolving $1 \mu \mathrm{~L}$ of AcCl in $50 \mu \mathrm{~L}$ of anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2} .7 \mu \mathrm{~L}$ of the AcCl solution ($2 \mu \mathrm{~mol}$) was added to a stirring solution of $\mathbf{1 / 2}(1.1 \mathrm{mg}, 1.7 \mu \mathrm{~mol})$ in $2,4,6-$ trimethylpyridine (excess) at $-40^{\circ} \mathrm{C}^{3}{ }^{3}$ The reaction was monitored by LC-MS for the production of mono-acetylated product and allowed to stir at $-40^{\circ} \mathrm{C}$ for 3 h and then $25^{\circ} \mathrm{C}$ for 19 h . After the mono-acetylated product formation was observed, the reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and

[^1]dried under N_{2}. The reaction mixture was then purified by HPLC using a Rainin Dynamax C_{18} column $(250 \times 10 \mathrm{~mm})$ employing a gradient of $35 \% \mathrm{CH}_{3} \mathrm{CN} / 65 \% \mathrm{H}_{2} \mathrm{O}(+0.1 \% \mathrm{AcOH})$ to 85% $\mathrm{CH}_{3} \mathrm{CN}$ at $4.5 \mathrm{~mL} / \mathrm{min}$ over 20 min to yield 28-acetyl-precandidaspongiolide $\mathrm{A}(\mathbf{6}, 0.48 \mathrm{mg}, 41 \%$ yield) and unreacted precandidaspongiolides $\mathrm{A} / \mathrm{B}(\mathbf{1} / \mathbf{2}, 0.57 \mathrm{mg}, 52 \%$ yield $)$.

28-acetyl-precandidaspongiolide $\mathbf{A}(\mathbf{6}):[\alpha]^{25}{ }_{\mathrm{D}}+28.6(c 0.12, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log$ ع) 204 (3.38) nm; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table S4; HRESIMS $m / z 707.3245[\mathrm{M}+\mathrm{Na}]^{+}$ (calcd for $\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{14} \mathrm{Na}, 707.3249$).

Reduction of Precandidaspongiolides \mathbf{A} and $\mathbf{B}(\mathbf{1} / \mathbf{2}) . \mathrm{NaBH}_{4}(\sim 3 \mathrm{mg}$, excess) was added to a semi-pure $(\sim 75 \%)$ solution of $\mathbf{1} / \mathbf{2}(13.0 \mathrm{mg}, 20.2 \mathrm{umol})$ in $\mathrm{MeOH}(200 \mu \mathrm{~L})$. The reaction was allowed to stir at rt for 10 min . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and desalted by passing through a $\mathrm{C}_{18} \mathrm{SPE}$ column. The products were then purified by HPLC using a Rainin Dynamax C_{18} column ($250 \times 10 \mathrm{~mm}$) employing a gradient of $25 \% \mathrm{CH}_{3} \mathrm{CN} / 75 \% \mathrm{H}_{2} \mathrm{O}(+0.1 \%$ $\mathrm{AcOH})$ to $75 \% \mathrm{CH}_{3} \mathrm{CN}$ at $4.5 \mathrm{~mL} / \mathrm{min}$ over 20 min to yield $11 R$-dihydro-precandidaspongiolide A ($7,4.76 \mathrm{mg}, 37 \%$ yield) and $11 S$-dihydro-precandidaspongiolide A $(\mathbf{8}, 0.49 \mathrm{mg}, 4 \%$ yield $)$. 11R-dihydro precandidaspongiolide $\mathbf{A}(7):[\alpha]^{25}{ }_{\mathrm{D}}+49.7(c 0.18, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ (log $\varepsilon) 204(3.60) \mathrm{nm} ;{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table S5; HRESIMS $m / z 667.3304$ $[\mathrm{M}+\mathrm{Na}]^{+}$(calcd for $\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}, 667.3300$).

11S-dihydroprecandidaspongiolide $\mathbf{A (8) : ~}[\alpha]^{25}{ }_{\mathrm{D}}+43.5(c 0.02, \mathrm{MeOH}) ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }$ ($\log \varepsilon$) 204 (3.41) nm; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data, see Table S6; HRESIMS $m / z 667.3290$ $[\mathrm{M}+\mathrm{Na}]^{+}\left(\right.$calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{52} \mathrm{O}_{13} \mathrm{Na}, 667.3300\right)$.

