Supporting Information

"Development of β-Amino Alcohol Derivatives that Inhibit Toll Like Receptor 4 Mediated Inflammatory Response as Potential Antiseptics"

Sherry A. Chavez ${ }^{a l}$, Alexander J. Martinko ${ }^{a l}$, Corinna Lau ${ }^{b}$, Michael N Pham ${ }^{a}$, Kui Cheng ${ }^{a}$, Tom

$$
\text { E. Mollnes }{ }^{b, c} \text {, Hang Yin }{ }^{a}
$$

${ }^{\text {a }}$ Department of Chemistry and Biochemistry University of Colorado at Boulder, Boulder, CO 80309, USA; ${ }^{\text {b }}$ Research Laboratory, Nordland Hospital, Bodø, Norway; ${ }^{\text {c }}$ University of Tromsø, Tromsø, Norway NO-9037
*Hang Yin. Tel.: +1-303-492-6786; fax: +1-303-492-5894; e-mail: hang.yin@colorado.edu Department of Chemistry and Biochemistry, 215 University of Colorado at Boulder, Boulder Colorado, 80309-0215
${ }^{1}$ These authors contributed equally to this work and should be considered co-first authors.

Table of Contents

S2. General Chemistry Methods
S3. General Synthetic Procedure for Racemic Epoxides of Type 2.
S7. Synthesis of Chiral Epoxides
S10. General Synthetic Procedure for the Pyrazole Fragment Type 6.
S13. General Synthetic Procedure for the Amine Fragments of Type 3.
S16. Synthesis of β-Amino Alcohol Derivatives.
S28. Supplemental Figure 1.
S29. Supplemental Figure 2.

General Chemistry Methods

All reactions were run under an inert atmosphere of either N_{2} or Ar gas. Reaction solvents were purchased anhydrous and of HPLC quality. All other reagents were purchased from Sigma Aldrich and used without further purification. Yields were calculated for material judged homogenous by thin layer chromatography (TLC) and nuclear magnetic resonance (NMR). TLC was performed on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates, eluting with the solvent indicated, visualized by a 254 nm UV lamp, and stained with an ethanolic solution of phosphomolybdic acid-hydrate. Glassware for reactions was oven dried at $125{ }^{\circ} \mathrm{C}$ prior to use. Column flash chromatography was performed using silica gel $\left(\mathrm{SiO}_{2}\right)$ Premium $\mathrm{R}_{\mathrm{f}}, 60$ Á, 200 x 400 mesh from Sorbent Technologies. Nuclear magnetic resonance spectra were acquired on a Bruker spectrometer (300 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz for ${ }^{13} \mathrm{C}$) or a Varian Inova-400 (400 MHz for ${ }^{1} \mathrm{H}$ and 101 MHz for ${ }^{13} \mathrm{C}$). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported in parts per million (ppm) and referenced to the signal of residual CDCl_{3} at 7.26 ppm . Chemical shifts for ${ }^{13} \mathrm{C}$ NMR and DEPT spectra are reported in parts per million (ppm) and referenced to the center line of the residual CDCl_{3} triplet at 77.23 ppm . Chemical shifts of the unprotonated carbons (' C ') for DEPT spectra were obtained by comparison with the ${ }^{13} \mathrm{C}$ NMR spectrum. Enantiomeric excess was determined by chiral HPLC analysis using a Daicel Chiralcel AD-H silica column (length $=25 \mathrm{~cm}$) eluting with a mobile phase of an indicated percentage of $i-\mathrm{PrOH} /$ hexanes with $0.1 \% \mathrm{Et}_{2} \mathrm{NH}$ and at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. Retention times for the major and minor enantiomers were detected with Shimdzu SPD-6A UV spectrometric detector at 254 nm . Optical rotations were obtained on a Jasco P1038 polarimeter (Na D line) using a microcell with a 1 dm path length. Specific rotations $\left([\alpha]_{D}{ }^{20}\right.$, Unit: $\left.{ }^{\circ} \mathrm{cm}^{2} / \mathrm{g}\right)$ are based on the equation $\alpha=(100 \bullet \alpha) /(l \bullet c)$ and are reported as unitless numbers where the concentration c is in $\mathrm{g} / 100 \mathrm{~mL}$ and the path
length l is in decimeters. Mass spectrometry was obtained at the mass spectrometer facility of the University of Colorado Boulder, Department of Chemistry \& Biochemistry on an ESI-qTOFMS (electrospray-triple quadrupole-time-of-flight mass spectrometer) from Applied Biosystems, PE SCIEX/ABI API QSTAR Pulsar i Hybrid LC/MS/MS. All compounds tested have a purity of $\geq 95 \%$ as determined by TLC, NMR, HRMS, and chiral HPLC for chiral compounds. Compounds were named using ChemBioDraw Ultra 11.0.

General Synthetic Procedure for Racemic Epoxides of Type 2.

Into a 50 mL round bottom flask, a phenol (1 eq) was taken up into acetone (0.4 M). To the solution, $\mathrm{K}_{2} \mathrm{CO}_{3}(3 \mathrm{eq})$ and epichlorohydrin (4 eq) were added consecutively. The reaction mixture was set to stir at reflux for 24 h . At this time, an additional 4 eq of epichlorohydrin was added and the solution was allowed to stir at reflux for an additional 24 h .

The reaction was cooled to room temperature and the solids were filtered off. The solvent was removed under reduced pressure and the resulting oil was taken up into toluene (20 $\mathrm{mL})$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 20 \mathrm{~mL}), 1 \mathrm{M}$ aqueous NaOH solution (1 x 20 $\mathrm{mL})$, and $\mathrm{H}_{2} \mathrm{O}(1 \times 30 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting material was then purified via flash SiO_{2} chromatography.

2-((4-ethyoxyphenoxy)methyl)oxirane) (2b) Similar to the general procedure describe above. The resulting epoxide $\mathbf{2 b}$ was isolated as white fine crystals without the need for purification $(0.87 \mathrm{~g}, 87 \%) ; \mathrm{R}_{\mathrm{f}}=0.277(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.96-6.69$ $(\mathrm{m}, 4 \mathrm{H}), 4.16(\mathrm{dd}, J=3.26,11.04 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{dddd}, J=2.68,3.25,4.12$,
$5.87 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=4.15,4.91 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.66,4.96 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=6.99$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 153.74$ (C), $152.80(\mathrm{C}), 115.91(\mathrm{CH}), 115.60(\mathrm{CH})$, $\left.69.73\left(\mathrm{CH}_{2}\right), 64.19\left(\mathrm{CH}_{2}\right), 50.49(\mathrm{CH}), 44.97\left(\mathrm{CH}_{2}\right), 15.15\left(\mathrm{CH}_{3}\right) ; \mathrm{HRMS}(\mathrm{ESI})^{+}\right)=$calcd $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=217.0835$, found $=217.0826$.

2-((3,4-dichlorophenoxy)methyl)oxirane (2e). Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} chromatography ($3.0 \times 3.5 \mathrm{~cm}, 20 \%$ EtOAc / hexanes) to yield the epoxide (2e) as clear oil ($0.95 \mathrm{~g}, 95 \%$); $\mathrm{R}_{\mathrm{f}}=0.34(20 \% \mathrm{EtOAc} /$ hexanes); 1H NMR (300 MHz, CDCl3) $\delta 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, \mathrm{~J}=2.90 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ $(\mathrm{dd}, \mathrm{J}=2.92,8.90 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, \mathrm{J}=2.88,11.04 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, \mathrm{J}=5.85,11.04 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, \mathrm{J}=4.15,4.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=2.64,4.86 \mathrm{~Hz}, 1 \mathrm{H}) ; 13 \mathrm{C}$ NMR (75 MHz, CDCl3) $\delta 130.97$ (CH), 124.79 (C), $116.78(\mathrm{CH}), 114.92(\mathrm{CH}), 112.70(\mathrm{C})$, $100.21(\mathrm{C}), 69.54\left(\mathrm{CH}_{2}\right), 50.08(\mathrm{CH}), 44.73\left(\mathrm{CH}_{2}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{ClO}_{3} \mathrm{Li}\left(\mathrm{M}^{2} \mathrm{Li}^{+}\right)$ $=225.0062$, found $=225.0059$.

