Supplementary Material

High-accuracy theoretical thermochemistry of atmospherically important sulfur-containing molecules

Balázs Nagy, ${ }^{*, \dagger, \dagger}$ Péter Szakács, ${ }^{\dagger}$ József Csontos, ${ }^{\dagger}$ Zoltán Rolik, ${ }^{\dagger}$ Gyula Tasi, ${ }^{\ddagger}$ and Mihály Kállay ${ }^{\dagger}$
Department of Physical Chemistry and Materials Science, Budapest University of Technology and
Economics, Budapest P.O.Box 91, H-1521 Hungary, and Department of Applied and
Environmental Chemistry, University of Szeged, Rerrich B. tér 1., H-6720, Szeged, Hungary

E-mail: n.balazs@chem.u-szeged.hu

[^0]Table 1: Contributions to the total energies for the species studied in this work. All values are in atomic units.

Species	$E_{\mathrm{HF}^{\mathrm{a}}}$	$\Delta E_{\mathrm{CCSD}(\mathrm{T})}^{\mathrm{b}}$	$\Delta E_{\mathrm{CCSDT}(\mathrm{Q})^{\mathrm{c}}}$	$\Delta E_{\text {core }^{\mathrm{d}}}$	$\Delta E_{\mathrm{ZPE}}{ }^{\mathrm{e}}$	$\Delta E_{\mathrm{DBOC}^{\mathrm{f}}}$	$\Delta E_{\text {REL }}{ }^{\mathrm{g}}$	Total
HSO	-472.992011	-0.489026	-0.002240	-0.493830	0.010312	0.008578	-1.166381	-475.124597
HOS	-472.994366	-0.483176	-0.001766	-0.493784	0.013127	0.008553	-1.166620	-475.118032
HOSO_{2}	-622.776220	-1.049757	-0.002731^{h}	-0.620804	0.022254	0.013297	-1.275932	-625.690012
trans-HSNO	-527.403071	-0.739828	-0.004347	-0.553842	0.014798	0.010583	-1.197979	-529.873686
cis-HSNO	-527.402186	-0.739293	-0.004200	-0.553854	0.014586	0.010582	-1.198000	-529.872366
SH	-398.110827	-0.204179	-0.001046	-0.430225	0.006080	0.006099	-1.112194	-399.846291
$\mathrm{CH}_{2} \mathrm{SO}$	-511.440346	-0.703443	-0.003053	-0.551792	0.028665	0.010436	-1.182216	-513.841750
$\mathrm{CH}_{2} \mathrm{SH}$	-437.140131	-0.417342	-0.001793	-0.488212	0.032582	0.008288	-1.126960	-439.133634
SCSOH	-908.394168	-0.886398	-0.004208^{h}	-0.981995	0.019413	0.015970	-2.293658	-912.525083
$\mathrm{~S}_{2} \mathrm{COH}$	-908.437105	-0.879630	0.012033^{h}	-0.981912	0.021882	0.015968	-2.293870	-912.542634
C	-37.693785	-0.095914	-0.000497	-0.055802	0.000000	0.001710	-0.016425	-37.860713
S	-397.513315	-0.162177	-0.000923	-0.429887	0.000000	0.005813	-1.112536	-399.213024
H_{2}	-1.133661	-0.040912	0.000000	0.000000	0.009929	0.000522	-0.000013	-1.164135
O_{2}	-149.691988	-0.510187	-0.001789	-0.126490	0.003643	0.004874	-0.110954	-150.432893
$\mathrm{~N}_{2}$	-108.993235	-0.429838	-0.001512	-0.120889	0.005380	0.004127	-0.062717	-109.598684

Continued on Next Page...

Table 1 - Continued

Species	$E_{\mathrm{HF}^{\mathrm{a}}}$	$\Delta E_{\mathrm{CCSD}(\mathrm{T})}^{\mathrm{b}}$	$\Delta E_{\mathrm{CCSDT}(\mathrm{Q})^{\mathrm{c}}}$	$\Delta E_{\text {core }^{\mathrm{d}}}$	$\Delta E_{\mathrm{ZPE}^{\mathrm{e}}}$	$\Delta E_{\mathrm{DBOC}^{\mathrm{f}}}$	$\Delta E_{\mathrm{REL}^{\mathrm{g}}}$