MTT Cytotoxicity Assay. Cell survival was measured by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) cytotoxicity assay (Sigma, St Louis, MO). ${ }^{4}$ Cells were seeded in $100 \mu \mathrm{~L}$ of medium at a density of 4×10^{3} cells/well and allowed to incubate at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ for 24 hours. Serially diluted drugs were then added in an additional $100 \mu \mathrm{~L}$ of medium and incubated for 72 hours. After removal of medium containing drug, MTT $(0.5 \mathrm{mg} / \mathrm{mL})$ in IMDM growth medium was added to each well and incubated for four hours. The media solution was then removed from the wells, and $100 \mu \mathrm{~L}$ acidified 80% ethanol solution was added to lyse cells and dissolve the formazan product. Cell viability was measured spectrophotometrically at 570 nm and background corrected at 690 nm . All MTT assays were performed three times in triplicate. Cytotoxicity $\left(\mathrm{IC}_{50}\right)$ was defined as the drug concentration that reduced cell viability to 50% of the untreated control. Both KB-3-1 and KB-V1 were also coincubated with $\mathbf{1 / 2}$ and 100 nM tariquidar (Dr. Susan Bates, NCI).

Cell lines. The cell lines used were: the human epithelial adenocarcinoma cell line KB-3-1 and its P-gp-expressing multidrug resistant sub-line KB-V1; the human breast cancer cell line MCF7; the human lung carcinoma cell line H 460 ; and the human melanoma cell lines M14, LOX IMVI, and UACC-257. All cell lines were grown at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ and cultured as follows. The KB, MCF7, M14, and UACC-257 cell lines were cultured in Dulbecco's Modified Eagle's Medium (DMEM,) supplemented with 10% fetal bovine serum, 5 mM L-glutamine, 50 units $/ \mathrm{mL}$ penicillin, and $50 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, all obtained from Life Technologies (Carlsbad, California, USA). LOX IMVI cells were cultured in Roswell Park Memorial Institute (RPMI) 1640 medium from Life Technologies (Carlsbad, California, USA) and supplemented as

[^2]described above. Additionally, the multidrug resistant cell line $\mathrm{KB}-\mathrm{V} 1$ was cultured in $1 \mu \mathrm{~g} / \mathrm{mL}$ vinblastine to maintain P-glycoprotein expression. ${ }^{5}$

NCI-60 cell line screen. Growth inhibiton of $50 \%\left(\mathrm{GI}_{50}\right)$ is defined as the concentration of a compound that causes a 50% reduction in cell growth compared to the untreated control. The GI_{50} is comparable to an IC_{50}, but takes into account the cell count at time zero and in untreated controls at the end of the assay period; the IC_{50} is calculated based on the number of cells in the untreated control when the assay endpoint is read. $\mathrm{The}_{\mathrm{GI}}^{50}$ is calculated as $100 \times\left(\mathrm{T}-\mathrm{T}_{0}\right) /(\mathrm{C}-$ $\left.\mathrm{T}_{0}\right)=50$, where T is the test optical density, T_{0} is the optical density at time zero, and C is the control optical density. The total growth inhibition (TGI) signifies a cytostatic effect, and is calculated as $100 \times\left(\mathrm{T}-\mathrm{T}_{0}\right) /\left(\mathrm{C}-\mathrm{T}_{0}\right)=0$. The lethal concentration of $50 \%\left(\mathrm{LC}_{50}\right)$ signifies a cytotoxic effect, and is calculated as $100 \times\left(\mathrm{T}-\mathrm{T}_{0}\right) / \mathrm{T}_{0}=-50$. The control optical density is not used in the calculation of $\mathrm{LC}_{50} .{ }^{6}$

[^3]Table S1. NMR Data for Candidaspongiolide A (3) in Acetone- $d_{6}\left(600 \mathrm{MHz}, 500 \mathrm{MHz}^{\mathrm{a}}\right.$)

