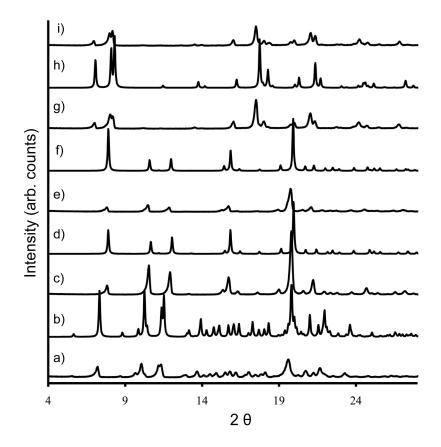
Unique inclusion properties of crystalline powder *p-tert*-butylthiacalix[4]arene toward alcohols and carboxylic acids

Naoya Morohashi,^{*} Shintaro Noji, Hiroko Nakayama, Yasutaka Kudo, Shinya Tanaka, Chizuko Kabuto, and Tetsutaro Hattori^{*}

Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramaki-Aoba, Aoba-ku, Sendai 980-8579, Japan

Supporting Information


Contents:

I.	Materials	S 1
II.	Powder X-ray diffraction (PXRD) studies	S2
III.	Thermogravimetric analysis (TGA)	S3
IV.	Single crystal X-ray diffraction (XRD) studies	S4
V.	References	S6

I. Materials

Alcohols (MeOH, EtOH and PrOH) and HCO_2H as guest were distilled before use. MeCO₂H and EtCO₂H were used as purchased. Other solvents were distilled before use. *p-tert*-Butylthiacalix[4]arene (2) was synthesized as reported previously [1].

II. Powder X-ray Diffraction (PXRD) Studies

Figure S1. PXRD patterns of a crystalline powder of compound **2** and its inclusion crystals with alcohols and acids: (a) experimental chart for **2**, (b) simulation from XRD data of **2** [2], (c) experimental chart for inclusion crystals taken from EtOH, (d) simulation from XRD data of **2**·EtOH, (e) experimental chart for inclusion crystals taken from MeCO₂H, (f) simulation from XRD data of **2**·MeCO₂H, (g) experimental chart for inclusion crystals taken from EtCO₂H, (h) simulation from XRD data of **2**·[EtCO₂H]₃, (i) experimental chart for inclusion crystals taken from an equimolar mixture of MeCO₂H and EtCO₂H.

III. Thermogravimetric Analysis (TGA)

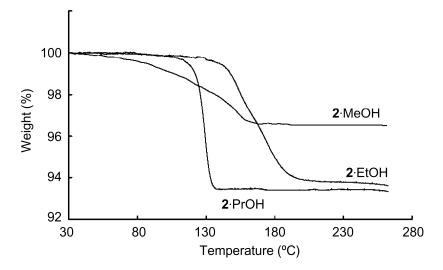


Figure S2. TGA desorption curves for 2·MeOH, 2·EtOH and 2·PrOH.

IV. Single crystal X-ray diffraction (XRD) studies

Single-crystal X-ray diffraction data were collected with a Bruker APEX II CCD diffractometer using Mo-K α radiation ($\lambda = 0.71073$ Å) employing a "Bruker Helios multilayered confocal mirror" as monochromator and a "Bruker TXS fine-focus rotating anode" as radiation source. Data integration and reduction were performed with the SAINT and XPREP software and the absorption correction was performed by the semi-empirical method with SADABS [3]. The structure was solved by the direct method using SHELXS-97 [4] and refined by using least-squares methods on F^2 with SHELXL-97 [4]. X-ray analysis was undertaken using the free GUI software of Yadokari-XG 2009 [5].

Data for 2·MeOH. $C_{41}H_{52}O_5S_4$, fw = 753.07, tetragonal, *P*4/nmm, *a* = 15.7827(7) Å, *b* = 15.7827(7) Å, *c* = 8.2365(7) Å, *V* = 2051.7(2) Å³, *Z* = 2, *T* = 223(2) K, 11188 reflections measured, 1332 independent reflections, 1190 reflections were observed (*I* > 2 σ (*I*)), *R*₁ = 0.1021, *wR*₂ = 0.2658 (observed), *R*₁ = 0.1072, *wR*₂ = 0.2874 (all data).