${ }^{\text {a }} E_{\mathrm{HF}}$ was obtained by extrapolating aug-cc-pV $(X+\mathrm{d}) \mathrm{Z}(X=\mathrm{T}, \mathrm{Q}, 5)$ energies.
${ }^{\mathrm{b}} \Delta E_{\mathrm{CCSD}(\mathrm{T})}$ is the valence correlation energy calculated by the $\operatorname{CCSD}(\mathrm{T})$ method and extrapolated to the basis set limit using aug-cc-pV $(X+\mathrm{d}) \mathrm{Z}(X=\mathrm{Q}, 5)$ results.
${ }^{c}$ Unless otherwise noted, $\Delta E_{\mathrm{CCSDT}(\mathrm{Q})}$ is obtained by subtracting $E_{\mathrm{CCSD}(\mathrm{T})}$ from $E_{\mathrm{CCSDT}(\mathrm{Q})}$ calculated with the cc$\mathrm{pV}(T+\mathrm{d}) \mathrm{Z}$ basis set.
${ }^{\mathrm{d}} \Delta E_{\text {core }}$ is the core-correlation energy defined as the extrapolated difference between the frozen-core and all-electron $\operatorname{CCSD}(\mathrm{T})$ energies. The cc-pCVTZ and the cc-pCVQZ basis sets were used.
${ }^{\mathrm{e}} \Delta E_{\mathrm{ZPE}}$ values were determined from all-electron $\operatorname{CCSD}(\mathrm{T})$ calculations. For harmonic frequencies and anharmonic contributions the cc-pVQZ and cc-pVTZ basis sets were used, respectively.
${ }^{\mathrm{f}} \Delta E_{\mathrm{DBOC}}$ was calculated at the CCSD/cc-pCVTZ level.
${ }^{\mathrm{g}} \Delta E_{\text {REL }}$ was obtained at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pCVTZ}$ level, and it includes the spin-orbit corrections for S and C atoms as well as for SH , which are $-892,-135$, and $-859 \mu E_{h}$, respectively.
${ }^{\mathrm{h}} \Delta E_{\mathrm{CCSDT}(\mathrm{Q})}$ was estimated using a reduced virtual space (see text).

Table 2: Calculated bond lengths (in \AA), bond angles, dihedral angles (in degrees), rotational constants (in GHz), harmonic vibrational frequencies ($\mathrm{in} \mathrm{cm}^{-1}$), anharmonicity constants ($\mathrm{in} \mathrm{cm}^{-1}$), and G_{0} terms (in cm^{-1}) for the species studied in this work.