2-((4-(trifluoromethyl)phenoxy)methyl)oxirane (2f). Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} chromatography ($4 \times 6 \mathrm{~cm}$, 10% EtOAc / hexanes) to yield the desired aryl epoxide (2f) (1.03 g, 76\%); $\mathrm{R}_{\mathrm{f}}=0.23(10 \%$ EtOAc / hexanes); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.94(\mathrm{~m}, 1 \mathrm{H}), 4.29$ (dd, $J=2.84,11.08 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=5.91,11.08 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{tdd}, J=2.74,4.14,5.58$, $5.58 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=4.17,4.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=2.65,4.87 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.05(\mathrm{C}), 127.07\left(\mathrm{q},{ }^{3} J_{\mathrm{CF}}=3.74 \mathrm{~Hz}, \mathrm{CH}\right), 124.75\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=271.99 \mathrm{~Hz}, \mathrm{C}\right)$,
$123.24\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=4.3 \mathrm{~Hz}, \mathrm{C}\right), 114.74(\mathrm{CH}), 69.06\left(\mathrm{CH}_{2}\right), 50.05(\mathrm{CH}), 44.60\left(\mathrm{CH}_{2}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)$
$=$ calcd $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{O}_{2} \mathrm{Li}\left(\mathrm{M}+\mathrm{Li}^{+}\right)=225.0713$, found $=225.0709 .1$

4-(oxiran-2-ylmethoxy)benzonitrile (2g) Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} chromatography ($4.0 \times 3.5 \mathrm{~cm}, 10 \% \mathrm{EtOAc}$ / hexanes) to yield the desired epoxide ($\mathbf{2 g}$) as a clear oil $(0.95 \mathrm{~g}, 95 \%) ; \mathrm{R}_{\mathrm{f}}=0.12(10 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 4.32(\mathrm{dd}, J=$ $2.84,11.11 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=5.91,11.12 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{ddt}, J=2.73,2.73,4.13,5.88 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94(\mathrm{dd}, J=4.16,4.80 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=2.64,4.83 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.87(\mathrm{C}), 134.26(\mathrm{CH}), 119.26(\mathrm{CH}), 115.56(\mathrm{CH}), 104.84(\mathrm{C}), 69.25\left(\mathrm{CH}_{2}\right), 49.99$ $(\mathrm{CH}), 44.72\left(\mathrm{CH}_{2}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{NNa}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=198.0525$, found $=198.0521$.

2-((4-(allyloxy)phenoxy)methyl)oxirane (2c) To a 25 mL round bottom flask with DMF (8.37 $\mathrm{mL})$, hydroquinone ($0.82 \mathrm{~g}, 7.40 \mathrm{mmol}, 2 \mathrm{eq}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.51 \mathrm{~g}, 3.70 \mathrm{mmol}, 1 \mathrm{eq})$ were added at room temperature. To this stirring mixture, a solution of allyl bromide $(0.58 \mathrm{~mL}, 6.66 \mathrm{mmol}$, $1.8 \mathrm{eq})$ and DMF (2.79 mL) was added dropwise over 45 min . The resulting mixture was set to reflux for 22 h .

The brown and cloudy solution was cooled to room temperature and poured into cold $\mathrm{H}_{2} \mathrm{O}(125 \mathrm{~mL})$. The resulting mixture was neutralized with a 10% aqueous HCl solution. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and brine $(1 \times 60 \mathrm{~mL})$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and the solvent was removed under reduced pressure. The resulting oil was purified via flash SiO_{2} column chromatography ($3.0 \times 8.5 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexanes) to yield 4-
(allyloxy)phenol as an clear oil ($0.34 \mathrm{~g}, 34 \%) ; \mathrm{R}_{\mathrm{f}}=0.25$ ($20 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.05(\mathrm{ddt}, J=5.34,5.34,10.57,17.25 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dq}, J$ $=1.63,1.63,1.63,17.25 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dq}, J=1.41,1.41,1.41,10.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H})$, 4.48 (dt, $J=1.51,1.51,5.35 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.93$ (C), 149.79 (C), $133.70(\mathrm{CH}), 117.83\left(\mathrm{CH}_{2}\right), 116.24(\mathrm{CH}), 116.17(\mathrm{CH}), 69.85\left(\mathrm{CH}_{2}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=173.0573$, found $=173.0567$.

A 25 mL round bottom flask with THF (2.85 mL) was cooled to $0^{\circ} \mathrm{C}$. To this cooled flask, $\mathrm{NaH}(0.13 \mathrm{~g}, 5.24 \mathrm{mmol}, 2 \mathrm{eq})$ was added and stirred for 10 min . To this solution, 4(allyloxy)phenol ($0.39 \mathrm{~g}, 2.62 \mathrm{mmol}, 1 \mathrm{eq}$) in THF (2.85 mL) was added dropwise and the mixture was stirred for a further 10 min . Epichlorohydrin ($0.82 \mathrm{~mL}, 10.5 \mathrm{mmol}, 4 \mathrm{eq}$) was added dropwise and reaction mixture was stirred for 10 min at $0{ }^{\circ} \mathrm{C}$ then was warmed to room temperature. The reaction then was allowed to stir at reflux for 13 h .

At this time, the reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with ice and cold $\mathrm{H}_{2} \mathrm{O}$. Once the reaction had warmed to room temperature, the solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ $\mathrm{mL})$. The combined organic layers were washed with brine ($1 \times 20 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting material was then loaded onto a flash SiO_{2} column with toluene and the column flushed with hexanes, then purified (3.0×8.0 $\mathrm{cm}, 5 \% \mathrm{EtOAc} /$ hexanes $)$ to yield 2 c as an yellow oil $(0.27 \mathrm{~g}, 53 \%) ; \mathrm{R}_{\mathrm{f}}=0.26(10 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85(\mathrm{~s}, 4 \mathrm{H}), 6.12-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{ddq}, J=1.43$, $1.53,1.53,10.48,33.74 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{dt}, J=1.52,1.52,5.32 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=3.24,11.04$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=5.61,11.04 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=4.14,4.93 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.66,4.95 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.39$ (C), 153.00 (C),
$133.73(\mathrm{CH}), 117.77\left(\mathrm{CH}_{2}\right), 115.91(\mathrm{CH}), 115.87(\mathrm{CH}), 69.70\left(\mathrm{CH}_{2}\right), 69.67\left(\mathrm{CH}_{2}\right), 50.48(\mathrm{CH})$, $44.96\left(\mathrm{CH}_{2}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=207.1016$, found $=207.1019$.

Synthesis of Chiral Epoxides

(R)-2-((4-ethoxyphenoxy)methyl)oxirane (2i). Into a 25 mL round bottom flask, $(S, S)-\mathrm{N}, \mathrm{N}$ 'Bis(3, 5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) ($0.078 \mathrm{~g}, 0.128 \mathrm{mmol}, 0.05$ eq) was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL}, 0.16 \mathrm{M})$ and acetic acid $(0.02 \mathrm{~mL}, 0.514 \mathrm{mmol}, 4$ eq with respect to the catalyst) was added to the room temperature solution. This was allowed to stir open to air for 1.5 h .

The solvent was evaporated off by a stream of argon and the (S, S)-salen $\mathrm{Co}(\mathrm{I}) \mathrm{OAc}$ catalyst was taken up in THF $(5.14 \mathrm{~mL}, 0.5 \mathrm{M})$ and the recemic 2-((4ethyoxyphenoxy)methyl)oxirane) (2b) ($0.50 \mathrm{~g}, 2.57 \mathrm{mmol}, 1 \mathrm{eq}$) was added in one portion. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ for 10 min , at which time, $\mathrm{H}_{2} \mathrm{O}(0.023 \mathrm{~mL}, 1.42 \mathrm{mmol}, 0.55$ eq) was added. After 10 min , the mixture was warmed to room temperature and continued to stir overnight (16 h).

To the resulting dark red solution, PPTS ($0.129 \mathrm{~g}, 4 \mathrm{eq}$ of PPTS / mmol catalyst) in 10 mL of a 1:1 $\mathrm{AcCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was added and the mixture was stirred for an additional 30 min. The solution was filtered through a $5 \times 3 \mathrm{~cm}$ plug of SiO_{2} and the plug was washed with 100 mL of EtOAc. The solvent was removed under reduced pressure and the resulting dark yellow residue was purified via flash SiO_{2} chromatography ($2.5 \times 5 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexanes) to yield the desired chiral epoxide, $\mathbf{2 i}$, as a yellow oil (0.249 g , quant.) ; $\mathrm{R}_{\mathrm{f}}=0.518(25 \% \mathrm{EtOAc}$ / hexanes $) ;[\alpha]_{\mathrm{D}}{ }^{25}=-5.304\left(\mathrm{c}=0.166, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.79(\mathrm{~m}, 4 \mathrm{H})$, $4.16(\mathrm{dd}, J=3.22,11.02 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=6.98,6.99,6.99 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=5.64,11.02$
$\mathrm{Hz}, 1 \mathrm{H}), 3.34(\mathrm{dddd}, J=2.75,3.20,4.10,5.77 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=4.22,4.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.74$ $(\mathrm{dd}, J=2.67,4.95 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=6.99 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.67(\mathrm{C})$, $152.74(\mathrm{C}), 115.84(\mathrm{CH}), 115.53(\mathrm{CH}), 69.66\left(\mathrm{CH}_{2}\right), 64.13\left(\mathrm{CH}_{2}\right), 50.47(\mathrm{CH}), 44.94\left(\mathrm{CH}_{2}\right)$, $15.13\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=217.0835$, found $=217.0841$.
(S)-2-((4-ethoxyphenoxy)methyl)oxirane (2h). Similar procedure as described above using $(R, R)-\mathrm{N}, \mathrm{N}$ '-Bis(3, 5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II). The dark red residue was purified via flash SiO_{2} chromatography (dry loaded, $1.5 \times 2 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexanes) to yield the desired chiral epoxide (2h) as a yellow oil ($0.025 \mathrm{~g}, 49 \%$); $\mathrm{R}_{\mathrm{f}}=0.53(25 \%$ EtOAc / hexanes); $[\alpha]_{\mathrm{D}}{ }^{26}=56.64\left(\mathrm{c}=1.049, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88-6.80$ $(\mathrm{m}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=3.25,11.04 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=6.96,13.95 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=5.56$, $11.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.34$ (dddd, $J=2.68,3.25,4.12,5.84 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=4.14,4.89 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(\mathrm{dd}, J=2.67,4.96 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=6.99 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.68,152.74,115.84,115.53,69.67,64.13,50.42,44.96,15.14 ;$ HRMS $\left(\right.$ ESI $\left.^{+}\right)=$calcd $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=217.0839$, found $=217.0835$.
(S)-2-((4-chlorophenoxy)methyl)oxirane ($\mathbf{2 j}$) Into a 20 mL round bottom flask, $(R, R)-\mathrm{N}, \mathrm{N}$ 'Bis(3, 5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II) ($0.063 \mathrm{~g}, 0.108 \mathrm{mmol}, 0.05$ eq) was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.70 \mathrm{~mL}, 0.16 \mathrm{M})$ and acetic acid $(0.03 \mathrm{~mL}, 0.433 \mathrm{mmol}, 4$ eq with respect to catalyst) was added to the room temperature solution. This was allowed to stir open to air for 1 h .