No.	$\delta_{\text {C }}$	$\delta_{\mathrm{H},}$ mult ($J, \mathrm{~Hz}$)
1	$172.6{ }^{\text {a }}$	-
2	72.3	3.79, d (1.9)
3	84.7	3.83 , dd (9.5, 1.9)
4	48.5	3.19 , dq ($9.5,7.0$)
5	$214.6{ }^{\text {a }}$	-
6	49.0	$3.41, \mathrm{dq}(10.6,7.0)$
7	80.3	5.40, d (10.6)
8	$134.2{ }^{\text {a }}$	-
9	132.5	5.46, br d (9.8)
10	45.7	3.43 , dq ($9.8,6.8)$
11	$210.9{ }^{\text {a }}$	-
12a	43.8	2.72, dd (17.7, 9.7)
12b		2.31 , dd (17.7, 1.7)
13	69.2	$4.50, \mathrm{dd}(9.7,1.7)$
14	$85.2^{\text {a }}$	-
15	$215.9{ }^{\text {a }}$	-
16	48.0	4.12, ddd (11.0, 10.8, 4.1)
17	77.9	3.22, d (10.8)
18	$63.0{ }^{\text {a }}$	-
19	66.2	2.64, d (9.3)
20	31.9	2.47 , ddd (10.7, 9.3, 6.6)
21	131.4	5.34 ddq (10.9, 10.7, 1.7)
22	125.3	5.49 , dq (10.9, 6.8)
23	13.3	1.64 , dd ($6.8,1.7$)
24	$14.9{ }^{\text {b }}$	1.21, d (7.0)
25	14.6	1.16, d (7.0)
26	10.6	1.67, br s
27	15.2	0.96, d (6.8)
28	$65.3{ }^{\text {c }}$	3.77 , ${ }^{\text {c }}$ s
29a	64.4	4.34, dd (10.6, 4.1)
29b		3.90 , dd (11.0, 10.6)
30	11.3	1.35, s
31	18.6	1.08, d (6.6)
32	60.9	3.40, s
33	$170.0^{\text {a }}$	-
34	20.5	2.01, s

${ }^{2}$ Quaternary carbons obtained from original candidaspongiolide core NMR data (500 MHz).
${ }^{\mathrm{b}}$ Originally misassigned. Careful inspection of original HSQC data for candidaspongiolide A (candidaspongiolide core) showed no correlation between $\delta_{\mathrm{C}} 22.9$ and $\delta_{\mathrm{H}} 1.21$.
${ }^{\text {c }}$ The multiplicity-edited HSQC used to characterize $\mathbf{3}$ clearly indicated a CH_{2} multiplicity (opposite phase to $\mathrm{CH} / \mathrm{CH}_{3}$) for the correlation between $\delta_{\mathrm{C}} 65.3$ and $\delta_{\mathrm{H}} 3.77$, suggesting it was the $\mathrm{C}-28$ primary alcohol. However, the
${ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ chemical shifts did not match those in the literature for candidaspongiolide A (candidaspongioilde core).
Further evaluation of the original COSY and HMBC spectra for candidapsongiolide A (candidaspongiolide core) indicated that $\delta_{\mathrm{C}} 65.3$ and $\delta_{\mathrm{H}} 3.77$ were the correct assignments for $\mathrm{C}-28$, and $\mathrm{H}-28$, respectively, and a minor contaminant was responsible for the correlation observed between $\delta_{\mathrm{C}} 70.9$ and $\delta_{\mathrm{H}} 3.61 .{ }^{7}$

[^4]Table S2. NMR Data for Tedanolide (5) ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

No.	δ_{C}	$\delta_{\mathrm{H},}$ mult ($J, \mathrm{~Hz}$)
1	171.8	-
2	71.7	3.86, br dd (8.7, 1.7)
3	83.5	3.66 , dd (8.6, 1.7)
4	48.8	$3.02,{ }^{\text {a }}(8.6,7.0)$
5	215.7	-
6	50.3	3.02 , ${ }^{\text {a }}$ (10.2, 6.9)
7	80.1	4.10, br dd (10.2, 2.5)
8	136.6	-
9	129.8	5.46, ${ }^{\text {a }}$
10	45.7	3.40, m (6.8)
11	213.1	-
12a	45.1	2.57, dd (17.0, 9.5)
12b		2.47, dd (17.0, 2.9)
13	68.7	$4.29, \mathrm{~m}(9.5,2.9)$
14	53.6	$3.03,{ }^{\text {a }}$ (6.9)
15	214.5	-
16	52.4	3.53, ddd (11.6, 9.6, 4.0)
17	77.4	3.23 , br d (9.6, 3.2)
18	63.2	-
19	67.0	2.60, d (9.3)
20	31.6	2.42, ddq (10.6, 9.3, 6.5)
21	130.6	5.22 , ddq ($10.8,10.6,1.6)$
22	125.5	5.45 , ${ }^{\text {a }}$ (10.8, 6.8)
23	13.6	1.60, dd (6.8, 1.6)
24	14.5	1.21, d (7.0)
25	15.8	1.27, d (6.9)
26	10.7	1.61, s
27	16.9	1.07, d (6.8)
28	10.9	1.10, d (6.9)
29a	64.3	4.25, dd (10.5, 4.0)
29b		4.11, dd (11.6, 10.5)
30	11.8	1.37, s
31	18.8	1.11, d (6.5)
32	60.8	3.29, s
$2-\mathrm{OH}$		2.75, br d (8.7)
7-OH		1.44 , br d (2.5)
$13-\mathrm{OH}$		3.32 , br d (3.2)
$17-\mathrm{OH}$		2.13, br d (3.2)

