Supplementary Material

High-accuracy theoretical thermochemistry of atmospherically important sulfur-containing molecules

Balázs Nagy,^{*,†,‡} Péter Szakács,[†] József Csontos,[†] Zoltán Rolik,[†] Gyula Tasi,[‡] and Mihály Kállay[†]

Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest P.O.Box 91, H-1521 Hungary, and Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. tér 1., H-6720, Szeged, Hungary

E-mail: n.balazs@chem.u-szeged.hu

^{*}To whom correspondence should be addressed

[†]Budapest University of Technology and Economics

[‡]University of Szeged

Species	$E_{ m HF}{}^{ m a}$	$\Delta E_{\text{CCSD}(T)}^{b}$	$\Delta E_{\text{CCSDT}(Q)}^{c}$	$\Delta E_{\rm core}^{\rm d}$	$\Delta E_{\rm ZPE}^{\rm e}$	$\Delta E_{\text{DBOC}}^{f}$	$\Delta E_{\rm REL}{}^{\rm g}$	Total
HSO	-472.992011	-0.489026	-0.002240	-0.493830	0.010312	0.008578	-1.166381	-475.124597
HOS	-472.994366	-0.483176	-0.001766	-0.493784	0.013127	0.008553	-1.166620	-475.118032
HOSO ₂	-622.776220	-1.049757	-0.002731 ^h	-0.620804	0.022254	0.013297	-1.275932	-625.690012
trans-HSNO	-527.403071	-0.739828	-0.004347	-0.553842	0.014798	0.010583	-1.197979	-529.873686
cis-HSNO	-527.402186	-0.739293	-0.004200	-0.553854	0.014586	0.010582	-1.198000	-529.872366
SH	-398.110827	-0.204179	-0.001046	-0.430225	0.006080	0.006099	-1.112194	-399.846291
CH ₂ SO	-511.440346	-0.703443	-0.003053	-0.551792	0.028665	0.010436	-1.182216	-513.841750
CH ₂ SH	-437.140131	-0.417342	-0.001793	-0.488212	0.032582	0.008288	-1.126960	-439.133634
SCSOH	-908.394168	-0.886398	-0.004208 ^h	-0.981995	0.019413	0.015970	-2.293658	-912.525083
S ₂ COH	-908.437105	-0.879630	0.012033 ^h	-0.981912	0.021882	0.015968	-2.293870	-912.542634
С	-37.693785	-0.095914	-0.000497	-0.055802	0.000000	0.001710	-0.016425	-37.860713
S	-397.513315	-0.162177	-0.000923	-0.429887	0.000000	0.005813	-1.112536	-399.213024
H_2	-1.133661	-0.040912	0.000000	0.000000	0.009929	0.000522	-0.000013	-1.164135
O ₂	-149.691988	-0.510187	-0.001789	-0.126490	0.003643	0.004874	-0.110954	-150.432893
N ₂	-108.993235	-0.429838	-0.001512	-0.120889	0.005380	0.004127	-0.062717	-109.598684
	N (D							

Table 1: Contributions to the total energies for the species studied in this work. All values are in atomic units.

Species	$E_{ m HF}{}^{ m a}$	$\Delta E_{\text{CCSD}(T)}^{b}$	$\Delta E_{\text{CCSDT}(Q)}^{c}$	$\Delta E_{\rm core}^{\rm d}$	$\Delta E_{\rm ZPE}^{\rm e}$	$\Delta E_{\text{DBOC}}^{\text{f}}$	$\Delta E_{\rm REL}{}^{\rm g}$	Total	
---------	----------------------	---------------------------------	----------------------------------	-------------------------------	------------------------------	-------------------------------------	--------------------------------	-------	--

^a $E_{\rm HF}$ was obtained by extrapolating aug-cc-pV(X+d)Z (X=T,Q,5) energies.

- ^b $\Delta E_{\text{CCSD}(T)}$ is the valence correlation energy calculated by the CCSD(T) method and extrapolated to the basis set limit using aug-cc-pV(X+d)Z (X = Q,5) results.
- ^c Unless otherwise noted, $\Delta E_{\text{CCSDT}(Q)}$ is obtained by subtracting $E_{\text{CCSD}(T)}$ from $E_{\text{CCSDT}(Q)}$ calculated with the ccpV(*T*+d)Z basis set.
- ^d ΔE_{core} is the core-correlation energy defined as the extrapolated difference between the frozen-core and all-electron CCSD(T) energies. The cc-pCVTZ and the cc-pCVQZ basis sets were used.
- ^e ΔE_{ZPE} values were determined from all-electron CCSD(T) calculations. For harmonic frequencies and anharmonic contributions the cc-pVQZ and cc-pVTZ basis sets were used, respectively.
- ^f ΔE_{DBOC} was calculated at the CCSD/cc-pCVTZ level.
- ^g ΔE_{REL} was obtained at the CCSD(T)/cc-pCVTZ level, and it includes the spin-orbit corrections for S and C atoms as well as for SH, which are -892, -135, and -859 μE_h , respectively.

