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Inter-Cαααα Atomic Restraints. 

We applied the inter-Cα atomic distance restraints, Eres , only to Sin3.  The function form is: 

 

Eres =

0.5 [ri, j − (r0
i, j − rlow )]2 ( for ri, j ≤ r

0
i, j − rlow )

i, j

∑

0 ( for r0
i, j − rlow > ri, j > r0

i, j + rhigh )

0.5 [ri, j − (r0
i, j + rhigh )]2 ( for ri, j ≥ r

0
i, j + rhigh )

i, j

∑














   (S1) 

 

where ri, j  and r
0
i, j

 are the Cα atomic distance between residues i and j in a simulation snapshot and the 

native complex structure (NMR model 1), respectively, and rlow  and rhigh  are set to 1.5 Å and 3.5 Å, 

respectively.  Thus, no restraint ( Erst = 0) is applied to an atom pair when r
0
i, j − rlow < ri, j < r

0
i, j + rhigh .  

The atom pairs with | i− j |≤ 3 were eliminated from the summation.  Furthermore, the summation is 

taken over the Cα atomic pairs with distances r
0
i, j  

smaller than 7.0 Å.  Thus, Sin3 exhibits large-scale 

conformational fluctuations during the McMD simulation, as shown later. 

 



 2 

McMD and TTP-McMD. 

The conformational sampling of two systems, the single-chain NRSF and NRSF-Sin3 systems, was 

achieved by the multicanonical molecular dynamics (McMD) simulation.1  In McMD, a modified 

potential energy, Emc, is introduced as: 

 

Emc E( ) = RT0 ln[n(E)]= E + RT0 ln Pc E,T0( ) ,     (S2) 

 

where E is the original potential energy, n(E) is the density of states of the system, R is the gas 

constant, and T0  is the simulation temperature.  The function Pc (E,T0 )  is a canonical energy 

distribution at T0, defined formally as: 

 

Pc E,T0( ) =
n E( )

Zc T0( )
exp −

E

RT0









 ,    (S3) 

 

where Zc(T0) is the partition function: Zc T0( ) = n E( )exp −E RT 0[ ]dE∫ .  McMD is a canonical MD 

simulation at T0  using Emc to derive forces acting on atoms: force = −∇Emc .  This simulation 

provides an energy distribution, Pmc(E,T0), formally derived as: 

 

Pmc E,T0( ) =
n E( )

Zmc T0( )
exp −

Emc

RT0









 ,    (S4) 

 

where Zmc(T0)  is a partition function for the modified potential Emc , defined as: 

Zmc T0( ) = n E( )exp −Emc RT0[ ]dE∫ .  Equation S4 is transformed using Equation S2 as: 

 

Pmc(E,T0 ) =
n(E)

Zmc(T0 )
1

n(E)
= const .    (S5) 

 

Since the temperature T0  is constant during the simulation, the partition function Zmc(T0) is also 

constant.  Thus, we do not need to calculate the absolute value of Zmc(T0 ).  Instead, we simply regard 

Zmc(T0 ) as a constant to normalize Pmc(E,T0 ) . 
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Since the density of states n(E) is unknown a priori, iterative simulations are required where n(E) 

converges to an accurate function.  A tentative density of state nt (E)  obtained from an iterative 

simulation is used to define Emc for the next iteration as: 

 

Emc(E)= RT0 ln[nt (E)].    (S6) 

 

Then, the simulation generates an energy distribution: 

 

Pmc(E,T0 ) =
n(E)
nt (E)

Zmc(T0 )−1.    (S7) 

 

The deviation of Pmc(E,T0 )  from flatness is directly related to the accuracy of the estimated density of 

states, i.e., the flatness ensures nt (E) ≈ n(E) .  Therefore, the iteration is continued until Pmc(E,T0 )  is 

flat enough in the desired energy range.  We usually set the simulation temperature T0  to a high value 

(700 K for the current study).  The desired energy range is set from T0 to Troom , where Troom  is a 

temperature slightly lower than room temperature.  The conformation readily overcomes energy barriers 

in the conformational space during the simulation, because T0 is 700 K. 

