Supporting Information for

Synthesis of Molybdenum Nitrido Complexes for Triple-Bond Metathesis of Alkynes and Nitriles

Eric S. Wiedner,[†] Kimberley J. Gallagher,[‡] Marc J. A. Johnson,^{* ‡} and Jeff W. Kampf

Department of Chemistry, University of Michigan, 930 North University Avenue,

Ann Arbor, MI 48109-1055 and Chemical Sciences and Engineering Division, Argonne

National Laboratory, Argonne, IL, 60439

E-mail: <u>mjjohnson@anl.gov</u>

[†] Current address: Chemical and Materials Sciences Division, Pacific Northwest National Lab, Richland, WA, 99352.

[‡] Chemical Science and Engineering Division, Argonne National Lab, Argonne, IL, 60439.

Contents:

1. ACM Studies.	S2-S3
2. NACM Concentration Studies With 16.	S3-S4
3. Attempted NACM With Other Mo Complexes.	S3-S6
4. Additional NMR Experiments.	S7-S8

ACM Studies

General Procedure: [Mo] (5.0 mg) and an internal standard of 1,3,5trimethoxybenzene were dissolved in C_6D_6 (0.50 mL) to give a catalyst concentration of 10 mg mL⁻¹. The solution was transferred to a J. Young tube and 1-phenyl-1-butyne (20 equiv) was added *via* syringe. The sample was frozen and the overlying atmosphere was removed *in vacuo*. The J. Young tube was heated at the desired temperature and the reaction was monitored by ¹H NMR spectroscopy.

NMo(O-2,6-ⁱPr₂C₆H₃)₃(NHMe₂) (12). Following the general procedure at 75 °C: 12 (5.0 mg, 0.0073 mmol), 1-phenyl-1-butyne (20.0 μ L, 0.141 mmol). After 2.5 hours, a 25 % conversion to diphenylacetylene was observed.

NMo(OSiPh₃)₃(NHMe₂) (5-NHMe₂): Following the general procedure at 75 °C: **5-NHMe₂** (5.0 mg, 0.0051 mmol), 1-phenyl-1-butyne (14.5 μL, 0.102 mmol). After 1.5 hours, a 25 % conversion to diphenylacetylene was observed.

NMo(OSiPh₃)₃ (5). Complex **5** (6.7 mg, 0.0072 mmol, 1.0 equiv) and an internal standard of 1,3,5-trimethoxybenzene were dissolved in C_6D_6 (0.7 mL), then the solution was transferred to a J. Young tube. Neat 1-phenyl-1-butyne (5.1 µL, 0.036 mmol, 5.0 equiv) was added and the reaction was monitored by ¹H NMR spectroscopy at room temperature. After 5 hours, a 25 % conversion to diphenylacetylene was observed.

NMo(OSiPh₂^tBu)₃ (16). Following the general procedure at 90 °C: **16** (20.0 μ L of a 0.25 mg μ L⁻¹ stock solution in C₆D₆, 0.0057 mmol), 1-phenyl-1-butyne (16.0 μ L, 0.113 mmol). After 9 hours, no metathesis products were observed.

NMo(OCPh₂Me)₃ (17). Following the general procedure at 75 °C: 17 (5.1 mg, 0.0074 mmol), 1-phenyl-1-butyne (21.0 μ L, 0.148 mmol). After 21 hours, no metathesis products were observed and 17 had completely decomposed

NACM Concentration Studies With 5

General Procedure: Complex **5**, anisonitrile (10 equiv) and an internal standard of 1,3,5-trimethoxybenzene were dissolved in bromobenzene- d_5 at the desired concentration of **5**, then the solution was transferred to a J. Young tube. Then 1-phenyl-1-butyne (10 equiv) was introduced *via* syringe and the overlying atmosphere was removed *in vacuo*. The reaction was heated at 180-185 °C and monitored by ¹H NMR spectroscopy. The results are reported in Table S1.

<u>20 mg mL⁻¹</u> Following the general procedure: **5** (10.0 mg, 0.011 mmol), anisonitrile (14.6 mg, 0.11 mmol), 1-phenyl-1-butyne (15.2 μ L, 0.11 mmol), bromobenzene- d_5 (5.0 mL).

<u> 30 mg mL^{-1} </u> Following the general procedure: **5** (15.0 mg, 0.016 mmol), anisonitrile (21.3 mg, 0.16 mmol), 1-phenyl-1-butyne (23.0 µL, 0.16 mmol), bromobenzene- d_5 (5.0 mL).

