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Materials 

ATP, GTP, UTP, CTP, creatine phosphate, creatine kinase and the E. coli total tRNA mixture 

were purchased from Roche Applied Science (Indianapolis, IN). All the other reagents for cell-

free system were purchased from Sigma (St. Louis, MO). The E. coli strain BL21-StarTM(DE3) 

was purchased from Invitrogen (Carlsbad, CA). Acetic acid, chitosan, succinic anhydride, N,N-

diisopropylethylamine (DIEA), N,N-dimethylformamide (DMF), N-(3-dimethylaminopropyl)-

N´-ethylcarbo diimide hydrochloride (EDC·HCl), N-hydroxysuccinimide (NHS), Na,Na-

bis(carboxymethyl)-L-lysine (NTA),  nickel (II) sulfate and glutaraldehyde solution (50 vol%) 

were purchased from Sigma-Aldrich. The patterned glass functionalized with poly-L-lysine was 

purchased from Tekdon Inc. Single-walled carbon nanotubes were purchased from Nano-C Inc. 

 

Preparation of cell extract 

The S30 cell extracts were prepared from E. coli strain BL21 StarTM (DE3) (Novagen, Madison, 

WI) according to the method reported elsewhere1-3. The cells were grown at 37 °C in 4 L of 

2xYT medium with agitation and aeration. When the cell density (OD600) reached 0.5, isopropyl-

thiogalactopyranoside (IPTG, 0.5 mM) was added to the culture media to induce T7 RNA 

polymerase expression. The cells were harvested when the OD600 reached 4.0 and cells were 

washed three times by suspending them in 20 mL of S30 buffer per gram of wet cells and then 

centrifuged. S30 buffer contained 10 mM Tris–acetate buffer (pH 8.2), 14 mM magnesium 

acetate, 60 mM potassium glutamate, and 1 mM dithiothreitol (DTT) containing 0.05% (v/v) 2-

mercaptoethanol (2-ME). The resulting cell pellets were weighed and then suspended with 12.7 

mL of S30 buffer without 2-ME and disrupted in a French press cell (Thermo Scientific) at a 

constant pressure of 20,000 psi. The crude lysate was then centrifuged at 12,000 RCF for 10 min, 
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and the recovered supernatant was briefly incubated at 37 °C. The resulting extract was divided 

into small aliquots and stored at −80 °C before use for cell-free expression. 

 

Gene preparation 

Target ORFs were amplified using primers P1s and P2s.  The first PCR products were purified 

by gel extraction and used for the second-round PCR, in which the full expression templates 

were synthesized using the P3 and P4 (Supporting Fig. 3). Primer sequences are listed in 

Supporting Table 1. After amplification, the final PCR products were used in cell-free protein 

synthesis reaction without purification3. 

 

Spectroscopy and microscopy 

Near-infrared photoluminescence spectra were acquired using 785 nm excitation and an Acton 

SP-500 spectrograph coupled to a Princeton instruments OMA V InGaAs detector. Absorption 

measurements were taken with a Shimadzu UV-3101 PC UV-VIS-NIR scanning 

spectrophotometer.  

 

Microscopy and Data Analysis for Single Molecule Detection of Protein  

After SWNT/CHI film was functionalized with Ni-NTA, the nIR fluorescence response of 

SWNT to His-tag EGFP as a capture protein and anti-His-tag antibody as a analyte was imaged 

and monitored in real-time for 25 min through a 100x TIRF objective using an inverted 

microscope (Carl Zeiss, Axiovert 200) attached with a 2D InGaAs array (Princeton Instruments 

OMA 2D) with a 658 nm laser excitation (LDM-OPT-A6-13, Newport Corp., 35 mW). The nIR 

fluorescence response movies were acquired at 1.0 sec/frame using the WinSpec data acquisition 
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program (Princeton Instruments). Before the experiment, a control movie was taken for 25 min 

to ensure a stable baseline. A 20 mL portion of His-tag EGFP (final concentration: 100 mg/ml) 

was added into the SWNT/CHI film bearing Ni-NTA 5 min after taking the movie in PBS (pH 

7.4, 10 mM) without addition of proteins, and the fluorescence response was further imaged and 

monitored for 10 min.  Then, a 10 mL portion of anti-His-tag antibody (final concentration: 23 

mg/ml) was added into EGFP-immobilized SWNT/CHI film, and the fluorescence response was 

monitored for 10 min. The fluorescence response within a 2 × 2 pixel spatial binning region in 

the movie images was examined, and the analysis algorithm is similar to that reported before4. 

