Supporting Information

A Formal Synthesis of SCH 351448

Heekwang Park, Hyoungsu Kim, and Jiyong Hong*
Department of Chemistry, Duke University, Durham, North Carolina 27708, United States, and College of Pharmacy, Ajou University, Suwon 443-749, Koera.

* To whom correspondence should be addressed.

Tel: 919-660-1545, Fax: 919-660-1605, E-mail: jiyong.hong@duke.edu

Contents

Page Number
Experimental Section S2
Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR \quad S26

Preparation of Hydroxy Alkene 10

To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of 3-butenylmagnesium bromide ($163 \mathrm{mg}, 3.636 \mathrm{mmol}$) in THF $(10 \mathrm{~mL})$ were added $\mathrm{CuI}(93 \mathrm{mg}, 0.485 \mathrm{mmol})$ and epoxide $11(500 \mathrm{mg}, 2.424 \mathrm{mmol})$ in THF (5 mL). After stirred for 1 h at $-20^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/20) to afford hydroxy alkene $10(450 \mathrm{mg}, 71 \%):[\alpha]^{25}=+29.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{dddd}, J=17.0,10.0,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{dd}, J=17.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.42-$ $3.45(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.1,137.9,128.5,127.76,127.56,114.4,80.0,78.5,73.6$, 38.4, 33.9, 31.1, 26.0, 22.9, 19.8; IR (neat) 3500, 1098, $910,738,698 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $263.2004\left[(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{2}\right.$ requires 263.2006].

Preparation of 2,6-cis-Tetrahydropyran 8 by Tandem CM/Oxa-Michael Reaction

To a solution of hydroxy alkene $10(50-200 \mathrm{mg}, 0.191-0.762 \mathrm{mmol})$ in toluene $(3-10 \mathrm{~mL})$ were added (E)-crotonaldehyde $(0.08-0.32 \mathrm{~mL}, 0.955-3.811 \mathrm{mmol})$ and Hoveyda-Grubbs II catalyst $(5 \mathrm{~mol} \%)$ at $25^{\circ} \mathrm{C}$. After refluxed for 18 h , the reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 40$ to $1 / 20$) to afford 2,6-cis-tetrahydropyran 8 (29-113 mg, 49-51\%) and 2,6-trans-tetrahydropyran 8' (6-29 $\mathrm{mg}, 10-13 \%)$: [For 2,6-cis-tetrahydropyran 8] $[\alpha]{ }^{25}{ }_{\mathrm{D}}=-9.9$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.97(\mathrm{dd}, J=3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 3.79-3.85(\mathrm{~m}$, $1 \mathrm{H}), 3.33$ (dd, $J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (ddd, $J=16.0,8.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{ddd}, J=16.0,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.48-$ $1.60(\mathrm{~m}, 3 \mathrm{H}), 1.17-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $202.3,139.1,128.3,127.41,127.37,81.4,76.9,73.5,73.2,50.0,38.5,31.5,24.6,23.8,21.5$, 20.3; IR (neat) $1725,1090,1048,734 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 291.1954\left[(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires 291.1955]. [For 2,6-trans-tetrahydropyran $\left.\mathbf{8}^{\prime}\right][\alpha]^{25}=-33.3\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 9.77(\mathrm{dd}, J=2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.40(\mathrm{~m}, 5 \mathrm{H}), 4.59-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.53$ $(\mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=11.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{ddd}, J=16.0,10.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=16.0$, $10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.46(\mathrm{~m}, 1 \mathrm{H})$, $1.34(\mathrm{ddd}, J=24.5,12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $201.8,139.0,128.2,127.43,127.34,76.7,73.1,72.8,68.5,44.4,38.3,28.3,24.9,21.5,20.1,18.8$.