<u>40 mg mL⁻¹</u> Following the general procedure: **5** (20.0 mg, 0.021 mmol), anisonitrile (28.0 mg, 0.21 mmol), 1-phenyl-1-butyne (30.4 μ L, 0.21 mmol), bromobenzene- d_5 (5.0 mL).

Concentration	Time	ArCCPh ^a	. /	ArCCEt ^a	. /	Total	
(mg mL^{-1})	(h)	$(\%)^{b}$	+/	$(\%)^{\ b}$	+/	(%)	+/
20	4	5.33	0.62	3.67	0.85	9.00	1.47
	8	7.33	0.62	5.33	0.62	12.66	1.24
	12	8.50	0.00	5.50	0.00	14.00	0.00
30	4	6.83	1.18	2.83	1.43	9.66	2.61
	8	8.83	0.94	6.50	0.71	15.33	1.65
	12	11.00	1.78	7.50	0.41	18.50	2.19
40	4	10.67	1.18	7.00	0.41	17.67	1.59
	8	15.50	1.47	7.83	0.47	23.33	1.94
	12	14.50		8.50		23.00	

Table S1. NACM studies with 5.

^{*a*} Ar = 4-MeOC₆H₄. ^{*b*} Percentange composition with respect to total amount of anisonitrile and Ar-containing alkyne products.

Attempted NACM With Other Mo Complexes

General Procedure: [Mo] (20.0 mg), anisonitrile (10 equiv), and an internal standard of 1,3,5-trimethoxybenzene were dissolved in bromobenzene- d_5 (5.0 mL) at a concentration of 40 mg mL⁻¹, then the solution was transferred to a J. Young tube. Then 1-phenyl-1-butyne (10 equiv) was introduced *via* syringe and the overlying atmosphere was removed *in vacuo*. The reaction was heated at 180-185 °C and monitored by ¹H NMR spectroscopy. ACM products were observed in all cases, but are indicated only for those complexes that have not been previously been shown to catalyze ACM at \leq 90 °C.

NM0(O-2,6-ⁱPr₂C₆H₃)₃(NHMe₂) (12). Following the general procedure: 12 (19.6 mg, 0.029 mmol), anisonitrile (39.3 mg, 0.30 mmol), and 1-phenyl-1-butyne (41.4 μ L, 0.29 mmol). After 20 h, no NACM products were observed with 2,6-diisopropylphenol being the only phenolic species present.

NMo(OSiPh₃)₃(NHMe₂) (5-NHMe₂). Following the general procedure: 5-NHMe₂ (20.3 mg, 0.021 mmol), anisonitrile (26.8 mg, 0.20 mmol), and 1-phenyl-1butyne (29.0 μ L, 0.20 mmol). After 20 h, no NACM products were observed. The fate of 5-NHMe₂ was unclear, and so additional 1-phenyl-1-butyne (87.0 μ L, 0.61 mmol) was added and the reaction heated at 90 °C. After 1 h, no additional ACM products were observed, indicating decomposition of 5-NHMe₂.

NMo(OSiPh₃)₃(py) (5-py). Following the general procedure: 5 (20.0 mg, 0.021 mmol), pyridine-d₅ (1.90 μ L, 0.024 mmol), anisonitrile (29.4 mg, 0.22 mmol), and 1-phenyl-1-butyne (30.4 μ L, 0.21 mmol). After 12 h, a 14 % conversion to NACM products was observed.

NMo(OSiPh₂^tBu)₃ (16). Following the general procedure: **16** (80.0 μ L of a 0.25 mg μ L⁻¹ stock solution in C₆D₆, 0.023 mmol), anisonitrile (30.1 mg, 0.26 mmol), and 1-phenyl-1-butyne (32.4 μ L, 0.23 mmol). After 8 h, no NACM products were observed but ACM had occurred to give a mixture of 1-phenyl-1-butyne (54 %), diphenylacetylene (23 %), and 3-hexyne (23 %); 83 % of **16** remained.

NMo($O^{t}Bu$)₃ (6). Following the general procedure: 6 (20.5 mg, 0.062 mmol), anisonitrile (80.8 mg, 0.61 mmol), and 1-phenyl-1-butyne (86.0 µL, 0.61 mmol). After 4 h, no NACM products were observed, but ACM had occurred to give a mixture of 1-phenyl-1-butyne (50 %), diphenylacetylene (25 %), and 3-hexyne (25 %). After 16 h, no NACM was observed and 6 had decomposed.