The four-pixel area in the image corresponds to a 600 × 600 nm2 region in the real sample, 

representing the PL from a single SWNT, which is determined by the diffraction limit in the nIR 

range5. Hidden Markov Modeling (HMM) is employed to correlate the rate constants of 

immobilization of His-tag EGFP to Ni-NTA and binding of anti-His-tag antibody to EGFP on 

the SWNT/CHI film. 

 

Sensitivity of SWNT/CHI microarray to protein detection 

A 40 mL of His-tag EGFP (initial concentration; 5 mg/mL) was added to SWNT/CHI microarray 

bearing Ni2+ in 1 mL of PBS (pH 7.4, 10 mM), and then incubated for 30 min at room 

temperature. After washing out the unbound His-tag EGFP with PBS, the SWNT/CHI bearing 

His-tag EGFP in 1 mL of PBS was placed on the nIR fluorescence microscope (100x objective, 

658 nm laser) to focus on the array of single SWNT. The 15 mL of the serially-diluted analyte 

protein from 100 nM to 10 pM (anti-His-tag antibody, initial concentration; 1 mg/mL) was added 

to the SWNT/CHI microarray in 1 mL of PBS 100 sec after taking the fluorescence image of 
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SWNT without addition of the analyte protein. The fluorescence response was further measured 

for 20 min at room temperature, and the collected movie was then analyzed as described above.  

 
Control experiments 

Various control experiments including negative and positive controls were performed 

(Supporting Fig. 4). Each reagent as positive or negative controls was added to each array wells 

in a humidified chamber at 37ºC and incubated for 2 h. The fluorescence response of each 

SWNT/CHI well was measured. The arrays were washed three times for 10 min each with PBS 

buffer (pH 7.4, 10 mM) at RT and then PL spectra were taken. As shown in Supporting Figure 4, 

all reagents and buffers that are used as components in cell-free reaction mixture were tested and 

DNA expression templates including no ribosome binding site and no His-tag were also tested as 

negative control. On the other hand, His-tag coding expression templates, Fos, Jun, EGFP were 

tested as positive controls. Only His-tag containing proteins cause fluorescence decrease. Hence, 

the capture proteins are effectively and selectively expressed by cell-free synthesis on each spot 

of the array and no fluorescence decrease induced from other reagents in a cell-free protein 

expression system was detected. 
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Supporting Table 1. Oligonucleotide primers used in this study. 
 

 
aExPASy accession ID in parenthesis 

  

Proteina P1 P2 
Ack (P0A6A3) aagaaggagatatacatatgtcgagtaagttagtactggt ttaatgatgatgatgatgatgggcagtcaggcggctcgcgt 

Dnak (P0A6Y8) aagaaggagatatacatatgggtaaaataattggtatcga ttaatgatgatgatgatgatgttttttgtctttgacttctt 

FbaA (P0AB71) aagaaggagatatacatatgtctaagatttttgatttcgt ttaatgatgatgatgatgatgcagaacgtcgatcgcgttca 

GlyA (P0A825) aagaaggagatatacatatgttaaagcgtgaaatgaacat ttaatgatgatgatgatgatgtgcgtaaaccgggtaacgtg 

LpdA (P0A9P0) aagaaggagatatacatatgagtactgaaatcaaaactca ttaatgatgatgatgatgatgcttcttcttcgctttcgggt 
 

RpoA (P0A7Z4) aagaaggagatatacatatgcagggttctgtgacagagtt ttaatgatgatgatgatgatgctcgtcagcgatgcttgccg 

RplB (P60422) aagaaggagatatacatatggcagttgttaaatgtaaacc ttaatgatgatgatgatgatgtttgctacggcgacgtacga 
 