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	
HSO	$R(\mathrm{SO})=1.50169$	$\langle(\mathrm{OSH})=104.46$		19.091	$\omega_{1}=1029$	$x_{11}=-6.4$	-4.4
	$R(\mathrm{SH})=1.36721$			20.383	$\omega_{2}=1103$	$x_{12}=-14.2$	
				301.253	$\omega_{3}=2450$	$x_{13}=2.3$	
						$x_{22}=-3.9$	
						$x_{23}=-13.4$	
						$x_{33}=-58.6$	
SOH	$R(\mathrm{SO})=1.63627$	$\langle(\mathrm{SOH})=107.82$		16.164	$\omega_{1}=858$	$x_{11}=-4.8$	-10.1
	$R(\mathrm{OH})=0.96193$			16.575	$\omega_{2}=1193$	$x_{12}=-5.7$	
				652.125	$\omega_{3}=3798$	$x_{13}=-1.5$	
						$x_{22}=-9.8$	
						$x_{23}=-21.1$	
						$x_{33}=-89.6$	
$\mathrm{HOSO}_{2}{ }^{\mathrm{a}}$	$R\left(\mathrm{SO}_{1}\right)=1.61371$	$\left\langle\left(\mathrm{HO}_{1} \mathrm{~S}\right)=107.34\right.$	$D\left(\mathrm{O}_{2} \mathrm{SO}_{1} \mathrm{H}\right)=26.09$	4.898	$\omega_{1}=301$	$x_{11}=1.5$	-4.5
	$R\left(\mathrm{SO}_{2}\right)=1.44671$	$\left\langle\left(\mathrm{O}_{1} \mathrm{SO}_{2}\right)=107.95\right.$	$D\left(\mathrm{O}_{3} \mathrm{SO}_{1} \mathrm{H}\right)=159.84$	9.039	$\omega_{2}=432$	$x_{12}=-12.1$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
	$R\left(\mathrm{SO}_{3}\right)=1.43848$	$\left\langle\left(\mathrm{O}_{1} \mathrm{SO}_{3}\right)=105.77\right.$		9.380	$\omega_{3}=435$	$x_{13}=-5.7$	
	$R\left(\mathrm{HO}_{1}\right)=0.96582$	$\left\langle\left(\mathrm{O}_{2} \mathrm{SO}_{3}\right)=123.33\right.$			$\omega_{4}=539$	$x_{14}=-3.7$	
					$\omega_{5}=794$	$x_{15}=-4.4$	
					$\omega_{6}=1122$	$x_{16}=-0.7$	
					$\omega_{7}=1136$	$x_{17}=6.8$	
					$\omega_{8}=1347$	$x_{18}=-4.5$	
					$\omega_{9}=3783$	$x_{19}=-6.7$	
						$x_{22}=-1.3$	
						$x_{23}=-1.1$	
						$x_{24}=-1.2$	
						$x_{25}=-4.4$	
						$x_{26}=-0.8$	
						$x_{27}=0.4$	
						$x_{28}=-1.6$	
						$x_{29}=-2.6$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants
		Harmonic vibrational frequencies	Anharmonicity constants	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{57}=-5.2$	
						$x_{58}=-0.2$	
						$x_{59}=-0.9$	
						$x_{66}=-4.1$	
						$x_{67}=-1.5$	
						$x_{68}=-14.6$	
						$x_{69}=-0.9$	
						$x_{77}=-7.9$	
						$x_{78}=-6.4$	
						$x_{79}=-21.9$	
						$x_{88}=-6.0$	
						$x_{89}=-2.5$	
						$x_{99}=-82.4$	
trans-HSNO	$R(\mathrm{SH})=1.33693$	$\langle(\mathrm{HSN})=90.33$	$D(\mathrm{ONSH})=180.00$	5.739	$\omega_{1}=320$	$x_{11}=0.3$	-3.8
	$R(\mathrm{SN})=1.85183$	$\langle(\mathrm{ONS})=114.53$		6.244	$\omega_{2}=391$	$x_{12}=-2.6$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
$R(\mathrm{NO})=1.17645$				70.926	$\omega_{3}=574$	$x_{13}=-3.4$	
					$\omega_{4}=919$	$x_{14}=-5.2$	
					$\omega_{5}=1642$	$x_{15}=6.6$	
					$\omega_{6}=2716$	$x_{16}=-1.4$	
						$x_{22}=-6.8$	
						$x_{23}=-2.0$	
						$x_{24}=-4.1$	
						$x_{25}=4.2$	
						$x_{26}=-5.8$	
						$x_{33}=-4.0$	
						$x_{34}=-14.5$	
						$x_{35}=7.0$	
						$x_{36}=-3.4$	
						$x_{44}=-4.6$	
						$x_{45}=4.5$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{46}=-14.7$	
						$x_{55}=-18.2$	
						$x_{56}=-0.9$	
						$x_{66}=-48.1$	
cis-HSNO	$R(\mathrm{SH})=1.34355$	$\langle(\mathrm{HSN})=95.11$	$D(\mathrm{ONSH})=0.00$	5.834	$\omega_{1}=337$	$x_{11}=-0.5$	-5.3
	$R(\mathrm{SN})=1.83490$	$\langle(\mathrm{ONS})=115.83$		6.384	$\omega_{2}=420$	$x_{12}=-6.9$	
	$R(\mathrm{NO})=1.18029$			67.784	$\omega_{3}=528$	$x_{13}=-6.4$	
					$\omega_{4}=899$	$x_{14}=-7.1$	
					$\omega_{5}=1620$	$x_{15}=11.3$	
					$\omega_{6}=2661$	$x_{16}=-0.3$	
						$x_{22}=-10.4$	
						$x_{23}=1.3$	
						$x_{24}=-2.4$	
						$x_{25}=7.1$	