The solvent was evaporated off by a stream of argon and the (S, S)-salen $\mathrm{Co}(\mathrm{I}) \mathrm{OAc}$ catalyst was taken up in THF (4.33 mL, 0.5 M$)$ and the recemic 2-((4-
chlorophenoxy)methyl)oxirane ($\mathbf{2 d}$) $(0.400 \mathrm{~g}, 2.17 \mathrm{mmol}, 1 \mathrm{eq})$ was added in one portion. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ for 20 min , at which time, $\mathrm{H}_{2} \mathrm{O}(0.02 \mathrm{~mL}, 1.19 \mathrm{mmol}, 0.55$ eq) was added. After 10 min , the mixture was warmed to room temperature and continued to stir overnight (16 h).

To the resulting dark brown solution, PPTS ($0.109 \mathrm{~g}, 4 \mathrm{eq}$ PPTS / mmol catalyst) in 5 mL of a 1:1 $\mathrm{AcCN}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was added and the mixture was stirred for an additional 30 min . The solution was filtered through a $5 \times 2 \mathrm{~cm}$ plug of SiO_{2} and the plug was washed with 100 mL of EtOAc. The solvent was removed under reduced pressure and the resulting dark yellow residue was purified via flash SiO_{2} chromatography ($2.5 \times 6 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexanes) to yield the desired chiral epoxide ($\mathbf{2 j} \mathbf{j})$ as a yellow oil ($0.144 \mathrm{~g}, 72 \%) ; \mathrm{R}_{\mathrm{f}}=0.22(10 \% \mathrm{EtOAc} /$ hexanes $)$; $[\alpha]_{\mathrm{D}}{ }^{25}=6.923\left(\mathrm{c}=1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.80$ $(\mathrm{m}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=2.93,11.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=5.85,11.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dddd}, J=$ $2.79,2.79,4.14,5.73 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=4.17,4.87 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=2.66,4.91 \mathrm{~Hz}, 1 \mathrm{H}) ;$ ${ }^{13}{ }^{2}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.17(\mathrm{C}), 129.46(\mathrm{CH}), 126.13(\mathrm{C}), 116.03(\mathrm{CH}), 69.15\left(\mathrm{CH}_{2}\right)$, $50.16(\mathrm{CH}), 44.65\left(\mathrm{CH}_{2}\right) ; \quad$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{Li}\left(\mathrm{M}+\mathrm{Li}^{+}\right)=191.0446$, found $=$ 191.0452.
(R)-2-((4-chlorophenoxy)methyl)oxirane (2k). Similar procedure described above using (S,S)-N,N'-Bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt(II). The resulting black residue was purified via flash SiO_{2} chromatography ($2.5 \times 3 \mathrm{~cm}, 10 \% \mathrm{EtOAc} /$ hexanes) to yield the desired chiral epoxide ($\mathbf{2 k}$) as a yellow oil ($0.153 \mathrm{~g}, 61 \%$); $\mathrm{R}_{\mathrm{f}}=0.22(10 \% \mathrm{EtOAc} /$ hexanes $) ;[\alpha]_{D}{ }^{20}=-2.63\left(\mathrm{c}=1.132, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.19(\mathrm{~m}, 2 \mathrm{H})$, $6.86-6.81(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=2.94,11.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.83,11.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.32$
(dddd, $J=2.81,2.81,4.14,5.71 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=4.19,4.85 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=2.65$, 4.90 Hz, 1H); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl3) $\delta 157.18$ (C), $129.47(\mathrm{CH}), 126.16$ (C), 116.02 $(\mathrm{CH}), 69.16\left(\mathrm{CH}_{2}\right), 50.15(\mathrm{CH}), 44.67\left(\mathrm{CH}_{2}\right) ; \quad \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{ClO}_{2} \mathrm{Li}\left(\mathrm{M}+\mathrm{Li}^{+}\right)=$ 191.0445 , found $=191.0453$.

General Synthetic Procedure for the Pyrazole Fragment Type 6.

In a 25 mL round bottom flask with DMSO $(0.72 \mathrm{M}), \mathrm{KOH}(1.5 \mathrm{eq})$, and 3, 5 -dimethyl-1 H-pyrazole (1 eq) were combined and set to stir. This mixture was then heated at $80^{\circ} \mathrm{C}$ for 1 h . The reaction was then cooled to room temperature and the desired benzyl chloride (1 eq) was added and the reaction mixture was stirred for an additional 2 h .

Upon completion, the reaction was poured into $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ and the solution was extracted with $\mathrm{CHCl}_{3}(4 \times 50 \mathrm{~mL})$. The resulting organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 100$ mL) to remove DMSO , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting material was then purified via flash SiO_{2} column chromatography.

1-benzyl-3,5-dimethyl-1H-pyrazole (6a). Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} column chromatography ($4.0 \times 6.0 \mathrm{~cm}, 5 \%$ EtOAc / hexanes) to yield 6a as an clear oil ($1.04 \mathrm{~g}, 96 \%$); $\mathrm{R}_{\mathrm{f}}=0.1(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.40-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.79$ (C), 139.39 (C), 137.65 (C), $128.89(\mathrm{CH}), 127.62(\mathrm{CH}), 126.78(\mathrm{CH}), 105.76(\mathrm{CH}), 52.85\left(\mathrm{CH}_{2}\right), 13.78\left(\mathrm{CH}_{3}\right), 11.36\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=187.1230$, found $=187.1234$.

1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazole (6b). Similar to the general procedure described above. The resulting yellow was purified via flash SiO_{2} column chromatography ($3.0 \times 6.0 \mathrm{~cm}$, $60 \% \mathrm{EtOAc} /$ hexanes) to yield $\mathbf{6 b}$ as an yellow oil $(1.12 \mathrm{~g}, 82 \%) ; \mathrm{R}_{\mathrm{f}}=0.56(60 \% \mathrm{EtOAc} /$ hexanes); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.49$ $(\mathrm{m}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=0.69 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , CDCl_{3}) $\delta 148.34(\mathrm{C}), 139.93$ (C), 135.49 (C), 131.96 (C), $129.41(\mathrm{CH}), 128.75(\mathrm{CH}), 127.73$ $(\mathrm{CH}), 127.47(\mathrm{CH}), 105.83(\mathrm{CH}), 50.13\left(\mathrm{CH}_{2}\right), 13.81\left(\mathrm{CH}_{3}\right), 11.15\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{ClN}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=221.0840$, found $=221.0830$.

1-(3,4-dichlorobenzyl)-3,5-dimethyl-1H-pyrazole (6d). Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} column chromatography (4 x $5 \mathrm{~cm}, 10 \%$ EtOAc / hexanes) to yield the desired pyrazole ($\mathbf{6 d}$) as a light yellow oil (2.37 g , $89 \%) ; \mathrm{R}_{\mathrm{f}}=0.06\left(10 \%\right.$ EtOAc / hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.17-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 5.87-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~d}$, $J=0.69 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{3} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.31(\mathrm{C}), 139.32(\mathrm{C}), 137.85(\mathrm{C}), 133.01(\mathrm{C})$, $131.75(\mathrm{C}), 130.85(\mathrm{CH}), 128.73(\mathrm{CH}), 126.14(\mathrm{CH}), 106.10(\mathrm{CH}), 51.53\left(\mathrm{CH}_{2}\right), 13.71\left(\mathrm{CH}_{3}\right)$, $11.26\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=255.0456$, found $=255.0451$.

3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazole (6e). Similar to the general procedure described above. The resulting yellow was purified via flash SiO_{2} column chromatography ($4.0 \times 5.5 \mathrm{~cm}, 5 \% \mathrm{EtOAc} /$ hexanes) to yield $\mathbf{6 e}$ as an yellow oil ($1.21 \mathrm{~g}, 92 \%$); $\mathrm{R}_{\mathrm{f}}=0.38(10 \% \mathrm{EtOAc} /$ hexanes $) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.48$ $-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=7.67 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) ;$
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.43$ (C), $140.04(\mathrm{C}), 136.76(\mathrm{C}), 132.70(\mathrm{CH}), 127.45(\mathrm{CH})$, $127.45(\mathrm{CH}), 126.57\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=122.1 \mathrm{~Hz}, \mathrm{C}\right), 125.98\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=23.7 \mathrm{~Hz}, \mathrm{CH}\right), 106.10(\mathrm{CH}), 49.11$ $\left(\mathrm{CH}_{2}\right), 13.80\left(\mathrm{CH}_{3}\right), 11.02\left(\mathrm{CH}_{3}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{Na}\left(\mathrm{M}+\mathrm{Na}^{+}\right)=277.0923$, found $=277.0918$.