[^5]Table S3. NMR Data for Tedanolide (5) ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

No.	$\delta_{\text {C }}$	$\delta_{\mathrm{H},}$ mult ($J, \mathrm{~Hz}$)
1	171.5	-
2	72.6	3.76, d (1.7)
3	84.7	3.68 , dd (9.6, 1.7)
4	51.0	$3.12,{ }^{\text {a }}(9.6,7.1)$
5	216.4	-
6	49.6	$3.11,{ }^{\text {a }}$ (10.5, 7.1)
7	80.2	4.00, d (10.5)
8	138.9	-
9	130.1	5.35, br d (10.0)
10	47.0	3.41 , dq (10.0, 6.9)
11	211.2	-
12a	47.5	2.60, dd (16.9, 9.6)
12b		2.34 , dd (16.9, 1.7)
13	69.3	4.22 , ddd (9.6, 7.0, 1.7)
14	55.8	2.91, dq (7.0, 7.0)
15	214.1	-
16	54.5	3.43 , ddd (11.2, 10.5, 3.9)
17	78.0	$3.13,{ }^{\text {a }}$ (10.5)
18	63.9	-
19	67.7	2.58, d (9.3)
20	32.7	2.49, ddq (10.4, 9.3, 6.6)
21	132.1	5.31 , ddq ($10.8,10.4,1.6)$
22	126.4	5.48 , dq (10.8, 6.9)
23	13.6	1.63 , dd (6.9, 1.6)
24	15.2	1.24, d (7.1)
25	16.1	1.27, d (7.1)
26	10.6	1.65, s
27	15.9	1.05, d (6.9)
28	12.0	1.15, d (7.0)
29a	65.5	4.25, dd (10.7, 3.9)
29b		4.00 , dd (11.2, 10.7)
30	11.6	1.37, s
31	18.8	1.10, d (6.6)
32	61.1	3.34, s

[^6]Table S4. NMR Data for 28-acetyl-precandidaspongiolide A (6) ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

No.	$\delta_{\text {C }}$	$\delta_{\mathrm{H},}$ mult ($J, \mathrm{~Hz}$)
1	172.5	-
2	72.2	3.79, d (2.1)
3	83.7	3.74 , dd (9.3, 2.1)
4	49.0	$3.10, \mathrm{dq}(9.3,7.1)$
5	216.5	-
6	50.0	$3.12, \mathrm{dq}(10.1,7.0)$
7	79.5	4.00, d (10.1)
8	137.7	-
9	129.0	5.34, br d (9.6)
10	45.9	3.42 , dq (9.6, 6.9)
11	212.1	-
12a	43.3	2.75, dd (17.1, 9.3)
12b		2.36, dd (17.1, 2.1)
13	68.7	4.38 , dd (9.3, 2.1)
14	82.0	-
15	212.5	-
16	48.0	4.02, ${ }^{\text {a }}$ (10.3, 3.4)
17	77.4	3.09, d (10.3)
18	63.1	-
19	66.5	2.61, d (9.3)
20	31.6	2.49, ddq (10.5, 9.3, 6.6)
21	130.8	5.31 , ddq ($10.8,10.5,1.6)$
22	125.2	$5.50, \mathrm{dq}(10.8,6.9)$
23	12.7	1.64, dd (6.9, 1.6)
24	14.0	1.22, d (7.1)
25	14.9	1.25, d (7.0)
26	9.8	1.66 , br s
27	15.4	1.06, d (6.9)
28a	64.2	4.25, d (11.0)
28 b		4.20, d (11.0)
29a	63.2	4.35 , dd (11.2, 3.4)
29b		$4.01,{ }^{\text {a }}$ (11.2)
30	10.6	1.38, s
31	18.0	1.11, d (6.6)
32	60.5	3.36, s
33	171.6	-
34	19.9	2.01, s