						$x_{26}=0.7$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	
						$x_{33}=-1.6$	
						$x_{34}=-3.9$	
						$x_{35}=3.8$	
						$x_{36}=-5.5$	
						$x_{44}=-4.8$	
						$x_{45}=5.1$	
						$x_{46}=-12.6$	
						$x_{55}=-18.2$	
						$x_{56}=-2.0$	
						$x_{66}=-49.3$	
SH	$R(\mathrm{SH})=1.34175$			287.322	$\omega_{1}=2690$	$x_{11}=-48.3$	1.5
				287.322			
$\mathrm{CH}_{2} \mathrm{SO}^{\mathrm{b}}$	$R(\mathrm{SO})=1.47336$	$\langle(\mathrm{CSO})=114.69$	$D\left(\mathrm{H}_{1} \mathrm{CSO}\right)=0.00$	7.596	$\omega_{1}=390$	$x_{11}=0.7$	25.3
	$R(\mathrm{SC})=1.61317$	$\left\langle\left(\mathrm{H}_{1} \mathrm{CS}\right)=122.96\right.$	$D\left(\mathrm{H}_{2} \mathrm{CSO}\right)=180.00$	9.374	$\omega_{2}=642$	$x_{12}=0.3$	
	$R\left(\mathrm{H}_{1} \mathrm{C}\right)=1.07911$	$\left\langle\left(\mathrm{H}_{2} \mathrm{CS}\right)=115.48\right.$		40.058	$\omega_{3}=780$	$x_{13}=0.5$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
$R\left(\mathrm{H}_{2} \mathrm{C}\right)=1.07921$					$\omega_{4}=879$	$x_{14}=-0.5$	
					$\omega_{5}=997$	$x_{15}=-1.8$	
					$\omega_{6}=1193$	$x_{16}=-2.7$	
					$\omega_{7}=1416$	$x_{17}=-0.3$	
					$\omega_{8}=3160$	$x_{18}=-1.5$	
					$\omega_{9}=3287$	$x_{19}=-1.8$	
						$x_{22}=-2.5$	
						$x_{23}=72.6$	
						$x_{24}=0.5$	
						$x_{25}=-3.9$	
						$x_{26}=-3.2$	
						$x_{27}=-72.1$	
						$x_{28}=-5.3$	
						$x_{29}=-4.3$	
						$x_{33}=4.3$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{34}=2.0$	
						$x_{35}=-2.9$	
						$x_{36}=0.2$	
						$x_{37}=-106.6$	
						$x_{38}=-10.6$	
						$x_{39}=-18.0$	
						$x_{44}=-1.5$	
						$x_{45}=-2.6$	
						$x_{46}=-3.1$	
						$x_{47}=-8.7$	
						$x_{48}=-7.7$	
						$x_{49}=-9.0$	
						$x_{55}=-3.6$	
						$x_{56}=-3.5$	
						$x_{57}=-5.5$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{58}=-3.4$	
						$x_{59}=-3.2$	
						$x_{66}=-6.1$	
						$x_{67}=-1.2$	
						$x_{68}=-1.0$	
						$x_{69}=-1.1$	
						$x_{77}=-8.7$	
						$x_{78}=-5.8$	
						$x_{79}=-21.0$	
						$x_{88}=-27.8$	
						$x_{89}=-112.5$	
						$x_{99}=-30.9$	
$\mathrm{CH}_{2} \mathrm{SH}^{\text {c }}$	$R\left(\mathrm{H}_{1} \mathrm{~S}\right)=1.33711$	$\left\langle\left(\mathrm{H}_{1} \mathrm{SC}\right)=97.63\right.$	$D\left(\mathrm{H}_{1} \mathrm{SCH}_{2}\right)=0.00$	14.121	$\omega_{1}=94$	$x_{11}=625.5$	157.9
	$R(\mathrm{SC})=1.71659$	$\left\langle\left(\mathrm{H}_{2} \mathrm{CS}\right)=121.56\right.$	$D\left(\mathrm{H}_{1} \mathrm{SCH}_{3}\right)=180.00$	15.638	$\omega_{2}=347$	$x_{12}=324.4$	
	$R\left(\mathrm{H}_{2} \mathrm{~S}\right)=1.07343$	$\left\langle\left(\mathrm{H}_{3} \mathrm{CS}\right)=116.98\right.$		145.632	$\omega_{3}=785$	$x_{13}=14.4$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
	$R\left(\mathrm{H}_{3} \mathrm{~S}\right)=1.07439$	$\left\langle\left(\mathrm{H}_{2} \mathrm{CH}_{3}\right)=121.46\right.$			$\omega_{4}=857$	$x_{14}=-20.4$	
					$\omega_{5}=1076$	$x_{15}=15.0$	
					$\omega_{6}=1425$	$x_{16}=1.0$	
					$\omega_{7}=2709$	$x_{17}=-25.2$	
					$\omega_{8}=3202$	$x_{18}=-79.1$	
					$\omega_{9}=3331$	$x_{19}=-86.9$	
						$x_{22}=18.7$	
						$x_{23}=-0.2$	
						$x_{24}=-37.8$	
						$x_{25}=-0.4$	
						$x_{26}=1.2$	
						$x_{27}=-11.4$	
						$x_{28}=-57.0$	
						$x_{29}=-32.0$	
						$x_{33}=0.5$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{34}=-0.9$	
						$x_{35}=-5.5$	
						$x_{36}=-5.0$	
						$x_{37}=-4.8$	
						$x_{38}=-4.1$	
						$x_{39}=-4.5$	
						$x_{44}=-3.7$	
						$x_{45}=-4.9$	
						$x_{46}=-4.7$	
						$x_{47}=-1.5$	
						$x_{48}=-0.8$	
						$x_{49}=-0.3$	
						$x_{55}=-1.7$	
