Spectroscopic characterization of mononitrosyl complexes in heme-nonheme diiron centers within the myoglobin scaffold (Fe_BMbs): relevance to denitrifying NO reductase[†]

Takahiro Hayashi,¹ Kyle D. Miner,² Natasha Yeung,² Ying-Wu Lin,² Yi Lu,² and Pierre

Moënne-Loccoz^{1*}

¹Divison of Environmental & Biomolecular Systems, Oregon Health & Science University,

Beaverton, Oregon 97006

²Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

Figure S1. Room temperature UV-vis absorption spectra of reduced apo-, Fe^{II}-, Zn^{II}-, and Cu^I-Fe_BMb2.

Figure S2. Room temperature RR spectra of reduced apo-, Fe^{II} -, Zn^{II} -, and Cu^{I} -Fe_BMb2 obtained with 442-nm excitation.

Figure S3. Room temperature UV-vis spectra of reduced apo-, Fe^{II} -, Zn^{II} -, and Cu^{I} -Fe_BMb2 after addition of 1 equiv NO.

Figure S4. EPR spectra of apo-, Cu^{I} -, Fe^{II} -, and Zn^{II} -Fe_BMb1(NO) and equivalent Fe_BMb2(NO) complexes at 30 K. Comparing spectra obtained before (black) and after illumination (red) highlights resonances from the photolabile 6cLS heme {FeNO}⁷ complexes. Conditions: microwave frequency, 9.7 GHz; microwave power, 0.25 mW; modulation frequency, 100 kHz; modulation amplitude, 4.0 G.

Figure S5. EPR spectra of Fe^{II} -Fe_BMb1(NO) and Fe^{II} -Fe_BMb2(NO) obtained at 4.2 K before (black) and after illumination (red). EPR spectra at 4.2 K of the apoproteins, Cu^I-, and Zn^{II}-loaded proteins are also shown for comparison. The high microwave power (20 mW) leads to saturating conditions for overlapping signals in the $g \sim 2$ region but it reveals non-saturating photolabile g = 6.2and 6.1 resonances in Fe^{II}-Fe_BMb1(NO) and Fe^{II}-Fe_BMb2(NO), respectively. Prolonged incubation of the illuminated Fe^{II}-Fe_BMb1(NO) and Fe^{II}-Fe_BMb2(NO) samples in liquid nitrogen allows recovery of the photolabile g = 6.2 and 6.1 signals. These EPR signals are absent from other Fe_BMb(NO) complexes and Fe^{II}-Fe_BMb proteins (residual structured signals near $g \sim 6$ are assigned to minor Fe^{III} heme HS impurities and represent less than 1% of the overall heme content). Conditions: microwave frequency, 9.67 GHz; microwave power, 20 mW; modulation frequency, 100 kHz; modulation amplitude, 10.0 G.

Figure S6. High- and low-frequency RR spectra of apo-Fe_BMb2(NO) (A) and Fe^{II}-Fe_BMb2(NO) (B) obtained with a 413-nm excitation at room temperature. Raman bands labeled with * are from glycerol.

Figure S7. UV-vis spectra of Cu^{I} -Fe_BMb1(NO) at 10K: dark (black), illuminated (red), and 'dark' minus 'illuminated' difference spectra (blue).

Figure S8. UV-vis spectra of Zn^{II} -Fe_BMb**2**(NO) obtained at 10K: dark (black), illuminated (red), and 'dark' minus 'illuminated' difference spectra (blue).

Figure S9. Room temperature UV-vis spectra of Cu^I-Fe_BMb1(CO)₂ and Cu^I-Fe_BMb1(CO)(NO).

Figure S10. FTIR spectra of Cu^{I} -Fe_BMb1(CO)₂ (black) and Cu^{I} -Fe_BMb1(CO)(NO) (red) obtained in the dark at 10 K (the dark spectrum of Cu^{I} -Fe_BMb1(NO) obtained at 10 K was used as background to isolate carbonyl stretching frequencies).

Figure S11. FTIR difference spectra ('dark' minus 'illuminated') of Fe^{II}-Fe_BMb**2**(NO) at 10 K.