After obtaining the flat distribution for Pmc(E,T0 ) , we performed a production run using the 

converged density of states to obtain a conformational ensemble for analyses.  Note that the canonical 

energy distribution Pc(E,T) at an arbitrary temperature T is derived from Equation S3, by replacing T0 

with T.  A conformational ensemble Q(T )  is constructed by assigning the probability Pc(E,T )  to 

each conformation sampled in the production run.  This procedure is called a reweighting technique. 

To increase the sampling efficiency, we achieved trivial trajectory parallelization of the 

multicanonical molecular dynamics (TTP-McMD).2  In this method, we perform multiple McMD runs 

starting from different initial conformations, and simply connect the multiple trajectories.  The generated 

long trajectory can be regarded as a single multicanonical trajectory, because the connection of the 

multiple trajectories automatically satisfies a detailed balance.3 

We performed 64 and 512 multiple McMD runs for the single-chain NRSF and NRSF-Sin3 systems, 

respectively.  The actual procedure of TTP-McMD is as follows: In advance, we performed 64 or 512 

high-temperature (1,000 K) canonical MD runs.  The initial conformations for the high-temperature 

simulations are shown in Figures 1B and 1C of the main text, and each run was performed for 10 ns.  

Different initial atomic velocities were assigned to these multiple runs, to randomize the conformations of 

NRSF.  The structure of Sin3 in the NRSF-Sin3 system was maintained well around the NMR structure 



 4 

even at 1,000 K, because of the distance restraints mentioned above.  Then, the first McMD iteration 

was started from those randomized conformations, and all of the multiple trajectories were integrated into 

one to compute a tentative Emc (see Equation S2 or S6).  In the second iteration, all of the multiple runs 

were executed using the same Emc  computed from the first iteration, but with different initial 

conformations: The initial conformation for the j-th run of the second iteration is the last snapshot of the 

j-th run of the first iteration, and so on.  In other words, Emc  computed from the i-th iteration was used 

for all multiple runs of the (i + 1)-th iteration, and the last snapshot of the j-th run of the i-th iteration was 

used for the initial conformation for the j-th run of the (i + 1)-th iteration.  The iterations were executed 

until a flat energy distribution Pmc(E,T0 )  was obtained in the desired energy range.  The potential Emc  

and the last snapshots from the final iteration were used for the production runs.  The 64 or 512 

trajectories from the production runs are integrated to generate a conformational ensemble for analyses.  

We repeated 14 and 44 iterations for the single-NRSF and NRSF-Sin3 systems, respectively.  The 

integrated trajectory lengths for the production runs were 0.64 ×109 steps (0.64 µs) for the single-NRSF 

system and 1.17 ×109 steps (1.17 µs) for the NRSF-Sin3 system.  However, the time lengths are not 

equivalent to those from conventional canonical MD simulations, because the conformational motions are 

enhanced in TTP-McMD. 

 

PCA. 

We used principal component analysis (PCA) to analyze the distribution of polypeptides in an abstract 

conformational space.  Imagine a polypeptide conformation specified by N general coordinates.  We 

express the coordinates as a vector q: 

 

q = [q1, q2,..., qN ],     (S8) 

 

where qi
 is the i-th coordinate in an N-dimensional space.  To obtain coordinate axes (PC axes) for 

constructing the conformational space, the PCA is processed as follows: First, we calculate a 

variance-covariance matrix C from the conformational ensemble Q(T )  as: 

 

Cmn =< qmqn >T − < qm >T< qn >T
,     (S9) 

 

where Cm n
 is the matrix element (m,n), and < ... >

T
 is the ensemble average over the conformations 

in Q(T ) .  We obtained a set of eigenvectors and eigenvalues by diagonalizing C.  We arranged the 

eigenvectors in descending order of eigenvalues.  The k-th eigenvector and eigenvalue are denoted as 
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vk (T) and λk (T), respectively, which satisfy equations Cvk = λk (T )vk
 and v i(T) ⋅ v j (T) = δij

.  We use 

the eigenvectors [v1,v2,...,vN ] for the coordinate axes of the N-dimensional conformational space, where 

the coordinates [x1, x2,..., xN ] of a conformation q are given by a projection: 

 

x i = v i(T) ⋅ (q– < q >T ).    (S10) 

 

We refer to the conformational space constructed by the PC axes as “PC space”.  Projecting the 

conformations in Q(T )  on the N-dimensional PC space, we generate a conformational distribution, 

which is an image of a free-energy landscape.  Furthermore, we can project any polypeptide 

conformation, which may not be a member of Q(T ) , on the PC space by using Equation S10.  When 

the conformations in Q(T )  are projected on an eigenvector, a one-dimensional distribution is generated.  