						$x_{56}=-5.2$	
						$x_{57}=-13.2$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{58}=-4.9$	
						$x_{59}=-5.2$	
						$x_{66}=-7.5$	
						$x_{67}=-1.2$	
						$x_{68}=-5.4$	
						$x_{69}=-20.9$	
						$x_{77}=-48.8$	
						$x_{78}=-0.3$	
						$x_{79}=-0.3$	
						$x_{88}=-28.3$	
						$x_{89}=-113.5$	
						$x_{99}=-31.9$	
$\mathrm{S}_{2} \mathrm{COH}^{\text {d }}$	$R\left(\mathrm{~S}_{1} \mathrm{C}\right)=1.66583$	$\left\langle\left(\mathrm{S}_{1} \mathrm{CS}_{2}\right)=111.49\right.$	$D\left(\mathrm{~S}_{1} \mathrm{COH}\right)=0.00$	2.605	$\omega_{1}=275$	$x_{11}=-1.0$	-12.9
	$R\left(\mathrm{~S}_{2} \mathrm{C}\right)=1.66476$	$\left\langle\left(\mathrm{S}_{1} \mathrm{CO}\right)=126.16\right.$	$D\left(\mathrm{~S}_{2} \mathrm{COH}\right)=180.00$	4.145	$\omega_{2}=398$	$x_{12}=-0.3$	
	$R(\mathrm{CO})=1.32276$	$\left\langle\left(\mathrm{S}_{2} \mathrm{CO}\right)=122.35\right.$		7.015	$\omega_{3}=501$	$x_{13}=2.3$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
	$R(\mathrm{OH})=0.96619$	$\langle(\mathrm{COH})=107.90$			$\omega_{4}=567$	$x_{14}=1.7$	
					$\omega_{5}=686$	$x_{15}=-1.7$	
					$\omega_{6}=901$	$x_{16}=-3.6$	
					$\omega_{7}=1298$	$x_{17}=-1.2$	
					$\omega_{8}=1363$	$x_{18}=-1.6$	
					$\omega_{9}=3747$	$x_{19}=-2.1$	
						$x_{22}=0.0$	
						$x_{23}=0.4$	
						$x_{24}=-0.4$	
						$x_{25}=0.3$	
						$x_{26}=-3.0$	
						$x_{27}=0.7$	
						$x_{28}=-4.0$	
						$x_{29}=-1.6$	
						$x_{33}=-0.8$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{34}=-9.4$	
						$x_{35}=-1.7$	
						$x_{36}=-4.5$	
						$x_{37}=-2.1$	
						$x_{38}=-3.8$	
						$x_{39}=-1.2$	
						$x_{44}=-12.9$	
						$x_{45}=-0.8$	
						$x_{46}=-2.9$	
						$x_{47}=8.7$	
						$x_{48}=6.9$	
						$x_{49}=-0.9$	
						$x_{55}=-3.1$	
						$x_{56}=-6.7$	
						$x_{57}=-2.5$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{58}=4.4$	
						$x_{59}=-0.8$	
						$x_{66}=-3.2$	
						$x_{67}=-5.0$	
						$x_{68}=-6.7$	
						$x_{69}=-1.3$	
						$x_{77}=-9.3$	
						$x_{78}=-16.1$	
						$x_{79}=-10.5$	
						$x_{88}=-7.8$	
						$x_{89}=-14.6$	
						$x_{99}=-88.3$	
SCSOH ${ }^{\text {e }}$	$R\left(\mathrm{~S}_{1} \mathrm{C}\right)=1.57014$	$\left\langle\left(\mathrm{S}_{1} \mathrm{CS}_{2}\right)=163.27\right.$	$D\left(\mathrm{OS}_{2} \mathrm{CS}_{1}\right)=-2.93$	2.023	$\omega_{1}=102$	$x_{11}=0.0$	-9.7
	$R\left(\mathrm{~S}_{2} \mathrm{C}\right)=1.59514$	$\left\langle\left(\mathrm{CS}_{2} \mathrm{O}\right)=110.58\right.$	$D\left(\mathrm{HOS}_{2} \mathrm{C}\right)=77.22$	2.291	$\omega_{2}=216$	$x_{12}=0.1$	
	$R\left(\mathrm{~S}_{2} \mathrm{O}\right)=1.70201$	$\left\langle\left(\mathrm{S}_{2} \mathrm{OH}\right)=107.21\right.$		16.488	$\omega_{3}=384$	$x_{13}=0.7$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
$R(\mathrm{OH})=0.96304$					$\omega_{4}=399$	$x_{14}=-2.2$	
					$\omega_{5}=612$	$x_{15}=6.0$	
					$\omega_{6}=620$	$x_{16}=3.1$	
					$\omega_{7}=1104$	$x_{17}=2.8$	
					$\omega_{8}=1412$	$x_{18}=-8.8$	
					$\omega_{9}=3798$	$x_{19}=0.1$	
						$x_{22}=-14.6$	
						$x_{23}=-2.8$	
						$x_{24}=-16.0$	
						$x_{25}=-4.4$	
						$x_{26}=0.4$	
						$x_{27}=3.0$	
						$x_{28}=3.7$	
						$x_{29}=-4.9$	
						$x_{33}=-4.0$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{34}=1.0$	
						$x_{35}=-11.0$	
						$x_{36}=-2.1$	
						$x_{37}=-2.5$	
						$x_{38}=5.4$	
						$x_{39}=-1.0$	
						$x_{44}=0.1$	
						$x_{45}=-0.7$	
						$x_{46}=-6.6$	
						$x_{47}=0.6$	
						$x_{48}=-6.6$	
						$x_{49}=-0.5$	
						$x_{55}=-13.4$	
						$x_{56}=-0.3$	
						$x_{57}=-14.4$	