1-(2-bromobenzyl)-3,5-dimethyl-1H-pyrazole (6f). Similar to the general procedure described above. The resulting oil was purified via flash SiO_{2} column chromatography ($5.5 \times 5 \mathrm{~cm}, 1 \%$ EtOAc/hexanes) to give $\mathbf{6 f}$ as a colorless oil ($0.100,75.4 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54$ $(\mathrm{dd}, J=1.29,7.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{td}, J=1.40,7.54,7.64 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.50-$ $6.43(\mathrm{~m}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=0.68 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.38,139.96,137.07,132.68,129.03,128.10,127.73,121.74,105.85,52.70$, 13.82, 11.18; $\operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{BrN}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=265.0335$, found $=265.0325$

3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazole (6g). Into a round bottom flask, 1-(2-bromobenzyl)-3,5-dimethyl-1H-pyrazole (6f) (0.370 \quad g, $1.40 \quad \mathrm{mmol}$), tetrakis(triphenylphosphine)palladium (0) ($0.161 \mathrm{~g}, 0.140 \mathrm{mmol})$ and tributylvinyltin (0.452 mL . 1.54 mmol) were combined in 35 mL of freshly distilled toluene. This solution was degassed (3x) then heated to $110{ }^{\circ} \mathrm{C}$ for 10 h . The solvent was removed under reduce pressure and the crude compound was dissolved into diethyl ether $(30 \mathrm{~mL})$ and $\mathrm{KF} / \mathrm{Celite}^{\oplus}(1 \mathrm{~g})$ was added. The mixture was allowed to stir at room temperature for 24 h , filtered, and the solvent was removed under reduced pressure to give a yellow oil. This oil was purified via flash SiO_{2} column chromatography ($5.5 \times 5 \mathrm{~cm}, 1: 4 \mathrm{EtOAc} /$ hexanes $)$, to give $\mathbf{6 g}$ as a yellow oil $(0.28 \mathrm{~g}, 94 \%) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=1.56,7.52 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=$
$10.97,17.33 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.31,4.08 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=1.37,17.28$ $\mathrm{Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=1.37,10.96 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=0.64 \mathrm{~Hz}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.98,139.82,135.94,134.73,133.79,128.42,127.69,126.43$, $126.29,117.33,105.75,50.51,13.82,11.31 ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=$ 213.1388 , found $=213.1378$.

General Synthetic Procedure for the Amine Fragments of Type 3.

In a 25 mL round bottom flask, methylamine -HCl (3 eq) and paraformaldehyde (6 eq) were combined in absolute $\mathrm{EtOH}(0.5 \mathrm{M})$. This solution was stirred for 2 h at $60^{\circ} \mathrm{C}$. At this point, the pyrazole derivative (6) (1 eq) was added and the reaction was heated to $75{ }^{\circ} \mathrm{C}$ and stirred for 21 h .

Upon completion, the reaction was cooled to room temperature and the solvent was removed under reduced pressure. The resulting compound was taken up into 50 mL of CHCl_{3} and washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(1 \times 20 \mathrm{~mL})$. The resulting aqueous layer was then extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$ and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The resulting oil was purified via flash SiO_{2} chromatography.

1-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3a). Similar to the general procedure described above. The resulting yellow oil was loaded onto a flash SiO_{2} column with toluene, flushed with hexanes, and then purified with the indicated solvent system $\left(3.0 \times 5.5 \mathrm{~cm}, 50 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $\mathbf{3 a}$ as an oil $(1.00 \mathrm{~g}, 82 \%) ; \mathrm{R}_{\mathrm{f}}=0.1$ ($50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.03$
(dd, $J=1.20,7.66 \mathrm{~Hz}, 2 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.54(\mathrm{C}), 137.98(\mathrm{C}), 137.77(\mathrm{C}), 128.84(\mathrm{CH})$, $127.55(\mathrm{CH}), 126.66(\mathrm{CH}), 114.34(\mathrm{C}), 52.91\left(\mathrm{CH}_{2}\right), 49.06\left(\mathrm{CH}_{2}\right), 40.63\left(\mathrm{CH}_{3}\right), 12.30\left(\mathrm{CH}_{3}\right)$, $9.94\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=230.1652$, found $=230.1650$.

1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b). Similar to the general procedure described above. The resulting material was then loaded onto a flash SiO_{2} column with toluene, flushed with hexanes than purified with the indicated solvent system (3.0 x $7.0 \mathrm{~cm}, 40 \%$ acetone / hexanes) to yield 3b as an clear oil ($0.35 \mathrm{~g}, 29 \%$); $\mathrm{R}_{\mathrm{f}}=0.47(40 \%$ acetone / hexanes); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{dd}, J=1.74,7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 2 \mathrm{H})$, $6.55-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 3.54(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.47$ (C), 138.10 (C), 135.41 (C), $131.94(\mathrm{C}), 129.41(\mathrm{CH}), 128.75(\mathrm{CH})$, $127.72(\mathrm{CH}), 127.46(\mathrm{CH}), 115.41(\mathrm{C}), 50.26\left(\mathrm{CH}_{2}\right), 45.09\left(\mathrm{CH}_{2}\right), 36.10\left(\mathrm{CH}_{3}\right), 12.15\left(\mathrm{CH}_{3}\right)$, $9.70\left(\mathrm{CH}_{3}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClN}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=264.1262$, found $=264.1264$.

1-(1-(3,4-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine

Similar to the general procedure described above. The resulting oil was purified via flash SiO_{2} chromatography ($5 \times 5 \mathrm{~cm}, 200 \mathrm{~mL}$ of $60 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ then 300 mL of acetone) to give the desired amine ($\mathbf{3 d}$) as a light yellow oil $(0.55 \mathrm{~g}, 31 \%) ; \mathrm{R}_{\mathrm{f}}=0.05(60 \%$ EtOAc / hexanes with 2\% $\mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.25 \mathrm{~Hz}, 1 \mathrm{H}), 7.10$ $(\mathrm{d}, J=1.94 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.84(\mathrm{~m}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 2 \mathrm{H}), 2.87(\mathrm{~s}, 1 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.15$ (C), 138.04 (C), 137.92 (C), $133.05(\mathrm{C}), 131.74(\mathrm{C}), 130.86(\mathrm{CH}), 128.67(\mathrm{CH}), 126.09(\mathrm{CH}), 114.73(\mathrm{C}), 51.68\left(\mathrm{CH}_{2}\right), 49.01$
$\left(\mathrm{CH}_{2}\right), 40.63\left(\mathrm{CH}_{3}\right), 12.29\left(\mathrm{CH}_{3}\right), 9.90\left(\mathrm{CH}_{3}\right) ; \quad \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=$ 298.0878 , found $=298.0873$.

1-(3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-N-methylmethanamine (3e).

Similar to the general procedure described above. The resulting yellow oil was purified via flash SiO_{2} column chromatography ($3.0 \times 7.0 \mathrm{~cm}, 50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $\mathbf{3 e}$ as an yellow oil $(0.57 \mathrm{~g}, 41 \%) ; \mathrm{R}_{\mathrm{f}}=0.1\left(50 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.62 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.49(\mathrm{~d}, J=7.39 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ $(\mathrm{s}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.21(\mathrm{C}), 138.55(\mathrm{C}), 136.88(\mathrm{C}), 132.63(\mathrm{CH}), 127.43(\mathrm{CH}), 127.24(\mathrm{CH}), 126.57$ $\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=123 \mathrm{~Hz}, \mathrm{C}\right), 126.00\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=24.3 \mathrm{~Hz}, \mathrm{CH}\right), 122.75(\mathrm{C}), 114.72(\mathrm{C}), 48.75\left(\mathrm{CH}_{2}\right), 49.09$ $\left(\mathrm{CH}_{2}\right), 40.68\left(\mathrm{CH}_{3}\right), 12.35\left(\mathrm{CH}_{3}\right), 9.62\left(\mathrm{CH}_{3}\right) ; \quad \mathrm{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=$ 298.1526 , found $=298.1524$.

1-(3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazol-4-yl)-N-methylmethanamine (3f). Similar to the general procedure described above. The resulting oil was purified via flash SiO_{2} chromatography ($5 \times 4 \mathrm{~cm}, 2: 3: 95 \mathrm{MeOH} / \mathrm{Et}_{3} \mathrm{~N} / \mathrm{CHCl}_{3}$) to give the desired amine (3f) as a colorless oil ($0.460 \mathrm{~g}, 90 \%$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.46(\mathrm{dd}, J=1.43,7.60 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dd}, J=10.96,17.31 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.47(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=1.36$, $17.27 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=1.35,10.96 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.22,138.31,135.96,134.54,133.77,128.40,127.74$, $126.47,126.32,117.39,114.36,77.65,77.23,76.81,50.68,44.75,35.56,12.19,9.94 ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=256.1808$, found $=256.1817$.