The magnitude of the standard deviation (SD) of the one-dimensional distribution depends on the selected 

eigenvector.  As a general nature of PCA, the larger the eigenvalue assigned to an eigenvector, the larger 

the SD on the eigenvector.  Thus, the first eigenvalue can be a coordinate axis that most effectively 

discriminates the structural variety of the conformations in Q(T ) .  Similarly, the second and third 

eigenvectors can be effective coordinate axes to discriminate the structural variety.  To express how the 

structural variety is served by an eigenvector, a contribution ratio is used.  The ratio of the k-th 

eigenvector is given by: 

 

 RPCA (k) = λk (T ) / λi

i

all

∑ (T ).    (S11)   

 

The contribution ratio from the first three eigenvectors, v1(300K), v2 (300K)  and v3(300K), is then 

given by: 

 

RPCA
1−3 = RPCA (1)+ RPCA (2)+ RPCA (3).

   
(S12) 

 

Up to this point, qi
 can be a general coordinate.  Below, for the single-chain NRSF system, we use 

an intra-NRSF Cα-Cα atomic distance, di j
, between residues i and j to express the coordinate. Here, the 

residue number of NRSF starts from 1 (i.e., i, j =1,...,15), unlike the original residue number in the PDB.  

Then, we obtained a 105-dimensional vector to describe an NRSF conformation as: 
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q = [d12, d13,..., d1415]= [q1, q2,..., q105].   (S13) 

 

For the NRSF-Sin3 system, we expressed a conformation q by a 225-dimensional vector as: 

 

q = [q1,..., q105; q106,..., q225],    (S14) 

 

where the former 105 elements (i.e., [q1,..., q105]) are the intra-NRSF Cα atomic distances used for the 

single-chain NRSF system.  The latter 120 elements (i.e., [q106,..., q225]) are the inter-Cα atomic 

distances between NRSF and eight amino-acid residues of Sin3: 15× 8 =120.  The eight residues are 

A34 (Val), A37 (Ala), A59 (Leu), A62 (Met), A72 (Thr), Val75 (Val), A96 (Phe), and A97 (Leu).  

These residues are located in the walls of the Sin3 groove in the NMR complex.  We selected two 

residues from each helix to maintain the balance as: A34 and A37 from H1, A59 and A62 from H2, A72 

and A75 from H3, and A96 and A97 from H4. 

To visualize the distribution of Q(300K), we picked the three major PC axes, v1(300K), v2 (300K) , 

and v3(300K), which contribute most to the conformational varieties of the system at 300 K, and 

constructed a three-dimensional (3D) subspace.  This subspace is referred as the “3DPC subspace” in 

this report.  The position x of a structure in the 3DPC subspace is expressed as x = [x1, x2, x3], where 

x i
 is defined by Equation S10.  We present the conformational distribution by dots projected on the 

3DPC subspace, where a dot corresponds to a conformation. 

 

Figure S1. 

 

Figure S1. Flat energy (E) distributions Pmc(E,T0) in log scale for the single-chain NRSF system (A) and the NRSF-Sin3 

system (B).  Canonical energy distributions Pc(E,300K) and Pc(E,600K) are also shown. 
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Figure S2. 

 

Figure S2. Stereo view (parallel) of Figure 2 of the main text.  Since the view is from the same direction as Figure 2, the 

non-labeled coordinate axes correspond to those in Figure 2. 

 

Figure S3. 

 

Figure S3. Stereo view (parallel) of Figure 5A of the main text.  Since the view is from the same direction as Figure 5A, the 

non-labeled coordinate axes correspond to those in Figure 5A.  The coloring of dots is also the same as that in Figure 5A. 

 

Non-restrained Canonical MD of Single Sin3. 