Continued on Next Page...

Table 2 - Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational constants	Harmonic vibrational frequencies	Anharmonicity constants	G_{0}
						$x_{58}=12.9$	
						$x_{59}=-2.5$	
						$x_{66}=-1.5$	
						$x_{67}=1.1$	
						$x_{68}=-5.8$	
						$x_{69}=0.0$	
						$x_{77}=-10.0$	
						$x_{78}=4.0$	
						$x_{79}=-21.8$	
						$x_{88}=-14.1$	
						$x_{89}=0.6$	
						$x_{99}=-85.7$	

[^1]
[^0]: *To whom correspondence should be addressed
 ${ }^{\dagger}$ Budapest University of Technology and Economics
 ${ }^{\ddagger}$ University of Szeged

[^1]: ${ }^{\text {a }} \mathrm{O}_{1}$: the oxygen atom to which the hydrogen is attached, O_{2} : cis position relative to the H atom, O_{3} : trans position relative to the H atom
 ${ }^{\mathrm{b}} \mathrm{H}_{1}$: cis position relative to the O atom, H_{2} : trans position relative to the O atom
 ${ }^{c} \mathrm{H}_{1}$: the H atom connected to sulfur, H_{2} : cis position relative to $\mathrm{H}_{1}, \mathrm{H}_{3}$: trans position relative to H_{1}
 ${ }^{\mathrm{d}} \mathrm{S}_{1}$: cis position relative to the H atom, S_{2} : trans position relative to the H atom
 ${ }^{\mathrm{e}} \mathrm{S}_{2}$: this sulfur atom is connected to the O atom