Synthesis of $\boldsymbol{\beta}$-Amino Alcohol Derivatives

Methods A-E are described in detail in the Experimental Section of the manuscript.
(R)-1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-
ethoxyphenoxy)propan-2-ol (1k). Synthesized using Method B with (R)-2-((4ethoxyphenoxy)methyl)oxirane ($\mathbf{2 i}$), $(0.05 \mathrm{~g}, 0.257 \mathrm{mmol}, 1 \mathrm{eq})$ and the amine, 1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b), (0.075 g, 0.283 mmol, 1.1 eq) over 48 h . The resulting orange oil was purified via flash SiO_{2} column chromatography ($2.5 \times 3 \mathrm{~cm}, 60 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the desired chiral alcohol ($\mathbf{1 k}$) as a clear oil $(0.067 \mathrm{~g}, 57 \%) ; \mathrm{R}_{\mathrm{f}}=0.295\left(60 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$; Assay of enantiomeric excess: HPLC (Chiralcel AD 25 cm column, $20 \% i-\mathrm{PrOH} /$ hexanes with $\left.0.1 \% \mathrm{Et}_{2} \mathrm{NH} ; 1.0 \mathrm{~mL} / \mathrm{min}\right) \mathrm{t}_{\mathrm{r}}($ major $)=4.39 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=4.90 \mathrm{~min} ;>96 \% e e ;[\alpha]_{\mathrm{D}}{ }^{25}=10.55$ $\left(\mathrm{c}=0.538, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{dd}, J=1.36,7.82 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dtd}, J=$ $1.56,7.43,7.46,20.85 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 4 \mathrm{H}), 6.48(\mathrm{dd}, J=1.59,7.66 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}$, 2H), 4.08 (dddd, $J=4.85,4.85,4.85,9.20 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ ($\mathrm{q}, J=6.98,6.98,6.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.90$ $(\mathrm{d}, J=4.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ABq}, J=12.80 \mathrm{~Hz}, \Delta v=63.70 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=9.73,12.20 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.11,12.23 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=6.98$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.41$ (C), 153.00 (C), 148.02 (C), 138.64 (C), 135.29 (C), $131.87(\mathrm{C}), 129.40(\mathrm{CH}), 128.76(\mathrm{CH}), 127.51(\mathrm{CH}), 127.49(\mathrm{CH}), 115.57(\mathrm{CH}), 115.46$ $(\mathrm{CH}), 113.70(\mathrm{C}), 71.19\left(\mathrm{CH}_{2}\right), 66.32(\mathrm{CH}), 64.09\left(\mathrm{CH}_{2}\right), 59.46\left(\mathrm{CH}_{2}\right), 51.66\left(\mathrm{CH}_{2}\right), 50.27\left(\mathrm{CH}_{2}\right)$, $42.06\left(\mathrm{CH}_{3}\right), 15.12\left(\mathrm{CH}_{3}\right), 12.37\left(\mathrm{CH}_{3}\right), 9.81\left(\mathrm{CH}_{3}\right) ; \quad$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{3}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)=458.2205$, found $=458.2186$.

(R)-1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

chlorophenoxy)propan-2-ol (1t). Synthesized using Method B with the epoxide, (R)-2-((4chlorophenoxy)methyl)oxirane ($2 \mathbf{k}$), $(0.050 \mathrm{~g}, 0.271 \mathrm{mmol}, 1 \mathrm{eq})$ and the amine, 1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b), (0.078 g, 0.298 mmol, 1.1 eq) over 15.5 h . The resulting yellow oil was purified via purified via flash SiO_{2} column chromatography ($2.5 \times 4 \mathrm{~cm}, 60 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the desired alcohol ($\mathbf{I}-20$) as clear oil ($0.118 \mathrm{~g}, 97 \%) ; \mathrm{R}_{\mathrm{f}}=0.375\left(60 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$; Assay of enantiomeric excess: HPLC (Chiralcel AD 25 cm column, $20 \% i-\mathrm{PrOH} /$ hexanes with $\left.0.1 \% \mathrm{Et}_{2} \mathrm{NH} ; 1.0 \mathrm{~mL} / \mathrm{min}\right) \mathrm{t}_{\mathrm{r}}($ major $)=11.48 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=12.30 \mathrm{~min} ;>96 \% e e ;[\alpha]_{\mathrm{D}}{ }^{25}=$ $14.23\left(\mathrm{c}=1.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=1.28,7.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-$ $7.18(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 3 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.07$ (dddd, $J=4.33,4.33,4.33,9.55 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=1.84,4.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=4.88$, $21.07 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{brs}, 1 \mathrm{H}), 3.39(\mathrm{ABq}, J=13.18, \Delta v=63.00 \mathrm{~Hz}, 3 \mathrm{H}), 2.59(\mathrm{dd}, J=9.69$, $12.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J=4.19,12.23 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 157.51$ (C), 147.96 (C), 138.61 (C), 135.23 (C), 131.89 (C), 129.44 $(\mathrm{CH}), 129.40(\mathrm{CH}), 128.76(\mathrm{CH}), 127.52(\mathrm{CH}), 127.44(\mathrm{CH}), 125.91(\mathrm{C}), 115.93(\mathrm{CH}), 113.61$ (C), $70.81\left(\mathrm{CH}_{2}\right), 66.14(\mathrm{CH}), 59.21\left(\mathrm{CH}_{2}\right), 51.64\left(\mathrm{CH}_{2}\right), 50.24\left(\mathrm{CH}_{2}\right), 42.05\left(\mathrm{CH}_{3}\right), 12.33\left(\mathrm{CH}_{3}\right)$, $9.78\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=448.1553$, found $=448.1548$.

(S)-1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

chlorophenoxy)propan-2-ol (1u). Synthesized using Method E with the epoxide, (S)-2-((4chlorophenoxy)methyl)oxirane ($\mathbf{2 j}$), $(0.050 \mathrm{~g}, 0.271 \mathrm{mmol}, 1 \mathrm{eq})$ and the amine, 1-(1-(2-
chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine, ($0.078 \mathrm{~g}, 0.297 \mathrm{mmol}, 1.1$ eq) (3b). The resulting yellow-orange oil was purified via flash SiO_{2} column chromatography ($2.5 \times 3 \mathrm{~cm}, 60 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the desired alcohol (1u) as clear oil $(0.100 \mathrm{~g}, 82 \%) ; \mathrm{R}_{\mathrm{f}}=0.347\left(60 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$; Assay of enantiomeric excess: HPLC (Chiralcel AD 25 cm column, $20 \% i-\mathrm{PrOH} /$ hexanes with $0.1 \% \mathrm{Et}_{2} \mathrm{NH} ; 1.0 \mathrm{~mL} /$ $\min) \mathrm{t}_{\mathrm{r}}($ major $)=12.28 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.5 \mathrm{~min} ;>96 \% e e ;[\alpha]_{\mathrm{D}}{ }^{25}=-10.16\left(\mathrm{c}=0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{dd}, J=1.26,7.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.08$ $(\mathrm{m}, 3 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{dd}, J=1.26,7.60 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{dddd}, J=$ $3.20,3.20,3.20,8.00 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=4.90,21.03 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=1.73,4.82 \mathrm{~Hz}$, $1 \mathrm{H}), 3.39(\mathrm{ABq}, J=13.18 \mathrm{~Hz}, \Delta v=62.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=9.75,12.17 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}, J$ $=4.14,12.22 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 157.50 (C), 147.97 (C), 138.63 (C), 135.23 (C), 131.89 (C), 129.45 (CH), 129.41 (CH), 128.77 $(\mathrm{CH}), 127.52(\mathrm{CH}), 127.44(\mathrm{CH}), 125.92(\mathrm{C}), 115.92(\mathrm{CH}), 113.60(\mathrm{C}), 70.80\left(\mathrm{CH}_{2}\right), 66.13(\mathrm{C})$, $59.21\left(\mathrm{CH}_{2}\right), 51.64\left(\mathrm{CH}_{2}\right), 50.25\left(\mathrm{CH}_{2}\right), 42.05\left(\mathrm{CH}_{3}\right), 12.34\left(\mathrm{CH}_{3}\right), 9.80\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$ calcd $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=448.1569$, found $=448.1553$.