RpsB (P0A7V0) aagaaggagatatacatatggcaactgtttccatgcgcga ttaatgatgatgatgatgatgctcagcttctacgaagcttt 

Tsf (P0A6P1) aagaaggagatatacatatggctgaaattaccgcatccct ttaatgatgatgatgatgatgagactgcttggacatcgcag 

Ada (P06134) aagaaggagatatacatatgaaaaaagccacatgcttaac ttaatgatgatgatgatgatgcctctcctcattttcagctt 

Cdd (P0ABF6) aagaaggagatatacatatgcatccacgttttcaaaccgc ttaatgatgatgatgatgatgagcgagaagcactcggtcga 

CDK4 (P11802) aagaaggagatatacatatggctacctctcgatatga 
 

ttaatgatgatgatgatgatgcaactccggattaccttcat 
atgatgatgatgatgatgttacaactccggattaccttcat (noHis) 

p16 (P42771) aagaaggagatatacatatggtgcgcaggttcttggt ttaatgatgatgatgatgatgcaagccaggtccacgggcag 
atgatgatgatgatgatgttacaagccaggtccacgggcag (noHis) 

Jun (P05412) aagaaggagatatacatatgactgcaaagatggaaac ttaatgatgatgatgatgatggtcaaatgtttgcaactgct 
atgatgatgatgatgatgttagtcaaatgtttgcaactgct (noHis) 

Fos (P01100) aagaaggagatatacatatgatgttctcgggcttcaa 
 

ttaatgatgatgatgatgatgcaacagggccagcagcgtgg 
atgatgatgatgatgatgttacaacagggccagcagcgtgg (noHis) 

P3: Mega-F TCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAAT
AATTTTGTTTAACTTTAAGAAGGAGATATACATATG 

P4: Mega-R CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGCTCGAGAAGCTTG
TCGACGAATTCGGATCCTTAATGATGATGATGATGATG 
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Supporting Figure S1. Functionalization of SWNT/CHI array with Ni-NTA. 
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Supporting Figure S2. Deconvolution of nIR fluorescence of SWNTs in response to His-tag 

protein (Ack) in SWNT/CHI array. 
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1st PCR 2nd PCR

4℃
94℃ 94℃

55℃ 72℃30s 30s

30s

30s

20 cycles

94℃ 94℃
55℃ 72℃30s 30s

30s

30s
72℃
7m

4℃
∞

30 cycles
∞

TCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACA

ACGGTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAG

ATATACATATG + gene of interest + CATCATCATCATCATCAT 

TAAGGATCCGAATTCGTCGACAAGCTTCTCGAGCTAGCATAAC

CCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTG

T7 promoter

RBS

6x HistagStart codon

Stop codon

T7 terminator

P1 P2

P3 P4

First PCR: target gene from plasmid or 
genomic DNA

Second PCR: generation of expression 
template  by adding 5’-UTR and 3-’UTR

Final linear expression template for cell-free protein synthesis

Target gene

P1: 5’-AAGAAGGAGATATACATATG + (20 nt sequence for target gene)-3’
P2: 5’-TTAATGATGATGATGATGATG + (complementary 20 nt sequence for target gene)-3’
P3: 5’-
TCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAATAATTTTGT
TTAACTTTAAGAAGGAGATATACATATG-3’
P4: 5’-
CAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGCTCGAGAAGCTTGTCGACGA
ATTCGGATCCTTAATGATGATGATGATGATG-3’

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Supporting Figure S3. Generation of expression template by PCR. (a) Conditions for two-step 

PCR. (b) Two-step PCR, the gene of interest is amplified in the primary PCR via specific 

primers that are introducing an overlap region (primers P1 and P2). In a second PCR, the outer 

primers P3 and P4 bind to the overlapping region and add all regulatory elements necessary for 

transcription and translation. (c) Nucleotide sequence of amplified linear expression template for 

cell-free protein expression.  

a 

b c 
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Supporting Figure S4. Investigation of reproducibility on SWNT/CHI protein array with 

various control experiments. All reagents and buffers used in cell-free reaction mixture were 

tested and DNA expression templates including no ribosome binding site and no His-tag were 

also tested as negative control. Each reagent indicated above as positive or negative controls was 

added to each array wells in a humidified chamber at 37ºC and incubated for 2 h. The 

fluorescence response of each SWNT/CHI well was measured. The arrays were washed three 

times for 10 min each with PBS buffer (pH 7.4, 100 mM) at RT and then PL spectra were taken. 