We assessed the effect of the inter-Cα atomic distance restraints (Equation S1) on the opening/closing 

motions of the Sin3 groove, as follows: First, we performed canonical MD simulations of a single Sin3 at 

300 K, where the restraints were not applied.  The initial structure of Sin3 was the native structure 
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(NMR model 1), after removing NRSF.  This molecule was immersed in a solvent sphere (diameter = 70 

Å), using the same method as that for the Sin3-NRSF system.  The final generated system involved 

5,503 water molecules, 4 Cl– and 4 Na+ (~ 1 mM ionic concentration), where the net charge of the entire 

system was neutralized.  The other condition for the system was exactly the same as that for the 

NRSF-Sin3 system.  After energy minimization, we performed six canonical MD runs at 300 K, each for 

11.0 ns: heating for 1.0 ns from 1 to 300 K, 1.0 ns for equilibrium, and 9.0 ns for sampling.  Figure S4 

plots the fluctuations of rmsd  in three of the six trajectories, where the rmsd  is computed for the 

main-chain heavy atoms between a simulation snapshot and the NMR model 1. 

 

Figure S4. (A) Fluctuations of rmsd between the snapshot and NMR model 1.  Trajectories are shown in different colors.  

The x- and y-axes are simulation time and rmsd, respectively.  The initial rmsd value is not zero, because energy 

minimization was performed prior to the simulation. 

To highlight the opening/closing motions of the Sin3 groove, we picked two pairs of Cα atoms: pair 

1 between Val A34 and Lys A66, and pair 2 between Thr A72 and Phe A96.  Their positions are shown 

in Figure S5.  The distance rpair1  for pair 1 indicates the distance between helices H1 and H2, and rpair2  

for pair 2 represents the distance between H3 and H4. 
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Figure S5. Inter-Cα atomic pairs, pair 1 (red spheres) and pair 2 (blue spheres), to monitor groove opening/closing motions 

of single Sin3.  Arrows indicate the pairs.  The four helices are labeled “H1” to “H4”.  The values of rpair1 and rpair2 in the 

native structure (NMR model 1) are 15.5 Å and 12.9 Å, respectively. 

 

Next, we computed the distribution function on a plane of rpair1  and rpair2 , and converted it to the 

potential of mean force: PMFpair = −RT ln[Ppair (rpair1,rpair2 ) / Ppair
max ], where the temperature T is set to 300 K, 

Ppair (rpair1, rpair2 )  is the distribution function projected on the plane, and Ppair
max  is the maximum probability.  

We also computed PMFpair  from QN-S(300K)  of the NRSF-Sin3 system.  Figures S6A and S6B 

demonstrate PMFpair from the non-restrained canonical MD simulations of single Sin3 and QN-S(300K), 

respectively.  These figures indicate that the McMD with the inter-Cα atomic restraints provides the 

groove motions that are compatible with those of the non-restrained MD.  The inter-Cα atomic restraint 

was weak and applied only on the Cα atomic pairs with r
0
i, j < 7.0  Å (see the section “Inter-Cα Atomic 

Restraints.” above).  This is why the groove motions are allowed in the McMD simulations. 
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Figure S6. Potential of mean force PMFpair on a 2D plane [rpair1, rpair2].  (A) PMFpair from non-restrained canonical MD 

simulations of a single Sin3 at 300 K, and (B) that from QN-S(300K) of McMD simulations of the NRSF-Sin3 system. 

 

Cluster Analysis. 

We classified the conformations of QN-S(300K) into clusters using a structure-based clustering method, 

the average linkage method.  Suppose we have two conformations, i and j, with coordinates expressed as 

qi = [q1(i),..., q225(i)] and qi = [q1( j),..., q225( j)]  in the format of Equation S14.  First, we defined the 

structural similarity Di j  between the two conformations: 

 

Di j = [ (qk (i)−qk ( j))2

k=1

225

∑ ]1/2 .    (S15) 

 

A smaller value of Di j  indicates greater similarity between the two conformations.  Since Di j  is 

computed using all elements of Equation S14, this similarity score is defined not in the 3DPC subspace, 

but in the full-dimensional space. 