1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-

phenoxypropan-2-ol (1b). Synthesized using Method A with the commercially available epoxide, 2-(phenoxymethyl)oxirane (2a), $(0.05 \mathrm{~g}, 0.33 \mathrm{mmol}, 1 \mathrm{eq})$, and the amine $1(1-(2-$ chlorobenzyl)-3,5-dimehtyl-1 H -pyrazol-4-yl)- N -methylmethanamine (3b), ($0.096 \mathrm{~g}, 0.36 \mathrm{mmol}$, 1.1 eq). The resulting yellow oil was purified via flash SiO_{2} column chromatography (2.5 x 4 $\mathrm{cm}, 100 \mathrm{~mL}$ of $50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ followed by 100 mL of EtOAc) to yield the desired alcohol (1b) as a light yellow oil (0.136 g , quant.); $\mathrm{R}_{\mathrm{f}}=0.394$ ($50 \% \mathrm{EtOAc} /$ hexanes
with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{dd}, J=1.73,7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.23(\mathrm{~m}$, $2 \mathrm{H}), 7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.49(\mathrm{dd}, J=1.79,7.50 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H})$, $4.10(\mathrm{td}, J=5.10,5.10,5.10,9.60 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=4.95 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ABq}, J=13.18 \mathrm{~Hz}$, $\Delta v=46.46 \mathrm{~Hz}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=9.47,12.22 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=4.26,12.26 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.90(\mathrm{C}), 148.01$ (C), 138.63 (C), 135.30 (C), 131.90 (C), $129.61(\mathrm{CH}), 129.41(\mathrm{CH}), 128.77(\mathrm{CH}), 127.57(\mathrm{CH})$, $127.47(\mathrm{CH}), 121.10(\mathrm{CH}), 114.67(\mathrm{CH}), 113.69(\mathrm{C}), 70.46\left(\mathrm{CH}_{2}\right), 66.30(\mathrm{CH}), 59.47\left(\mathrm{CH}_{2}\right)$, $51.69\left(\mathrm{CH}_{2}\right), 50.26\left(\mathrm{CH}_{2}\right), 42.10\left(\mathrm{CH}_{3}\right), 12.34\left(\mathrm{CH}_{3}\right), 9.80\left(\mathrm{CH}_{3}\right) ; \quad$ HRMS $\left.(\mathrm{ESI})^{+}\right)=$calcd $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=414.1958$, found $=414.1963$.

1-(((1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

ethoxyphenoxy)propan-2-ol (1e). Synthesized using Method A with the amine 1-(1-benzyl-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3a) ($0.065 \mathrm{~g}, 0.283 \mathrm{mmol}, 1.1 \mathrm{eq}$) and the epoxide 2-((4-ethyoxyphenoxy)methyl)oxirane) (2b) ($0.05 \mathrm{~g}, 0.257 \mathrm{mmol}, 1.0 \mathrm{eq}$). The resulting yellow oil was then purified via flash SiO_{2} column chromatography $(2.5 \times 3.5 \mathrm{~cm}, 50 \%$ $\mathrm{EtOAc} /$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $\mathbf{1 e}$ as a clear oil $(0.020 \mathrm{~g}, 19 \%) ; \mathrm{R}_{\mathrm{f}}=0.30(50 \% \mathrm{EtOAc}$ / hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.13-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.84(\mathrm{~s}, 4 \mathrm{H}), 5.24(\mathrm{~s}, 2 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=6.96,6.98,6.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.91$ $(\mathrm{d}, J=4.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{ABq}, J=13.20 \mathrm{~Hz}, \Delta v=47.08 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=9.59,12.23 \mathrm{~Hz}$, $1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.18,12.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{t}, J=6.99$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 153.46$ (C), 153.07 (C), 147.48 (C), 138.18 (C), 137.50 $(\mathrm{C}), 128.90(\mathrm{CH}), 127.64(\mathrm{CH}), 126.66(\mathrm{CH}), 115.65(\mathrm{CH}), 115.54(\mathrm{CH}), 113.60(\mathrm{C}), 71.30$ $\left(\mathrm{CH}_{2}\right), 66.36(\mathrm{CH}), 64.16\left(\mathrm{CH}_{2}\right), 59.58\left(\mathrm{CH}_{2}\right), 52.97\left(\mathrm{CH}_{2}\right), 51.69\left(\mathrm{CH}_{2}\right), 42.01\left(\mathrm{CH}_{3}\right), 15.13$
$\left(\mathrm{CH}_{3}\right), 12.32\left(\mathrm{CH}_{3}\right), 10.02\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{25} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=424.2595$, found $=424.2586$.

1-(4-(allyloxy)phenoxy)-3-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-

$\mathbf{y l}) m e t h y l$)(methyl)amino)propan-2-ol (1r). Synthesized using Method A with the amine, 1(1-(2-chlorobenzyl)-3,5-dimehtyl-1 H -pyrazol-4-yl)- N -methylmethanamine (3b), (0.058 g, 0.220 $\mathrm{mmol}, 1.0 \mathrm{eq})$ and the epoxide 2-((4-(allyloxy)phenoxy)methyl)oxirane (2c) ($0.05 \mathrm{~g}, 0.24 \mathrm{mmol}$, 1.1 eq). The resulting oil was purified via flash SiO_{2} column chromatography ($3.0 \times 5.0 \mathrm{~cm}$, 40% acetone / hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield $\mathbf{1 r}$ as a clear oil in a quantitative yield; $\mathrm{R}_{\mathrm{f}}=0.36$ (40% acetone / hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{dd}, J=1.41,7.71$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 3 \mathrm{H}), 6.56-6.44(\mathrm{~m}, 1 \mathrm{H}), 6.15-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{dq}, J$ $=1.64,1.64,1.64,17.26 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 5.27(\mathrm{dq}, J=1.42,2.91,10.47 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dt}$, $J=1.53,1.53,5.32 \mathrm{~Hz}, 2 \mathrm{H}), 4.14-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=4.97 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ABq}, J=$ $13.20 \mathrm{~Hz}, \Delta v=47.39 \mathrm{~Hz}, 2 \mathrm{H}), 3.31(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=9.64,12.17 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=$ 4.17, $12.22 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 175.23 (C), 174.90 (C), 157.81 (C), 153.29 (C), 138.68 (C), 135.36 (C), 133.77 (CH), 129.47 $(\mathrm{CH}), 128.82(\mathrm{CH}), 127.62(\mathrm{CH}), 127.53(\mathrm{CH}), 117.74\left(\mathrm{CH}_{2}\right), 115.88(\mathrm{CH}), 115.64(\mathrm{CH}), 113.75$ (C), $71.27\left(\mathrm{CH}_{2}\right), 69.69\left(\mathrm{CH}_{2}\right), 66.39(\mathrm{CH}), 59.55\left(\mathrm{CH}_{2}\right), 51.74\left(\mathrm{CH}_{2}\right), 50.33\left(\mathrm{CH}_{2}\right), 42.12\left(\mathrm{CH}_{3}\right)$, $12.40\left(\mathrm{CH}_{3}\right), 9.86\left(\mathrm{CH}_{3}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=470.2205$, found $=$ 470.2213.

1-(((3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-

(4-(trifluoromethyl)phenoxy)propan-2-ol (1x) Synthesized using Method A with the epoxide,

2-((4-(trifluoromethyl)phenoxy)methyl)oxirane (2f), ($0.05 \mathrm{~g}, 0.23 \mathrm{mmol}, 1 \mathrm{eq})$ and the amine, 1-(3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-N-methylmethanamine (3e), $(0.075 \mathrm{~g}, 0.251 \mathrm{mmol}, 1.1 \mathrm{eq})$. The resulting oil was purified via flash SiO_{2} column chromatography ($2.5 \times 5 \mathrm{~cm}, 100 \mathrm{~mL}$ of $50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ followed by 100 mL of EtOAc) to yield the desired alcohol ($\mathbf{1 x}$) as a dark yellow oil ($0.058 \mathrm{~g}, 48 \%) ; \mathrm{R}_{\mathrm{f}}=0.28$ ($50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.57 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53(\mathrm{~d}, J=8.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{dt}, J=7.42,7.42,23.52 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.05 \mathrm{~Hz}, 1 \mathrm{H}), 6.49$ $(\mathrm{d}, J=7.65 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.11(\mathrm{td}, J=4.42,8.41,8.76 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H})$, 3.42 (ABq, $J=13.01 \mathrm{~Hz}, \Delta v=66.50 \mathrm{~Hz}, 2 \mathrm{H}), 2.63(\mathrm{t}, J=10.98 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dd}, J=3.98$, $12.18 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.34$ (C), 155.44 (C), 148.09 (C), 138.76 (C), 136.49 (C), $132.69(\mathrm{CH}), 127.51(\mathrm{CH}), 127.41(\mathrm{CH})$, $127.16\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=3.6 \mathrm{~Hz}, \mathrm{CH}\right), 127.06\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=3.4 \mathrm{~Hz}, \mathrm{CH}\right), 126.98\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=5.3 \mathrm{~Hz}, \mathrm{CH}\right)$, $123.14(\mathrm{C}), 114.65(\mathrm{CH}), 113.93(\mathrm{C}), 70.69\left(\mathrm{CH}_{2}\right), 66.07(\mathrm{CH}), 59.16\left(\mathrm{CH}_{2}\right), 51.67\left(\mathrm{CH}_{2}\right), 49.32$ $\left(\mathrm{CH}_{2}\right), 42.09\left(\mathrm{CH}_{3}\right), 12.36\left(\mathrm{CH}_{3}\right), 9.68\left(\mathrm{CH}_{3}\right)$, Note: signals for the CF_{3} quaternary carbons were not observed; HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=516.2056$, found $=516.2080$.

