Supporting Information

Hybrid Sulfonic Acid Catalysts based on Silica -Supported

Poly(styrene sulfonic acid) Brush Materials and their

Application in Ester Hydrolysis

Wei Long¹ and Christopher W. Jones^{1,2}*

School of Chemistry & Biochemistry¹ School of Chemical & Biomolecular Engineering², Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA 30332 cjones@chbe.gatech.edu

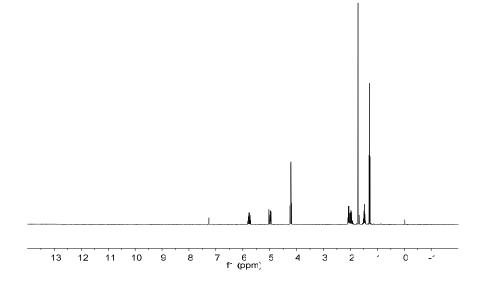


Figure S1. ¹H NMR of ethyl 2-chloro-2-methyl-6-heptenoate

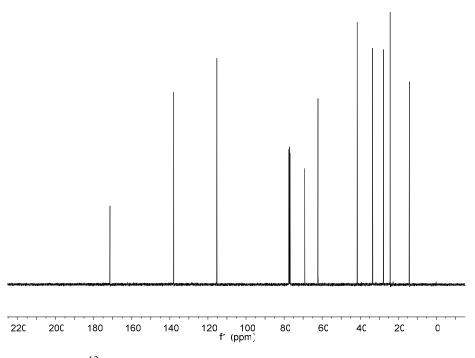


Figure S2.¹³C NMR of ethyl 2-chloro-2-methyl-6-heptenoate

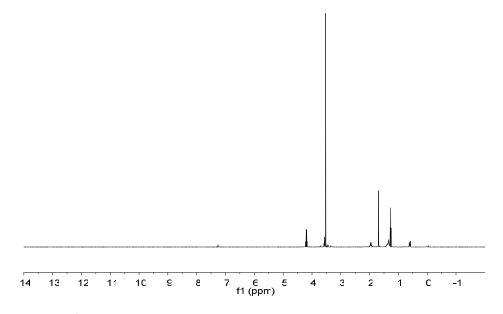
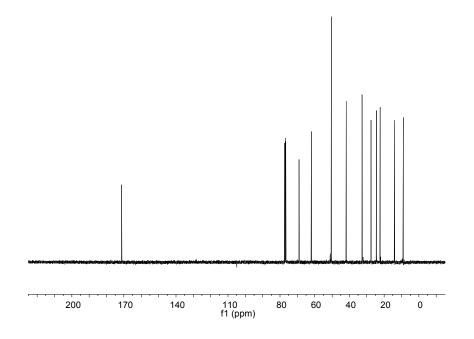



Figure S3.¹H of ethyl 2-chloro-2-methyl-7-(trimethoxysilyl) heptanoate

Figure S4.¹³C of ethyl 2-chloro-2-methyl-7-(trimethoxysilyl) heptanoate

Calculation of number of initiators on the silica surface:

Initiator density = initiator loading $\times N_A/SA$

Initiator loading = mmol of initiator / g of sample Initiator density = no. of initiator / nm^2 of surface Surface area (SA) of Cab-O-Sil M5 = 200 m²/g

Table S1.Polymer loadings of SiO₂@PSt.

Materials	Polymer loading (from TGA)	Polymer loading (calculated from mass balance)
SiO ₂ @alkyl-PS	0.55	0.64
SiO ₂ @ester-PS	0.41	0.44

Calculation of polymer loading (from TGA):

W_i= w.t.% of initiator / w.t.% of silica (in the SiO₂@initiator)

 $W_o = w.t. \%$ of organic groups / w.t. % of silica (in the SiO₂@PS)

 W_p = w.t. % of polymer / w.t. % of silica = W_o - W_i

Polymer loading (w.t. %) = $W_p / (1 + W_p + W_i)$

Calculation of polymer loading (from mass balance):

Polymer loading (w.t. %)

= (the mass of styrene \times conv.) / (the mass of silica supported initiator + the mass of styrene \times conv.)

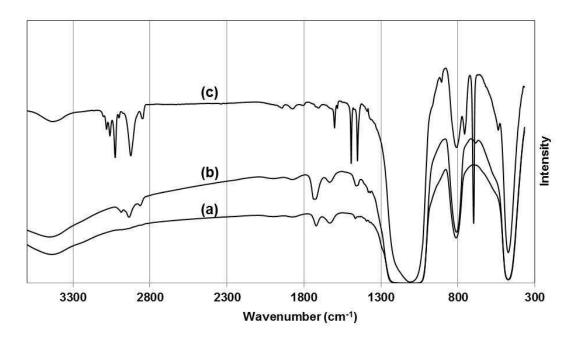


Figure S5. FT-IR of SiO₂@ester initiator (a); SiO₂@alkyl initiator (b); SiO₂@ester-PSt (c).

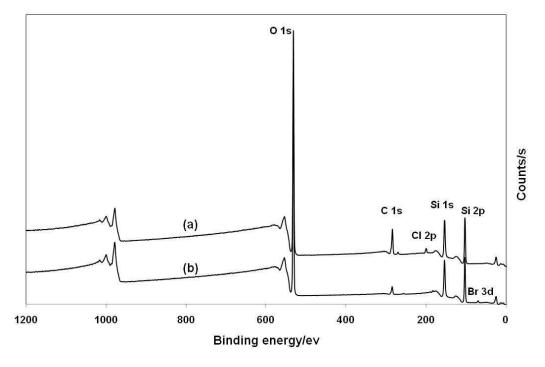


Figure S6. XPS spectra of SiO₂@alkyl initiator (a); SiO₂@ester initiator (b).