The average linkage clustering was performed for the conformations of QN-S(300K), as follows: In 

step 1, each conformation was treated as a cluster.  We refer to the number of clusters as Nclust.  There 

are Nclust (Nclust −1) / 2  inter-cluster pairs.  In step 2, the nearest-cluster pair (i.e., the pair with the 

smallest Di j ) in the inter-cluster pairs was merged as a new cluster.  The new inter-cluster distance was 

defined as the average of Di j  between the conformations belonging to the two clusters.  Here, we 

denote the inter-cluster distance for the nearest clusters as rnearest.  By repeating this procedure, the value 

of Nclust decreased by one.  We must terminate the clustering at a step, because Nclust is not set in 

advance.  If the clustering is terminated at a step where rnearest ≥ Dcut , then the resultant Nclust  is 

expressed as a function of Dcut .  Figure S7A demonstrates that Nclust has an inflection point at 

Dcut = 3.5 Å.  We denote the number of conformations involved in the m-th cluster as N(m) , and 

arranged the clusters in descending order of N(m) : the first cluster is the largest cluster.  Then, we 

computed the ratio of N(m)  to the number of conformations in QN-S(300K) as: Rocc (m) = N(m) / N tot , 

where N tot  is 3,611.  Figure S7B demonstrates the relationship between Dcut  and Rocc (1) ; i.e., the 

ratio of the largest clusters. 
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Figure S7. (A) Relationship between Dcut and Nclust.  The two lines are data fitting for Dcut ≥ 3.5 Å and Dcut < 3.5 Å.  (B) 

Relationship between Dcut and Rocc(1). 

When the threshold Dcut is decreased, the number of clusters Nclust increases, and QN-S(300K) is 

finally disassembled into singletons (clusters consisting of a single conformation).  In contrast, with 

increasing Dcut , Nclust decreases, where small clusters are combined to a larger cluster and finally Nclust 

becomes 1.  The existence of the inflection point ( Dcut = 3.5 Å) indicates that the cluster distribution 

settles into a stable state above this point.  In fact, Figure S7B indicates that Rocc (1)  exhibits 

discontinuity at Dcut = 3.5  Å, and is approximately constant for Dcut ≥ 3.5  Å.  In this study, we 

analyzed the clusters computed at Dcut = 3.5 Å, where Nclust = 57. 

 

Hydrophobic Atoms. 

To count the hydrophobic atomic contacts, Nhbic , in the NRSF-Sin3 interface, we defined the 

hydrophobic atoms as follows: all side-chain heavy atoms of eight hydrophobic amino-acids (Ala, Val, 

Leu, Ile, Phe, Pro, Met, and Trp); Cβ of Asn and Asp; Cβ and Cγ of Gln and Glu; Cβ, Cγ, Cδ of Arg and 

Lys; Cγ2 of Thr; and Cβ, Cγ, Cδ, Cδ Cε, and Cε of Tyr. 

 

Relationship between qori and the Number of Intra-NRSF Hydrogen Bonds. 

To analyze the relationship between the NRSF orientation qori  and the number of intra-NRSF helical 

hydrogen bonds NHB , we computed the potential of mean force PMFHB(qori, NHB)  on a plane [qori, NHB].  

An intra-NRSF helical hydrogen bond is one formed between the carbonyl oxygen atom of residue i and 

the amide nitrogen atom of residue i + 4 in NRSF. 

Figure S8A demonstrates PMFHB(qori, NHB)  computed from QN-S(300K) .  NRSF in the NMR 

complex structure involves ten helical hydrogen bonds, and the maximum of NHB in QN-S(300K) was 
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eight.  Here, we focus on the parallel ( qori ≈ +1) and anti-parallel ( qori ≈ −1) complexes.  In the parallel 

ones, the lowest free-energy state is at NHB = 2  and the second lowest is at NHB = 8.  This second 

lowest state corresponds to the native-like complex structure.  In the anti-parallel ones, the lowest 

free-energy state is at NHB = 0  and the second lowest is at NHB = 5.  Since Figure S8A was computed 

from all conformations in QN-S(300K) , many extended NRSF conformations are involved in 