1-(((3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-

 (4-ethoxyphenoxy)propan-2-ol (1p) Synthesized using Method A with the amine 1-(3,5-dimethyl-1-(2-(trifluoromethyl)benzyl)-1H-pyrazol-4-yl)-N-methylmethanamine (3e) (0.069 g, $0.234 \mathrm{mmol}, 1.0 \mathrm{eq})$, and the epoxide 2-((4-ethyoxyphenoxy)methyl)oxirane) ($\mathbf{2 b}$) ($0.05 \mathrm{~g}, 0.257$ mmol, 1.1 eq). The resulting oil was purified via flash SiO_{2} column chromatography (3.0×5.5 $\mathrm{cm}, 35 \% \mathrm{EtOAc} /$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $\mathbf{1 p}$ as a light yellow oil $(0.049 \mathrm{~g}, 43 \%) ; \mathrm{R}_{\mathrm{f}}=$ $0.26\left(35 \% \mathrm{EtOAc} / \operatorname{hexanes}\right.$ with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.12 \mathrm{~Hz}$,$1 \mathrm{H}), 7.44-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 4 \mathrm{H}), 6.49(\mathrm{~d}, J=7.53 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{td}, J=4.75$, $9.39,9.39 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.96,6.98,6.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=4.96 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{ABq}, J$ $=13.20 \mathrm{~Hz}, \Delta v=46.77 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{dd}, J=9.56,12.25 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.21,12.25 \mathrm{~Hz}$, 1H), $2.27(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=6.98 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 153.51(\mathrm{C}), 153.06(\mathrm{C}), 148.15(\mathrm{C}), 138.76(\mathrm{C}), 136.58\left(\mathrm{q},{ }^{3} \mathrm{~J}_{\mathrm{CF}}=6 \mathrm{~Hz}, \mathrm{C}\right), 132.75$ $(\mathrm{CH}), 127.50(\mathrm{CH}), 127.20(\mathrm{CH}), 126.55\left(\mathrm{q},{ }^{1} J_{\mathrm{CF}}=123 \mathrm{~Hz}, \mathrm{C}\right), 126.00\left(\mathrm{q},{ }^{2} J_{\mathrm{CF}}=24 \mathrm{~Hz}, \mathrm{CH}\right)$, $115.65(\mathrm{CH}), 115.56(\mathrm{CH}), 114.05(\mathrm{C}), 71.27\left(\mathrm{CH}_{2}\right), 66.41(\mathrm{CH}), 64.17\left(\mathrm{CH}_{2}\right), 59.50\left(\mathrm{CH}_{2}\right)$, $51.71\left(\mathrm{CH}_{2}\right), 49.34\left(\mathrm{CH}_{2}\right), 49.29\left(\mathrm{CH}_{2}\right), 42.14\left(\mathrm{CH}_{3}\right), 15.14\left(\mathrm{CH}_{3}\right), 12.37\left(\mathrm{CH}_{3}\right), 9.70\left(\mathrm{CH}_{3}\right)$; HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~F}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=492.2469$, found $=492.2447$.

1-(((3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

ethoxyphenoxy)propan-2-ol (10). Synthesized using Method C with 1-(3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazol-4-yl)-N-methylmethanamine (3f) ($0.064 \mathrm{~g}, 0.250 \mathrm{mmol}$) and the epoxide, 2-((4-ethoxyphenoxy)methyl)oxirane ($\mathbf{2 b}$) ($0.145 \mathrm{~g}, 0.750 \mathrm{mmol})$. The resulting oil was purified via flash SiO_{2} column chromatography ($5 \times 3 \mathrm{~cm}, 1: 25: 25 \mathrm{E}_{3} \mathrm{~N}$:EtOAc:hexanes) to yield the alcohol 1 o as a colorless oil ($0.047 \mathrm{~g}, 43 \%$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.40(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=0.79 \mathrm{~Hz}, 4 \mathrm{H}), 6.47(\mathrm{~d}, J=6.78 \mathrm{~Hz}$, $1 \mathrm{H}), 5.65(\mathrm{dd}, J=1.37,17.30 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=1.34,10.96 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.12-$ $4.02(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=6.95,6.99,6.99 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{~d}, J=5.08 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{ABq}, J=$ $9.00 \mathrm{~Hz}, \Delta v=47.60 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=9.56,12.31 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.17,12.16 \mathrm{~Hz}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.46, 153.06, $147.67,138.55,135.90,134.57,133.71,128.42,127.71,126.31,126.27,117.36,115.64,115.53$,
$113.62,71.28,66.36,64.15,59.53,51.70,50.67,42.05,15.14,12.36,9.95 ; \quad$ HRMS $\left(\right.$ ESI $\left.^{+}\right)=$ calcd $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=450.5925$, found $=450.5948$.

1-(4-chlorophenoxy)-3-(((3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazol-4-

yl)methyl)(methyl)amino)propan-2-ol (1w). Synthesized using Method A with the amine, 1-(3,5-dimethyl-1-(2-vinylbenzyl)-1H-pyrazol-4-yl)-N-methylmethanamine, ($\mathbf{3 f}$) ($0.064 \mathrm{~g}, 0.25$ $\mathrm{mmol})$ and the epoxide, 2-((4-chlorophenoxy)methyl)oxirane, (2d) $(0.069 \mathrm{~g}, 0.37 \mathrm{mmol})$. The resulting yellow oil was purified via flash SiO_{2} column chromatography ($5 \times 3 \mathrm{~cm}, 1: 25: 25$ $\mathrm{E}_{3} \mathrm{~N}$:EtOAc:hexanes) to give the desired alcohol $\mathbf{1 w}$ as a colorless oil $(0.070 \mathrm{~g}, 63 \%) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.46(\mathrm{~d}, J=7.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.96(\mathrm{dd}, J=10.95,17.26$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.95 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=1.06,17.27 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38(\mathrm{dd}, J=1.04,10.98 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{td}, J=4.52,9.26,9.33 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J$ $=4.85 \mathrm{~Hz}, 2 \mathrm{H}), 3.39(\mathrm{ABq}, J=12.00 \mathrm{~Hz}, \Delta v=47.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=9.80,12.03 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45(\mathrm{dd}, J=4.15,12.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.58,147.65,138.55,135.93,134.54,133.70,129.50,128.41,127.74,126.34$, $126.27,125.99,117.41,116.00,113.54,70.89,66.17,59.27,51.71,50.69,42.06,12.37,9.96$; $\operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{ClN}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=440.2099$, found $=440.2113$.

1-(((1-(3-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

ethoxyphenoxy)propan-2-ol (1m). Synthesizes using Method A with the epoxide, 2-((4ethyoxyphenoxy)methyl)oxirane) (2b) $(0.050 \mathrm{~g}, 0.257 \mathrm{mmol}, 1 \mathrm{eq})$, the amine, 1-(1-(3-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3c), (0.075 g, 0.283 mmol, 1.1 eq). The resulting yellow oil was purified via purified via flash SiO_{2} column
chromatography ($2.5 \times 3.5 \mathrm{~cm}, 50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the desired alcohol $(\mathbf{1 m})$ as a clear oil $(0.054 \mathrm{~g}, 46 \%) ; \mathrm{R}_{\mathrm{f}}=0.270\left(60 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=1.38,4.07 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84-6.78(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 4.07(\mathrm{td}, J=4.80,4.80,4.80,9.30 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.96$, $6.98,6.98 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=5.03 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{ABq}, J=12.00 \mathrm{~Hz}, \Delta v=47.60$ $\mathrm{Hz}, 2 \mathrm{H}), 2.59(\mathrm{dd}, J=9.55,12.22 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.19,12.27 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.23$ $(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=6.98 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.28(\mathrm{C}), 152.86$ (C), 147.69 (C), 139.37 (C), 138.03 (C), 134.66 (C), 130.04 (CH), 127.72 (CH), 126.59 (CH), $124.61(\mathrm{CH}), 115.45(\mathrm{CH}), 115.35(\mathrm{CH}), 113.53(\mathrm{C}), 71.09\left(\mathrm{CH}_{2}\right), 66.17(\mathrm{CH}), 63.97\left(\mathrm{CH}_{2}\right)$, $59.40\left(\mathrm{CH}_{2}\right), 52.11\left(\mathrm{CH}_{2}\right), 51.46\left(\mathrm{CH}_{2}\right), 41.83\left(\mathrm{CH}_{3}\right), 14.94\left(\mathrm{CH}_{3}\right), 12.14\left(\mathrm{CH}_{3}\right)$, , $9.81\left(\mathrm{CH}_{3}\right)$; $\operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ClN}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=458.2205$, found $=458 . .2226$.