10 salts (90 mM of potassium glutamate, 80 mM of ammonium acetate, 12 mM of magnesium 

acetate); 5 masters (57 mM of Hepes-KOH (pH 8.2), 1.2 mM of ATP, 0.85 mM each of CTP, 

GTP and UTP, 0.64 mM of cAMP, 34 μg/ml of L-5-formyl-5,6,7,8-tetrahydrofolic acid (folinic 

acid), 1 mM each of 20 amino acids, 0.17 mg/ml of E. coli total tRNA mixture (from strain 

MRE600)); CF extract (cell-free reaction mixture w/o expressible DNAs).  
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Supporting Figure S5. Selective recognition of protein-protein interactions on SWNT/CHI 

array. nIR fluorescence response of SWNT to protein immobilization and interaction with anti-

His-tag antibody, showing fluorescence diminution for immobilization of His-tag proteins and 

increase for binding anti-His-tag antibody (a-h). (i) Imidazole addition: demonstration of protein 

binding reversibility on the SWNT/CHI array; quenched fluorescence is completely restored 

after treatment with an imidazole elution buffer (250 mM). 
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Supporting Figure S6. Western blot analysis. After incubation of His-tagged EGFP, each well 

was treated with monoclonal anti-His-tag antibody and anti-EGFP antibody for 30 min, and the 

eluted fractions were analyzed by 15% SDS-PAGE/Western blot using the monoclonal anti-His-

tag antibody to detect EGFP protein. 
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Supporting Figure S7. Single molecule detection of protein-protein interaction on SWNT/CHI 

microarray. (a) Representative fluorescence time-traces (red) without protein addition as a 

control, showing that SWNT emission is stable with zero mean deflection. (b) Representative 

fluorescence time-traces (red) for addition of Ni2+ to the NTA-bearing SWNT/CHI spot, showing 

stepwise quenching response. (c) Representative fluorescence time-traces (red) for the addition 

of His-tag EGFP (3.61 mM) to the SWNT/CHI microarray bearing Ni-NTA, demonstrating 

additional stepwise fluorescence quenching. (d) Histogram of the rate constants for binding His-

tag EGFP to Ni-NTA on SWNT/CHI microarray. (e) Representative fluorescence time-traces 

(red) for the addition of anti-His-tag antibody (100 nM to 10 pM), showing the clear stepwise 

fluorescence increase. This stepwise increase response indicates single protein-protein 

interaction on SWNT. Black line in all traces denotes the fitted trace from Chisquared error-

minimizing step-finding algorithm. 
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Supporting Figure S8. Protein-protein interactions on SWNT/CHI array. nIR fluorescence 

spectra of SWNT before and after protein addition. Using Jun, Fos, CDK4, and p16 as queries, 

protein-protein interaction was analyzed by detecting the fluorescence changes. (a) p16-CDK4, 

(b) FOS-JUN, (c) CDK4-JUN, (d) Jun-CDK4, (e) FOS-p16, (f) CDK4-FOS, (g) FOS-CDK4, (h) 

JUN-p16, (i) p16-JUN. The first His-tag protein indicated in red was expressed on SWNT/CHI 

array, and then the second protein without His-tag indicated in blue was added to each well, 

respectively. Nanotubes were excited at 85 mW with a 785 nm laser. 
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Supporting Figure S9. Distance calculation bet

distances corresponding to 10 monomer chitosan units and the Ni

from a Hyperchem molecular model. Geometry optimization was performed in the presence of 

water at 300K for 1ps providing the shortes

1.65 nm. 
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distances corresponding to 10 monomer chitosan units and the Ni-NTA moiety were estimated 

from a Hyperchem molecular model. Geometry optimization was performed in the presence of 

water at 300K for 1ps providing the shortest possible distance between the SWNT and NTA is 
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Supporting Figure S11. Homo-multimer interaction analysis based on literature survey. 
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