^h $\Delta E_{\text{CCSDT}(O)}$ was estimated using a reduced virtual space (see text).

Table 2: Calculated bond lengths (in Å), bond angles, dihedral angles (in degrees), rotational constants (in GHz), harmonic vibrational frequencies (in cm⁻¹), anharmonicity constants (in cm⁻¹), and G_0 terms (in cm⁻¹) for the species studied in this work.

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
-	-	-	_	constants	frequencies	constants	
HSO	R(SO) = 1.50169	((OSH)=104.46		19.091	$\omega_1 = 1029$	$x_{11} = -6.4$	-4.4
	<i>R</i> (SH)= 1.36721			20.383	$\omega_2 = 1103$	$x_{12} = -14.2$	
				301.253	$\omega_3 = 2450$	$x_{13} = 2.3$	
						$x_{22} = -3.9$	
						$x_{23} = -13.4$	
						$x_{33} = -58.6$	
SOH	R(SO) = 1.63627	(SOH) = 107.82		16.164	$\omega_1 = 858$	$x_{11} = -4.8$	-10.1
	R(OH) = 0.96193			16.575	$\omega_2 = 1193$	$x_{12} = -5.7$	
				652.125	$\omega_3 = 3798$	$x_{13} = -1.5$	
						$x_{22} = -9.8$	
						$x_{23} = -21.1$	
						$x_{33} = -89.6$	
HOSO ₂ ^a	$R(SO_1) = 1.61371$	$(HO_1S) = 107.34$	$D(O_2SO_1H) = 26.09$	4.898	$\omega_1 = 301$	$x_{11} = 1.5$	-4.5
	$R(SO_2) = 1.44671$	$(O_1SO_2) = 107.95$	$D(O_3SO_1H) = 159.84$	9.039	$\omega_2 = 432$	$x_{12} = -12.1$	
	N. (D						

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
	$R(SO_3) = 1.43848$	$(O_1SO_3) = 105.77$		9.380	$\omega_3 = 435$	$x_{13} = -5.7$	
	$R(HO_1) = 0.96582$	$\langle (O_2 SO_3) = 123.33$			$\omega_4 = 539$	$x_{14} = -3.7$	
					$\omega_5 = 794$	$x_{15} = -4.4$	
					$\omega_6 = 1122$	$x_{16} = -0.7$	
					$\omega_7 = 1136$	$x_{17} = 6.8$	
					$\omega_8 = 1347$	$x_{18} = -4.5$	
					$\omega_9 = 3783$	$x_{19} = -6.7$	
						$x_{22} = -1.3$	
						$x_{23} = -1.1$	
						$x_{24} = -1.2$	
						$x_{25} = -4.4$	
						$x_{26} = -0.8$	
						$x_{27} = 0.4$	
						$x_{28} = -1.6$	
						$x_{29} = -2.6$	

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{33} = -0.1$	
						$x_{34} = -0.8$	
						$x_{35} = -2.7$	
						$x_{36} = -2.8$	
						$x_{37} = 0.1$	
						$x_{38} = -3.5$	
						$x_{39} = -0.4$	
						$x_{44} = -0.4$	
						$x_{45} = -2.5$	
						$x_{46} = -2.7$	
						$x_{47} = 1.7$	
						$x_{48} = -4.0$	
						$x_{49} = -0.3$	
						$x_{55} = -5.7$	
						$x_{56} = -1.5$	

6

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{57} = -5.2$	
						$x_{58} = -0.2$	
						$x_{59} = -0.9$	
						$x_{66} = -4.1$	
						$x_{67} = -1.5$	
						$x_{68} = -14.6$	
						$x_{69} = -0.9$	
						$x_{77} = -7.9$	
						$x_{78} = -6.4$	
						$x_{79} = -21.9$	
						$x_{88} = -6.0$	
						$x_{89} = -2.5$	
						$x_{99} = -82.4$	
trans-HSNO	<i>R</i> (SH)=1.33693	((HSN)=90.33	D(ONSH) = 180.00	5.739	$\omega_1 = 320$	$x_{11} = 0.3$	-3.8
	R(SN) = 1.85183	(ONS) = 114.53		6.244	$\omega_2 = 391$	$x_{12} = -2.6$	