PMFHB(qori =±1,NHB).  Then, to focus on the structures with d3−13  values similar to that of the native 

complex ( d3−13
native =15.5  Å), we recomputed PMFHB(qori,NHB)  from the structures only in the range of 

d3−13
native − 2.0 < d3−13 < d3−13

native + 2.0  Å (Figure S8B).  In this recomputed PMFHB(qori,NHB) , the stability of 

the second lowest free-energy state ( NHB = 8) for the parallel complexes increased, to be compatible with 

that of the lowest free-energy state ( NHB = 2 ).  This is because the extended conformations with a few 

helical hydrogen bonds were eliminated from PMFHB(qori,NHB) .  In contrast, for the anti-parallel 

complexes, the stability of the second lowest free-energy state ( NHB = 5) did not increase. 

 

Figure S8.  (A) Potential of mean force, PMFHB, on the plane of qori and NHB computed from all conformations in 

QNS(300K).  PMFHB is defined as: PMFHB(qori, NHB) = –RT ln[PHB(qori, NHB) / PHBmax], where PHB(qori, NHB) is the number of 

conformations detected in the range from [qori, NHB] to [qori + ∆qori, NHB], and PHBmax is the maximum of PHB(qori, NHB).  NHB is 

a positive integer.  The temperature T is set to 300 K, and the bin size ∆qori is set to 0.1.  The value of PMFHB, which is 

presented by a tone, is assigned to a tile centered at [qori + 0.5∆qori, NHB + 0.5].  (B) PMFHB computed only from the 

conformations in the range of d3−13
native − 2.0 < d3−13 < d3−13

native + 2.0  Å of QN-S(300K), where d3−13
native  is d3-13 for the NMR 

model 1 (15.5 Å). 

As mentioned above, two stable states exist at NHB = 2 and NHB = 8 in the parallel ( qori ≈ +1) 

NRSF-Sin3 complexes in Figure S8B.  Therefore, one may imagine that there is another free-energy 

barrier besides B1 and B2.  However, we note that NHB  has less resolution to differentiate structures 

than the 3DPC subspace does, because a variety of structures can have the same value of NHB .  In the 

3DPC distribution (Figure 5B), the light cyan dots (1≤ NHB ≤ 2) are found readily in the vicinity of the 
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red dots ( NHB ≥ 5), and, more importantly, the purple dots ( 3≤ NHB ≤ 4 ) do not separate the light cyan 

and red dots, but are spattered over the distribution.  Therefore, no free-energy barrier exists between 

NHB = 2  and NHB = 8.  This exemplifies that free-energy expression by a quantity with less structural 

resolution misreads an artificial free-energy barrier, as mentioned previously.4 

 

Free-energy Landscape with Different Structural Measures.  

Other types of free-energy landscapes may be useful for studying coupled folding and binding.5,6   We 

computed the potential of mean force on a plane of the number of intra-NRSF hydrogen bonds, NHB , 

and the number of residue-residue contacts between NRSF and Sin3, Ncont : 

PMFcont = −RT ln[Pcont (NHB, Ncont ) / Pcont
max ] , where Pcont (NHB, Ncont )  and Pcont

max  are the distribution function 

and the maximum distribution, respectively.  Figure S9 demonstrates PMFcont  at 300 K, computed from 

the sampled conformations of the NRSF-Sin3 system. 

 

Figure S9.  Potential of mean force, PMFcont, at 300 K on the plane of Ncont and NHB, computed from QN-S(T). 

Arrows are mentioned in text. 

 

One may have the impression that Figure S9 supports the mechanism proposed in Figure 11B: The 

solid-line arrows present the induced fit (induced folding), and the dashed-line arrows depict the 

population shift.  However, as discussed in the DISCUSSION section, most unbound NRSF 

conformations were sampled in a high-energy region (a high-temperature region).  Therefore, the free 

energy at Ncont = 0  in Figure S9 was contributed from conformations sampled in the high-energy region: 

The contribution from a high-energy conformation is given by Pc Ehigh, 300K( ) , where Ehigh  is the 

energy of the conformation.  Consequently, the free energy at Ncont = 0  was presented inaccurately.  

To compensate for the statistics on the low probability events at 300 K, another computational approach 
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should be combined with McMD sampling, as discussed in the DISCUSSION section. 
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