[^7]Table S5. NMR Data for $11 R$-dihydro precandidaspongiolide A (7) ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

No.	δ_{C}	$\delta_{\mathrm{H},}$ mult $(J, \mathrm{~Hz})$
1	172.2	-
2	71.6	$3.64, \mathrm{~d}(2.2)$
3	84.8	$3.72, \mathrm{a}$ dd $(10.0,2.2)$
4	47.9	$3.26, \mathrm{dq}(10.0,6.9)$
5	217.0	-
6	51.1	$3.23, \mathrm{dq}(9.7,7.2)$
7	78.3	$4.17, \mathrm{~d}(9.7)$
8	135.8	-
9	130.0	$5.62, \mathrm{br} \mathrm{d}(9.0)$
10	38.1	$2.19, \mathrm{dq}(9.0,7.1,1.7)$
11	76.3	$3.74,{ }^{\text {a }}(10.5,1.7,1.7)$
12 a	36.2	$1.53, \mathrm{ddd}(14.1,10.5,10.5)$
12 b		$1.06, \mathrm{ddd}(14.1,1.7,1.7)$
13	73.2	$4.28, \mathrm{dd}(10.5,1.7)$
14	84.9	-
15	215.6	-
16	47.1	$4.03, \mathrm{ddd}(11.1,10.9,4.1)$
17	77.3	$3.29,{ }^{\mathrm{b}}(10.9)$
18	62.8	-
19	66.4	$2.64, \mathrm{~d}(9.3)$
20	31.6	$2.46, \mathrm{ddq}(10.5,9.3,6.5)$
21	130.8	$5.37, \mathrm{ddq}(10.7,10.5,1.6)$
22	125.2	$5.54, \mathrm{dq}(10.7,6.9)$
23	12.5	$1.62, \mathrm{dd}(6.9,1.6)$
24	14.8	$1.20, \mathrm{~d}(6.9)$
25	13.9	$1.26, \mathrm{~d}(7.2)$
26	9.3	$1.54, \mathrm{~s}$
27	17.1	$1.00, \mathrm{~d}(7.1)$
28 a	64.8	$3.81, \mathrm{~d}(11.6)$
28 b		$3.77, \mathrm{~d}(11.6)$
29 a	64.7	$4.26, \mathrm{dd}(10.6,4.1)$
29 b		$3.88, \mathrm{dd}(11.1,10.6)$
30	10.6	$1.30, \mathrm{~s}$
31	17.7	$1.11, \mathrm{~d}(6.5)$
32	60.4	$3.43, \mathrm{~s})$

[^8]Table S6. NMR Data for $11 S$-dihydro precandidaspongiolide A (8) $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

No.	$\delta_{\text {C }}$	$\delta_{\mathrm{H},}$ mult ($J, \mathrm{~Hz}$)
1	172.2	-
2	71.5	3.59, d (1.9)
3	84.1	$3.84,{ }^{\text {a }}$ (10.0, 1.9)
4	48.1	3.25 , dq (10.0, 6.9)
5	217.8	-
6	50.8	3.18, dq (10.3, 7.0)
7	78.7	4.07, d (10.3)
8	135.0	-
9	133.2	5.18, br d (8.9)
10	39.5	2.09, ddq (9.9, 8.9, 6.8)
11	73.3	3.40 , ddd (11.0, 9.9, 1.5)
12a	38.4	1.48 , ddd (14.1, 10.9, 1.5)
12b		0.88 , ddd (14.1, 11.0, 1.8)
13	69.5	$4.27,{ }^{\text {a }}$ (10.9, 1.8)
14	85.2	-
15	216.7	-
16	47.3	4.05, ddd (11.3, 11.1, 4.0)
17	77.2	$3.29, \mathrm{~d}$ (11.1)
18	62.6	-
19	66.5	2.63, d (9.5)
20	31.5	2.46, ddq (10.6, 9.5, 6.6)
21	130.9	5.36, ddq ($10.8,10.6,1.3$)
22	125.2	5.54 , ddq ($10.8,6.8)$
23	12.6	1.62 , dd (6.8, 1.3)
24	14.6	$1.22, \mathrm{~d}(6.9)$
25	14.3	1.26, d (7.0)
26	9.5	1.55 , br s
27	17.1	1.01, d (6.8)
28a	66.5	3.85 , d (11.7)
28b		3.81, d (11.7)
29a	64.9	4.27, ${ }^{\text {a }}$ (4.0)
29b		$3.82,{ }^{\text {a }}$ (11.3)
30	10.4	1.30, s
31	17.6	1.11, d (6.6)
32	60.3	3.42, s