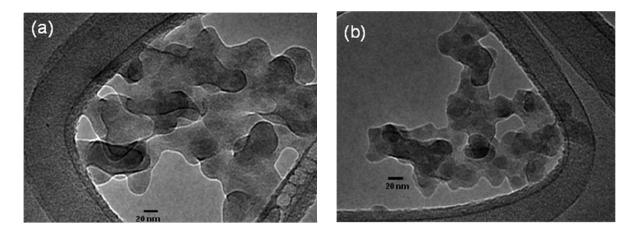


Figure S7. TEM images of SiO₂@alkyl-PS (a); SiO₂@ester-PS (b), at identical magnification.

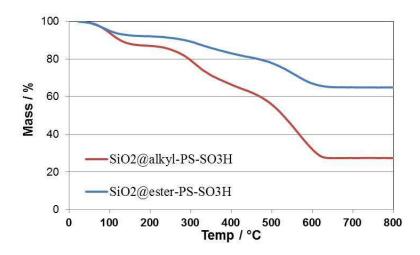


Figure S8. TGA of SiO₂@alkyl-PS-SO₃H.

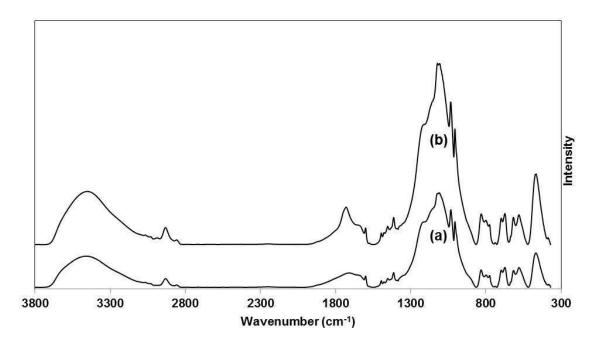


Figure S9.FT-IR spectra of $SiO_2@alkyl-PS-SO_3H$ (a); $SiO_2@alkyl-PS-SO_3H$ after run 1 (b).

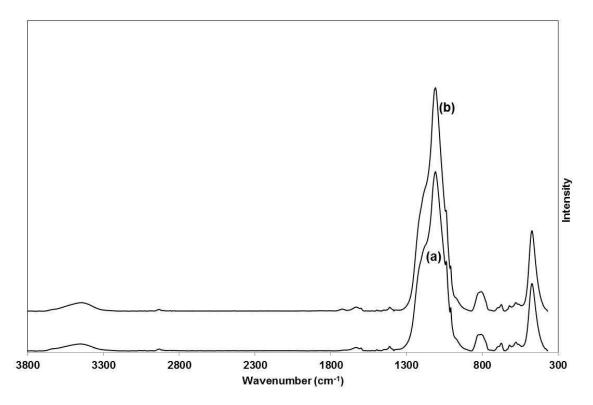


Figure S10.FT-IR spectra of SiO₂@ester-PS-SO₃H (a); SiO₂@ester-PS-SO₃H after run 1 (b).

Catalysts	C wt%	S wt%	Si wt%	S/C	C mmol/g SiO ₂
Fresh	33.15	10.45	13.5	0.118	95.6
After 1 st run	30.71	7.4	15.12	0.090	79.0
After 3 rd run	32.83	7.5	20.01	0.086	63.9

Table S2. EA of the fresh SiO₂@alkyl-PS-SO₃H and the recycled ones.

Table S3. EA of the fresh SiO₂@ester-PS-SO₃H and the recycled ones.

Catalysts	C wt%	S wt%	Si wt%	S/C	C mmol/g SiO ₂
Fresh	15.64	4.85	32.19	0.116	18.9
After 1 st run	12.60	3.72	45.74	0.110	10.7
After 3 rd run	8.45	1.395	48.72	0.062	6.75

Table S4. Surface initiated ATRP on SiO₂@ester initiator _2.

Materials	Loading of SiO2@ester initiator_2 (mmol/g)	[M]/[SiO ₂ @initiator]	Conv.	[M] _{polymerized} / [SiO ₂ @initiator]	Organic loading	0 0
SiO ₂ @ester -PS-2	0.44	50	71%	35.5	61.5%	61.3%

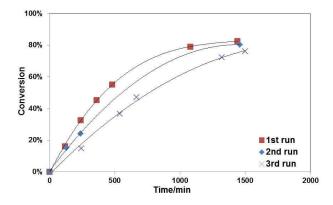


Figure S11. Kinetics of SiO₂@ester-PS-SO₃H_2 during recycles. (1.25 mol% catalyst loading, 60 °C)

Catalysts	C wt%	S wt%	Si wt%	S/C	C mmol/g SiO ₂
Fresh	26.43	7.09	15.12	0.100	68.0
After 1 st run	28.05	6.70	20.03	0.089	54.5
After 2 nd run	23.87	-	21.83	-	42.6

Table S5. EA of the fresh $SiO_2@ester-PS-SO_3H_2$ and the recycled catalysts.