Table 2 – Continued

7

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
	R(NO) = 1.17645			70.926	$\omega_3 = 574$	$x_{13} = -3.4$	
					$\omega_4 = 919$	$x_{14} = -5.2$	
					$\omega_5 = 1642$	$x_{15} = 6.6$	
					$\omega_6 = 2716$	$x_{16} = -1.4$	
						$x_{22} = -6.8$	
						$x_{23} = -2.0$	
						$x_{24} = -4.1$	
						$x_{25} = 4.2$	
						$x_{26} = -5.8$	
						$x_{33} = -4.0$	
						$x_{34} = -14.5$	
						$x_{35} = 7.0$	
						$x_{36} = -3.4$	
						$x_{44} = -4.6$	
						$x_{45} = 4.5$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{46} = -14.7$	
						$x_{55} = -18.2$	
						$x_{56} = -0.9$	
						$x_{66} = -48.1$	
cis-HSNO	R(SH) = 1.34355	((HSN) = 95.11	D(ONSH) = 0.00	5.834	$\omega_1 = 337$	$x_{11} = -0.5$	-5.3
	R(SN) = 1.83490	(ONS) = 115.83		6.384	$\omega_2 = 420$	$x_{12} = -6.9$	
	R(NO) = 1.18029			67.784	$\omega_3 = 528$	$x_{13} = -6.4$	
					$\omega_4 = 899$	$x_{14} = -7.1$	
					$\omega_5 = 1620$	$x_{15} = 11.3$	
					$\omega_6 = 2661$	$x_{16} = -0.3$	
						$x_{22} = -10.4$	
						$x_{23} = 1.3$	
						$x_{24} = -2.4$	
						$x_{25} = 7.1$	
						$x_{26} = 0.7$	

Table 2 – Continued

Continued on Next Page...

9

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{33} = -1.6$	
						$x_{34} = -3.9$	
						$x_{35} = 3.8$	
						$x_{36} = -5.5$	
						$x_{44} = -4.8$	
						$x_{45} = 5.1$	
						$x_{46} = -12.6$	
						$x_{55} = -18.2$	
						$x_{56} = -2.0$	
						$x_{66} = -49.3$	
SH	R(SH) = 1.34175			287.322	$\omega_1 = 2690$	$x_{11} = -48.3$	1.5
				287.322			
CH ₂ SO ^b	R(SO) = 1.47336	((CSO)=114.69	$D(\mathrm{H}_{1}\mathrm{CSO}) = 0.00$	7.596	$\omega_1 = 390$	$x_{11} = 0.7$	25.3
	R(SC) = 1.61317	$((H_1CS) = 122.96)$	$D(H_2CSO) = 180.00$	9.374	$\omega_2 = 642$	$x_{12} = 0.3$	
	$R(H_1C) = 1.07911$	$(H_2CS) = 115.48$		40.058	$\omega_3 = 780$	$x_{13} = 0.5$	
Continued of	on Next Page						

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
	$R(H_2C) = 1.07921$				$\omega_4 = 879$	$x_{14} = -0.5$	
					$\omega_5 = 997$	$x_{15} = -1.8$	
					$\omega_{6} = 1193$	$x_{16} = -2.7$	
					$\omega_7 = 1416$	$x_{17} = -0.3$	
					$\omega_8 = 3160$	$x_{18} = -1.5$	
					$\omega_9 = 3287$	$x_{19} = -1.8$	
						$x_{22} = -2.5$	
						$x_{23} = 72.6$	
						$x_{24} = 0.5$	
						$x_{25} = -3.9$	
						$x_{26} = -3.2$	
						$x_{27} = -72.1$	
						$x_{28} = -5.3$	
						$x_{29} = -4.3$	
						$x_{33} = 4.3$	
Continued	an Nawi Daga						

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{34} = 2.0$	
						$x_{35} = -2.9$	
						$x_{36} = 0.2$	
						$x_{37} = -106.6$	
						$x_{38} = -10.6$	
						$x_{39} = -18.0$	
						$x_{44} = -1.5$	
						$x_{45} = -2.6$	
						$x_{46} = -3.1$	
						$x_{47} = -8.7$	
						$x_{48} = -7.7$	
						$x_{49} = -9.0$	
						$x_{55} = -3.6$	
						$x_{56} = -3.5$	
						$x_{57} = -5.5$	