NMo(OCMe₂CF₃)₃ (7). Following the general procedure: 7 (20.6 mg, 0.042 mmol), anisonitrile (56.9 mg, 0.43 mmol), and 1-phenyl-1-butyne (58.0 μ L, 0.41 mmol). After 4 h, no NACM products were observed, but 82 % 7 remained and ACM had occurred to give a mixture of 1-phenyl-1-butyne (50 %), diphenylacetylene (25 %), and 3-hexyne (25 %). After 16 h, no NACM was observed and 51 % 7 remained.

NMo(OC(CF₃)₂Me)₃ (3). Following the general procedure: 3 (22.0 mg, 0.034 mmol), anisonitrile (40.7 mg, 0.41 mmol), and 1-phenyl-1-butyne (40.0 μ L, 0.28 mmol). After 4 h, no NACM was observed and 3 had decomposed.

NMo(OC(CF₃)₃)₃(NCMe) (4). Following the general procedure: 4 (20.7 mg, 0.024 mmol), anisonitrile (31.2 mg, 0.23 mmol), and 1-phenyl-1-butyne (33.0 μ L, 0.23 mmol). After 4 h, no NACM was observed and 4 had decomposed.

Reaction between 5 and 1-phenyl-1-butyne. In a J. Young tube, a solution of **5** (7.2 mg, 0.0077 mmol) and 1-phenyl-1-butyne (22 μ L, 0.16 mmol) in C₆D₆ was heated in a 90 °C for 16 h. Upon cooling, ¹H and ¹³C{¹H} NMR spectra were recorded.

Figure S1. ¹H NMR of reaction between 5 and 1-phenyl-1-butyne.

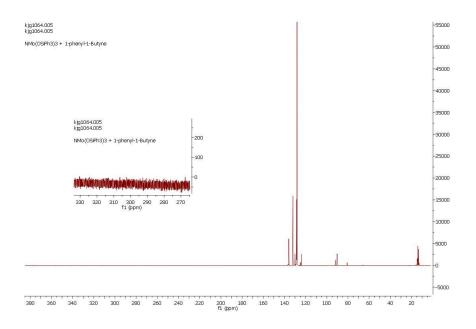


Figure S2. ¹³C{¹H} NMR of reaction between 5 and 1-phenyl-1-butyne.

Reaction of 5 with MeCN. An ¹H NMR spectrum of complex **5** in C_6D_6 was taken. The ¹H NMR spectrum was recorded for sequential addition of 1, 2, 5, 10 and 20 Eq of NCMe. A clear change in chemical shift in both the NCMe and the signals corresponding to complex **5** can be seen with addition of NCMe.

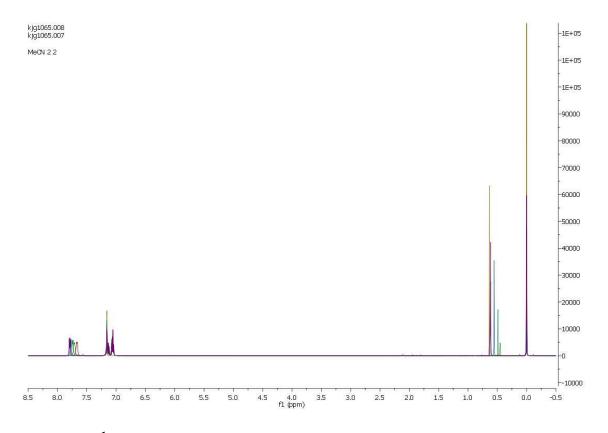


Figure S3. ¹H NMR of reaction between 5 and MeCN.

Attempted N-atom exchange with 5. Complex 5 (20mg, 0.02 mmol) and anisonitrile (5 equiv,14 mg, 0.1 mmol) were added to a solution of ¹⁵NCMe (14 equiv, 16 μ L) in C₆D₆. The ¹H NMR spectrum and ¹⁵N NMR spectrum were recorded. No change in the NMR spectrum from ¹⁵NCMe alone was observed for ¹⁵N NMR. The solution was then heated to 80°C for 60 hours with no change in the ¹⁵NMR spectrum observed. It can therefore be concluded that no metathesis of ¹⁵NCMe with the metal centre had occurred.