1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

(trifluoromethyl)phenoxy)propan-2-ol (1y). Synthesized using Method A with the epoxide 2-((-4-(trifluoromethyl)phenoxy)methyloxirane ($\mathbf{2 f}$), $(0.05 \mathrm{~g}, 0.23 \mathrm{mmol}, 1 \mathrm{eq})$ and the amine, 1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b), (0.066 g, 0.252 mmol, 1.1 eq). The resulting orange oil was purified via flash SiO_{2} column chromatography (2.5 x $4 \mathrm{~cm}, 60 \%$ EtOAc /hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$) to yield the desired alcohol (1y) as a clear oil. ($0.081 \mathrm{~g}, 73 \%) ; \mathrm{R}_{\mathrm{f}}=0.36760 \% \mathrm{EtOAc} /$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=1.62,7.53 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{dtd}, J=1.65,7.40,7.41,16.51 \mathrm{~Hz}$, $2 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{td}, J=4.29,9.52,9.53 \mathrm{~Hz}$, $1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=1.05 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{ABq}, J=13.50 \mathrm{~Hz}, \Delta v=48.70$ $\mathrm{Hz}, 2 \mathrm{H}), 2.62(\mathrm{dd}, J=9.64,12.20 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{dd}, J=4.18,12.22 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.26$
$(\mathrm{s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.38$ (C), 148.00 (C), 138.65 (C), 135.27 (C), $131.97(\mathrm{C}), 129.46(\mathrm{CH}), 128.81(\mathrm{CH}), 127.60(\mathrm{CH}), 127.46(\mathrm{CH}), 127.06\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.75\right.$ $\mathrm{Hz}, \mathrm{CH}), 124.58\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=270 \mathrm{~Hz}, \mathrm{C}\right), 123.36\left(\mathrm{q},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=32.25 \mathrm{~Hz}, \mathrm{C}\right), 114.68(\mathrm{CH}), 113.60(\mathrm{C})$, $70.75\left(\mathrm{CH}_{2}\right), 66.11(\mathrm{CH}), 59.20\left(\mathrm{CH}_{2}\right), 51.70\left(\mathrm{CH}_{2}\right), 50.30\left(\mathrm{CH}_{2}\right), 42.09\left(\mathrm{CH}_{3}\right), 12.36\left(\mathrm{CH}_{3}\right), 9.82$ $\left(\mathrm{CH}_{3}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{24} \mathrm{H}_{28} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=482.1817$, found $=482.1824$.

4-(3-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-2-

hydroxypropoxy)benzonitrile (1z) Synthesizes using Method A with the amine, 1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b) ($0.06 \mathrm{~g}, 0.23 \mathrm{mmol}$, $1.0 \mathrm{eq})$, and the epoxide, 4-(oxiran-2-ylmethoxy)benzonitrile (2 g) ($0.044 \mathrm{~g}, 0.251 \mathrm{mmol}, 1.1 \mathrm{eq}$). The resulting yellow oil was then purified via flash SiO_{2} column chromatography ($3.0 \times 4.0 \mathrm{~cm}$, $50 \% \mathrm{EtOAc} /$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $\mathbf{1 z}$ as an oil $(0.025 \mathrm{~g}, 25 \%) ; \mathrm{R}_{\mathrm{f}}=0.09(60 \%$ EtOAc / hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J$ $=1.34,7.80 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=1.61,7.58 \mathrm{~Hz}, 1 \mathrm{H})$, $5.31(\mathrm{~s}, 1 \mathrm{H}), 4.16-4.04(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=0.87 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{ABq}, J=12.00 \mathrm{~Hz}, \Delta v=$ $51.12 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 162.23(\mathrm{C}), 135.27(\mathrm{C}), 134.22(\mathrm{CH}), 129.53(\mathrm{CH}), 128.87(\mathrm{CH}), 127.65(\mathrm{CH}), 127.49$ $(\mathrm{CH}), 115.47(\mathrm{CH}), 113.54(\mathrm{C}), 70.87\left(\mathrm{CH}_{2}\right), 65.98(\mathrm{CH}), 59.07\left(\mathrm{CH}_{2}\right), 51.73\left(\mathrm{CH}_{2}\right), 50.35$ $\left(\mathrm{CH}_{2}\right), 42.09\left(\mathrm{CH}_{3}\right), 12.41\left(\mathrm{CH}_{3}\right), 9.88\left(\mathrm{CH}_{3}\right) ; \operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ClN}_{4} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=$ 439.1895 , found $=439.1886$.

1-(((1-(3,4-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(4-

 ethoxyphenoxy)propan-2-ol (1n). Synthesizes using Method C with the addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$($0.036 \mathrm{~g}, 0.257 \mathrm{mmol}, 1 \mathrm{eq}$) with the amine, 1-(1-(3,4-dichlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3d). $(0.084 \mathrm{~g}, 0.283 \mathrm{mmol}, 1.1 \mathrm{eq})$, and the epoxide, 2-((4ethyoxyphenoxy)methyl)oxirane) (2b) ($0.050 \mathrm{~g}, 0.257 \mathrm{mmol}, 1.0 \mathrm{eq})$. The resulting yellow oil was then purified via flash SiO_{2} column chromatography ($2.5 \times 4.0 \mathrm{~cm}, 100 \mathrm{~mL}$ of $50 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$ than 100 mL of $\left.100 \% \mathrm{EtOAc}\right)$ to yield $\mathbf{1 n}$ as a clear oil $(0.043 \mathrm{~g}, 34 \%)$; $\mathrm{R}_{\mathrm{f}}=0.15\left(80 \% \mathrm{EtOAc} /\right.$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.26$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=3.39 \mathrm{~Hz}, 4 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H})$, $4.06(\mathrm{td}, J=4.81,9.35,9.38 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{q}, J=6.97,6.98,6.98 \mathrm{~Hz}, 3 \mathrm{H}), 3.89(\mathrm{~d}, J=4.97 \mathrm{~Hz}$, $2 \mathrm{H}), 3.36(\mathrm{ABq}, J=15.00 \mathrm{~Hz}, \Delta v=45.59 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{dd}, J=9.51,12.21 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J$ $=4.23,12.28 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.49 (C), 153.04 (C), 148.08 (C), 138.11 (C), 137.78 (C), 133.06 (C), 131.83 (C), 130.94 $(\mathrm{CH}), 128.69(\mathrm{CH}), 126.08(\mathrm{CH}), 115.64(\mathrm{CH}), 115.55(\mathrm{CH}), 114.02(\mathrm{C}), 71.25\left(\mathrm{CH}_{2}\right), 66.40$ $(\mathrm{CH}), 64.16\left(\mathrm{CH}_{2}\right), 59.59\left(\mathrm{CH}_{2}\right), 51.66\left(\mathrm{CH}_{2}\right), 42.08\left(\mathrm{CH}_{3}\right), 29.89\left(\mathrm{CH}_{2}\right), 15.13\left(\mathrm{CH}_{3}\right), 12.32$ $\left(\mathrm{CH}_{3}\right), 9.98\left(\mathrm{CH}_{3}\right) ;$ HRMS $\left(\mathrm{ESI}^{+}\right)=$calcd $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{M}+\mathrm{H}^{+}\right)=492.1821$, found $=492.1882$.

1-(((1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)methyl)(methyl)amino)-3-(3,4-

dichlorophenoxy)propan-2-ol (1v) Synthesizes using Method A with the amine, 1-(1-(2-chlorobenzyl)-3,5-dimethyl-1H-pyrazol-4-yl)-N-methylmethanamine (3b) (0.055 g, 0.207 mmol , $1.0 \mathrm{eq})$, and the epoxide, 2-((3,4-dichlorophenoxy)methyl)oxirane (2e). ($0.050 \mathrm{~g}, 0.228 \mathrm{mmol}$, 1.1 eq). The resulting yellow oil was then purified via flash SiO_{2} column chromatography (3.0 x $3.5 \mathrm{~cm}, 60 \% \mathrm{EtOAc} /$ hexanes with $\left.2 \% \mathrm{Et}_{3} \mathrm{~N}\right)$ to yield $\mathbf{1 v}$ as an oil $(0.076 \mathrm{~g}, 76 \%) ; \mathrm{R}_{\mathrm{f}}=0.23$ ($60 \% \mathrm{EtOAc} /$ hexanes with $2 \% \mathrm{Et}_{3} \mathrm{~N}$); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=8.89 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=2.87 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{dd}, J=2.91,8.90 \mathrm{~Hz}$,
$1 \mathrm{H}), 6.54-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 4.12-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{ABq}, J=$ $13.20 \mathrm{~Hz}, \Delta v=50.19 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J=9.83,12.19 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=4.10,12.21 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{~d}, J=0.88 \mathrm{~Hz}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.03(\mathrm{C}), 148.02$ (C), 138.66 (C), 135.30 (C), 133.05 (C), 132.01 (C), 130.89 (CH), 129.50 (CH), 128.85 (CH), $127.63(\mathrm{CH}), 127.49(\mathrm{CH}), 124.45(\mathrm{C}), 116.63(\mathrm{CH}), 114.76(\mathrm{CH}), 113.60(\mathrm{C}), 71.17\left(\mathrm{CH}_{2}\right)$, $66.07(\mathrm{CH}), 59.15\left(\mathrm{CH}_{2}\right), 51.72\left(\mathrm{CH}_{2}\right), 50.34\left(\mathrm{CH}_{2}\right), 42.09\left(\mathrm{CH}_{3}\right), 12.40\left(\mathrm{CH}_{3}\right), 9.87\left(\mathrm{CH}_{3}\right)$; $\operatorname{HRMS}\left(\mathrm{ESI}^{+}\right)=\operatorname{calcd} \mathrm{C}_{25} \mathrm{H}_{37} \mathrm{Cl}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}\left(\mathrm{M}+\mathrm{H}^{+}\right)=482.1169$, found $=482.1158$.

Supplemental Figure 1. Toxicity test results of $\mathbf{1 a}, \mathbf{1} \mathbf{j}, \mathbf{1 s}, \mathbf{1 x}, \mathbf{7}$, and $\mathbf{1 q}$ using a Trypan Blue Exclusion assay in the HEK293 cells.

Supplemental Figure 2. Cell line dependent toxicity is seen for $\mathbf{1} \mathbf{j}$ and $\mathbf{1 s}$ but not for $\mathbf{1 a}$ in the RAW 264.7 and HEK293 cells.