12

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{58} = -3.4$	
						$x_{59} = -3.2$	
						$x_{66} = -6.1$	
						$x_{67} = -1.2$	
						$x_{68} = -1.0$	
						$x_{69} = -1.1$	
						$x_{77} = -8.7$	
						$x_{78} = -5.8$	
						$x_{79} = -21.0$	
						$x_{88} = -27.8$	
						$x_{89} = -112.5$	
						$x_{99} = -30.9$	
CH ₂ SH ^c	$R(H_1S) = 1.33711$	$((H_1SC) = 97.63)$	$D(H_1SCH_2) = 0.00$	14.121	$\omega_1 = 94$	$x_{11} = 625.5$	157.9
	R(SC) = 1.71659	$(H_2CS) = 121.56$	$D(H_1SCH_3) = 180.00$	15.638	$\omega_2 = 347$	$x_{12} = 324.4$	
	$R(H_2S) = 1.07343$	$(H_3CS) = 116.98$		145.632	$\omega_3 = 785$	$x_{13} = 14.4$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
	$R(H_3S) = 1.07439$	$(H_2CH_3) = 121.46$			$\omega_4 = 857$	$x_{14} = -20.4$	
					$\omega_5 = 1076$	$x_{15} = 15.0$	
					$\omega_6 = 1425$	$x_{16} = 1.0$	
					$\omega_7 = 2709$	$x_{17} = -25.2$	
					$\omega_8 = 3202$	$x_{18} = -79.1$	
					$\omega_9 = 3331$	$x_{19} = -86.9$	
						$x_{22} = 18.7$	
						$x_{23} = -0.2$	
						$x_{24} = -37.8$	
						$x_{25} = -0.4$	
						$x_{26} = 1.2$	
						$x_{27} = -11.4$	
						$x_{28} = -57.0$	
						$x_{29} = -32.0$	
						$x_{33} = 0.5$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{34} = -0.9$	
						$x_{35} = -5.5$	
						$x_{36} = -5.0$	
						$x_{37} = -4.8$	
						$x_{38} = -4.1$	
						$x_{39} = -4.5$	
						$x_{44} = -3.7$	
						$x_{45} = -4.9$	
						$x_{46} = -4.7$	
						$x_{47} = -1.5$	
						$x_{48} = -0.8$	
						$x_{49} = -0.3$	
						$x_{55} = -1.7$	
						$x_{56} = -5.2$	
						$x_{57} = -13.2$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{58} = -4.9$	
						$x_{59} = -5.2$	
						$x_{66} = -7.5$	
						$x_{67} = -1.2$	
						$x_{68} = -5.4$	
						$x_{69} = -20.9$	
						$x_{77} = -48.8$	
						$x_{78} = -0.3$	
						$x_{79} = -0.3$	
						$x_{88} = -28.3$	
						$x_{89} = -113.5$	
						$x_{99} = -31.9$	
S ₂ COH ^d	$R(S_1C) = 1.66583$	$\langle (\mathbf{S}_1 \mathbf{C} \mathbf{S}_2) = 111.49$	$D(S_1COH) = 0.00$	2.605	$\omega_1 = 275$	$x_{11} = -1.0$	-12.9
	$R(S_2C) = 1.66476$	$((S_1CO) = 126.16)$	$D(S_2COH) = 180.00$	4.145	$\omega_2 = 398$	$x_{12} = -0.3$	
	R(CO) = 1.32276	$((S_2CO) = 122.35)$		7.015	$\omega_3 = 501$	$x_{13} = 2.3$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity G
				constants	frequencies	constants
	R(OH) = 0.96619	⟨(COH)= 107.90			$\omega_4 = 567$	$x_{14} = 1.7$
					$\omega_5 = 686$	$x_{15} = -1.7$
					$\omega_6 = 901$	$x_{16} = -3.6$
					$\omega_7 = 1298$	$x_{17} = -1.2$
					$\omega_8 = 1363$	$x_{18} = -1.6$
					$\omega_9 = 3747$	$x_{19} = -2.1$
						$x_{22} = 0.0$
						$x_{23} = 0.4$
						$x_{24} = -0.4$
						$x_{25} = 0.3$
						$x_{26} = -3.0$
						$x_{27} = 0.7$
						$x_{28} = -4.0$
						$x_{29} = -1.6$
						$x_{33} = -0.8$
^r ontinued	on Nevt Page					