${ }^{\text {a }}$ Signals overlapped.

Figure S1. NCI 60-cell line screen, single dose ($10^{-5} \mathbf{M}$) of $\mathbf{1 / 2}$

Developmental Ther	eutics Program	NSC: D-754491/1	Conc: 1.00E-5 Molar	Test Date: Sep 27, 2010
One Dose Bar Graph		Experiment ID: 10090S27		Report Date: Oct 29, 2010
Panel/Cell Line	Growth Percent	Bar Graph		
Leukemia				
$\begin{aligned} & \text { CCRF-CEM } \\ & \text { HL-60(TB) } \end{aligned}$	3.52 -16.55			
K-562	4.23			
MOLT-4	4.04			
RPMI-8226	-22.45 1.18			
Non-Small Cell Lung Cancer				
A549/ATCC	-15.95			
EKVX	-21.03			
HOP-62 HOP-92	-36.99 -19.59			
$\mathrm{NCl}-\mathrm{H} 226$	-17.36			
$\mathrm{NCl}-\mathrm{H} 23$	-44.25			
NCl-H322M NCl-H460	-32.66 0.65			
$\mathrm{NCl}-\mathrm{H} 522$	-54.52			
Colon Cancer				
COLO 205	-66.43			
HCC-2998 HCT-116	-43.25 -30.14			
HCT-15	-30.93			
HT29	-19.01			
KM12	-70.30			
SW-620	-6.37		\square	
CNS Cancer				
$\begin{array}{ll}\text { SF-268 } & -35.63 \\ \text { SF-295 } & -24.37\end{array}$				
SF-539 -64.14				
SNB-19 -14.97				
SNB-75 -75.62				
Melanoma $\quad-7.87$				
LOX IMVI $\quad-54.68$				
MALME-3M -89.65 M14				
$\begin{array}{ll}\text { M14 } & -87.85 \\ \text { MDA-MB-435 } & -92.76\end{array}$				
SK-MEL-2 -39.39				
SK-MEL-28 $\quad-41.87$				
SK-MEL-5 -91.46				
Ovarian Cancer -93.4				
IGROV1 -35.59				
$\begin{array}{lr}\text { OVCAR-3 } & -47.10 \\ \text { OVCAR-4 } & -261\end{array}$				
OVCAR-8 -22.32				
NCI/ADR-RES	-15.29			
SK-OV-3 0.24 Renal Cancer				
786-0-41.15				
RXF 393 -54.40				
TK-10 -20.73				
Urostate Cancer -35.38				
PC-3 -13.71 				
Breast Cancer				
MDA-MB-231/ATCC -49.01				
BT-549 \quad - -10.42				
T-47D -18.15 MDA-MB-468 -57.61				
MDA-MB-468				
		0050	$\begin{gathered} 0.0 \\ \text { Percentage Growt } \end{gathered}$	-50 -100

Figure S2. NCI 60-cell line screen, single dose ($10^{-5} \mathbf{M}$) of $\mathbf{1 / 2}$

Figure S3. NCI 60-cell line screen, dose response curves for $\mathbf{1 / 2}$

Figure S4. NCI 60-cell line screen, mean bar graphs for $\mathbf{1 / 2}$

Figure S5. NCI 60-cell line screen, dose response curves for candidaspongiolide acyl ester mixture
National Cancer Institute Developmental Therapeutics Program Dose Response Curves

\| EXP. ID: 9210FC75

Figure S6. NCI 60-cell line screen, mean bar graphs for candidaspongiolide acyl ester mixture

Figure S7. NCI 60-cell line screen, dose response curves for candidaspongiolide A (macrolide core)

arian Cancer

Figure S8. NCI 60-cell line screen, mean bar graphs for candidaspongiolide A (macrolide core)