Data for 2·EtOH. $C_{42}H_{54}O_5S_4$, fw = 767.09, tetragonal, *P*4/nmm, *a* = 15.8115(11) Å, *b* = 15.8115(11) Å, *c* = 8.2875(12) Å, *V* = 2071.9(4) Å³, *Z* = 2, *T* = 223(2) K, 11205 reflections measured, 1341 independent reflections, 1107 reflections were observed (*I* > 2 σ (*I*)), *R*₁ = 0.0975, *wR*₂ = 0.2933 (observed), *R*₁ = 0.1078, *wR*₂ = 0.3189 (all data).

Data for 2·PrOH. $C_{43}H_{56}O_5S_4$, fw = 781.12, tetragonal, *P*4/nmm, *a* = 15.7986(9) Å, *b* = 15.7986(9) Å, *c* = 8.5474(10) Å, *V* = 2133.4(3) Å³, *Z* = 2, *T* = 223(2) K, 11373 reflections measured, 1378 independent reflections, 1174 reflections were observed (*I* > 2 σ (*I*)), *R*₁ = 0.1216, *wR*₂ = 0.3761 (observed), *R*₁ = 0.1298, *wR*₂ = 0.4127 (all data).

Data for 2·MeCO₂H. C₄₂H₅₂O₆S₄, fw = 781.08, tetragonal, *P*4/nmm, *a* = 15.8002(7) Å, *b* = 15.8002(7) Å, *c* = 8.3491(7) Å, *V* = 2084.3(2) Å³, *Z* = 2, *T* = 223(2) K, 11175 reflections measured, 1346 independent reflections, 1140 reflections were observed (*I* > $2\sigma(I)$), *R*₁ = 0.1050, *wR*₂ = 0.3192 (observed), *R*₁ = 0.1124, *wR*₂ = 0.3539 (all data).

Data for 2·[EtCO₂H]₃. C₄₉H₆₆O₁₀S₄, fw = 943.26, tetragonal, *I*4/mmm, *a* = 15.401(8) Å, *b* = 15.401(8) Å, *c* = 21.204(10) Å, *V* = 5029(4) Å³, *Z* = 4, *T* = 100(2) K, 13823 reflections measured, 1665 independent reflections, 1591 reflections were observed ($I > 2\sigma(I)$), $R_1 = 0.1094$, $wR_2 = 0.2935$ (observed), $R_1 = 0.1152$, $wR_2 = 0.2993$ (all data).

V. References

- Iki, N.; Kabuto, C.; Fukushima, T.; Kumagai, H.; Takeya, H.; Miyanari, S.; Miyashi, T.; Miyano, S. *Tetrahedron*, **2000**, *56*, 1437.
- [2] Bilyk, A.; Hall, A. K.; Harrowfield, J. M.; Hosseini, M. W.; Skeltone, B. W.; White, A. H. *Inorg. Chem.* 2001, 40, 672.
- [3] (a) SMART, SAINT, and XPREP, Area Detector Control and Data Integration and Reduction Software, Bruker Analytical X-ray Instruments Inc: Madison, WI, 1995.
 (b) Sheldrick, G. M. SADABS, Empirical Absorption Correction Program for Area Detector Data, University of Göttingen: Göttingen, Germany, 1996.
- [4] Sheldrick, G. M. *SHELEX-97*, *Programs for the Refinement of Crystal structures*; University of Göttingen: Göttingen, Germany, 1997.
- [5] (a) Wakita, K. Yadokari-XG, Software for Crystal Structure Analyses, 2001. (b) Kabuto, C.; Akine, S.; Nemoto, T.; Kwon, E. J. Cryst. Soc. Jpn. 2009, 51, 218.