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{34} = -9.4$	
						$x_{35} = -1.7$	
						$x_{36} = -4.5$	
						$x_{37} = -2.1$	
						$x_{38} = -3.8$	
						$x_{39} = -1.2$	
						$x_{44} = -12.9$	
						$x_{45} = -0.8$	
						$x_{46} = -2.9$	
						$x_{47} = 8.7$	
						$x_{48} = 6.9$	
						$x_{49} = -0.9$	
						$x_{55} = -3.1$	
						$x_{56} = -6.7$	
						$x_{57} = -2.5$	

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{58} = 4.4$	
						$x_{59} = -0.8$	
						$x_{66} = -3.2$	
						$x_{67} = -5.0$	
						$x_{68} = -6.7$	
						$x_{69} = -1.3$	
						$x_{77} = -9.3$	
						$x_{78} = -16.1$	
						$x_{79} = -10.5$	
						$x_{88} = -7.8$	
						$x_{89} = -14.6$	
						$x_{99} = -88.3$	
SCSOH ^e	$R(S_1C) = 1.57014$	$\langle (S_1 C S_2) = 163.27$	$D(\mathrm{OS}_2\mathrm{CS}_1) = -2.93$	2.023	$\omega_1 = 102$	$x_{11} = 0.0$	-9.7
	$R(S_2C) = 1.59514$	$(CS_2O) = 110.58$	$D(HOS_2C) = 77.22$	2.291	$\omega_2 = 216$	$x_{12} = 0.1$	
	$R(S_2O) = 1.70201$	$(S_2OH) = 107.21$		16.488	$\omega_3 = 384$	$x_{13} = 0.7$	

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
	R(OH) = 0.96304				$\omega_4 = 399$	$x_{14} = -2.2$	
					$\omega_5 = 612$	$x_{15} = 6.0$	
					$\omega_6 = 620$	$x_{16} = 3.1$	
					$\omega_7 = 1104$	$x_{17} = 2.8$	
					$\omega_8 = 1412$	$x_{18} = -8.8$	
					$\omega_9 = 3798$	$x_{19} = 0.1$	
						$x_{22} = -14.6$	
						$x_{23} = -2.8$	
						$x_{24} = -16.0$	
						$x_{25} = -4.4$	
						$x_{26} = 0.4$	
						$x_{27} = 3.0$	
						$x_{28} = 3.7$	
						$x_{29} = -4.9$	
						$x_{33} = -4.0$	

Table 2 – Continued

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
				constants	frequencies	constants	
						$x_{34} = 1.0$	
						$x_{35} = -11.0$	
						$x_{36} = -2.1$	
						$x_{37} = -2.5$	
						$x_{38} = 5.4$	
						$x_{39} = -1.0$	
						$x_{44} = 0.1$	
						$x_{45} = -0.7$	
						$x_{46} = -6.6$	
						$x_{47} = 0.6$	
						$x_{48} = -6.6$	
						$x_{49} = -0.5$	
						$x_{55} = -13.4$	
						$x_{56} = -0.3$	
						$x_{57} = -14.4$	
Continued o	n Next Page						

Species	Bond lengths	Bond angles	Dihedral angles	Rotational	Harmonic vibrational	Anharmonicity	G_0
-	C C	C	ç	constants	frequencies	constants	-
						$x_{58} = 12.9$	
						$x_{59} = -2.5$	
						$x_{66} = -1.5$	
						$x_{67} = 1.1$	
						$x_{68} = -5.8$	
						$x_{69} = 0.0$	
						$x_{77} = -10.0$	
						$x_{78} = 4.0$	
						$x_{79} = -21.8$	
						$x_{88} = -14.1$	
						$x_{89} = 0.6$	
						$x_{99} = -85.7$	

^a O₁: the oxygen atom to which the hydrogen is attached, O₂: *cis* position relative to the H atom, O₃: *trans* position relative to the H atom

^b H₁: *cis* position relative to the O atom, H₂: *trans* position relative to the O atom

^c H₁: the H atom connected to sulfur, H₂: *cis* position relative to H₁, H₃: *trans* position relative to H₁

^d S_1 : *cis* position relative to the H atom, S_2 : *trans* position relative to the H atom

 $^{^{}e}\,\,S_{2}:$ this sulfur atom is connected to the O atom