Table S7. Melanoma GI_{50} 's for candidaspongiolide acyl ester mixture

Melanoma Cell Line	$\mathrm{GI}_{50}(\mathrm{nM})^{\mathrm{a}}$
LOX IMVI	9.0
MALME-3M	10.1
M14	13.3
M19-MEL	29.0
SK-MEL-2	9.6
SK-MEL-28	5.2
UACC-257	20.6
Melanoma Average	$\mathbf{1 3 . 8}$
Mean GI_{50} All NCI-60 Cell Lines	18.3

${ }^{\text {a }}$ Based on an estimated average mass of 927.1 , calculated utilizing the reported fatty acid compositions ($894.5=4.4 \% ; 908.5=10.6 \% ; 922.6=47.3 \% ; 936.6=22.7 \% ; 948.6=$ $5.2 \% ; 950.6=9.8 \%$). Note: 10% of the fatty acid mixture was unidentified and percentages have been re-calculated to total 100%. ${ }^{8}$

Table S8. Melanoma GI_{50} 's for candidaspongiolide A (macrolide core)

Melanoma Cell Line	$\mathrm{GI}_{50}(\mathrm{nM})$
LOX IMVI	3.9
MALME-3M	4.0
M14	5.4
M19-MEL	4.0
SK-MEL-2	<3.0
SK-MEL-28	3.4
UACC-257	5.1
Melanoma Average	$<\mathbf{4 . 1}$
Mean GI ${ }_{50}$ All NCI-60 Cell Lines	6.5

[^9]Figure S9. Melanoma IC_{50} curves for $\mathbf{1 / 2 , 3 / 4 , ~ 5 - 8}$

Figure S10. Breast and Lung IC_{50} curves for $\mathbf{1 / 2 , 3 / 4 , 5 - 8}$

Figure S11. Precandidaspongiolides A (1) and B (2) are P-gp substrates

[^0]: ${ }^{1}$ Meragelman, T. L.; Willis, R. H.; Woldemichael, G. M.; Heaton, A.; Murphy, P. T.; Snader, K. M.; Newman, D. J.; van Soest, R.; Boyd, M. R.; Cardellina II, J. H.; McKee, T. C. J. Nat. Prod. 2007, 70, 1133.
 ${ }^{2}$ McCloud, T. G. Molecules, 2010, 15, 4526.

[^1]: ${ }^{3}$ Ishihara, K.; Kurihara, H.; Yamamoto, H. J. Org. Chem. 1993, 58, 3791.

[^2]: ${ }^{4}$ Brimacombe, K. R., Hall, M. D., Auld, D. S., Inglese, J., Austin, C. P., Gottesman, M. M., and Fung, K. L., Assay Drug Dev. Technol. 2009, 7, 233.

[^3]: ${ }^{5}$ Shen, D. W., Cardarelli, C., Hwang, J., Cornwell, M., Richert, N., Ishii, S., Pastan, I., and Gottesman, M. M. J. Biol. Chem, 1986, 261, 7762.
 ${ }^{6}$ Monks, A., Scudiero, D., Skehan, P., Showmaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., Boyd, M., J. Natl. Cancer Inst., 1991, 83, 757.

[^4]: ${ }^{7}$ See Supporting information for Meragelman, T. L.; Willis, R. H.; Woldemichael, G. M.; Heaton, A.; Murphy, P. T.; Snader, K. M.; Newman, D. J. ; van Soest, R.; Boyd, M. R.; Cardellina II, J. H.; McKee, T. C. J. Nat. Prod. 2007, 70, 1133.

[^5]: ${ }^{\mathrm{a}}$ Signals overlapped.

[^6]: ${ }^{\mathrm{a}}$ Signals overlapped.

[^7]: ${ }^{\text {a }}$ Signals overlapped.

[^8]: ${ }^{\mathrm{a}}$ Signals overlapped. ${ }^{\mathrm{b}}$ Buried under $\mathrm{CD}_{3} \mathrm{OD}$ signal.

[^9]: ${ }^{8}$ Meragelman, T. L.; Willis, R. H.; Woldemichael, G. M.; Heaton, A.; Murphy, P. T.; Snader, K. M.; Newman, D. J. ; van Soest, R.; Boyd, M. R.; Cardellina II, J. H.; McKee, T. C. J. Nat. Prod. 2007, 70, 1133.