Preparation of Methyl Ketone 9 by Myers’ Asymmetric Alkylation

12

13

LDA, LiCl

9
To a cooled $\left(-78^{\circ} \mathrm{C}\right)$ suspension of lithium chloride ($153 \mathrm{mg}, 3.616 \mathrm{mmol}$) in THF (2 mL) were added LDA ($1.0 \mathrm{M}, 1.4 \mathrm{~mL}, 1.4 \mathrm{mmol}$) and amide $\mathbf{1 2}(100 \mathrm{mg}, 0.452 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , at $0^{\circ} \mathrm{C}$ for 15 min , at $25^{\circ} \mathrm{C}$ for 5 min and then, cooled to $0^{\circ} \mathrm{C}$, and iodide $\mathbf{1 3}(310 \mathrm{mg}, 1.356 \mathrm{mmol})$ was added. After stirred for 3 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 1$ to $2 / 1$) to afford amide $\mathbf{1 4}(153 \mathrm{mg}$, $97 \%):[\alpha]^{25}{ }_{\mathrm{D}}=-69.6\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (2:1 rotamer ratio, * denotes minor rotamer peaks, $\left.500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}\right) \delta 7.05-7.35(\mathrm{~m}, 5 \mathrm{H}), 5.12(\mathrm{br}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.45(\mathrm{~m}$, $1 \mathrm{H}), 4.34-4.40^{*}(\mathrm{~m}, 1 \mathrm{H}), 4.27^{*}(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.13^{*}(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.96^{*}(\mathrm{~m}, 1 \mathrm{H}), 3.87^{*}(\mathrm{dd}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42 *(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{dd}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.89(\mathrm{~m}, 1 \mathrm{H}), 2.84^{*}(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.11^{*}$ $(\mathrm{m}, 1 \mathrm{H}), 1.62-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.02-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.42^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.34^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.29$ (s, 3H), $0.99^{*}(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.96^{*}(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($2: 1$ rotamer ratio, * denotes minor rotamer peaks, $125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{H}_{6}$) δ $177.2,176.5^{*}, 143.3,142.9^{*}, 128.3^{*}, 128.0,127.0,126.5,108.4,76.0^{*}, 75.74,75.65,74.9^{*}$,
69.4*, 69.2, 57.8, 36.1, 35.3*, 31.14, 31.11*, 30.0*, 29.7, 26.97, 26.94, 25.77*, 25.60, 18.1*, 17.1, $15.3^{*}, 14.0$; IR (neat) $3389,1615,1214,1050,701 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 350.2326$ $\left[(\mathrm{M}+\mathrm{H})^{+}, \mathrm{C}_{20} \mathrm{H}_{31} \mathrm{NO}_{4}\right.$ requires 350.2326$]$.

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 4}(80 \mathrm{mg}, 0.229 \mathrm{mmol})$ in THF (5 mL) was added methyllithium in diethyl ether ($1.6 \mathrm{M}, 0.72 \mathrm{~mL}, 1.145 \mathrm{mmol}$). The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 15 min at $0^{\circ} \mathrm{C}$. Excess methyllithium was scavenged by the addition of diisopropylamine $(0.13 \mathrm{~mL}, 0.916 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was quenched by addition of acetic acid in diethyl ether ($10 \% \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL}$). After stirred for 15 min at $25{ }^{\circ} \mathrm{C}$, the reaction mixture was neutralized with addition of saturated aqueous NaHCO_{3} solution. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/10) to afford methyl ketone $9(41 \mathrm{mg}$, $89 \%):[\alpha]^{25}=-6.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.90-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~s}$, $3 \mathrm{H}), 1.22-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $212.1,108.7,75.7,69.2,45.8,31.1,28.6,27.9,26.9,25.6,16.2$; IR (neat) $1713,1057,668 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 223.1305\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3}\right.$ requires 223.1305].

Preparation of $\boldsymbol{\beta}$-Hydroxy Ketone 15

A flask charged with $(-)-\mathrm{Ipc}_{2} \mathrm{BCl}(2.9 \mathrm{~g}, 9.09 \mathrm{mmol})$ was further dried under high vacuum for 2 h to remove traces of HCl . To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of dried $(-)-\mathrm{Ipc}_{2} \mathrm{Cl}$ in $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ were added methyl ketone $9(910 \mathrm{mg}, 4.54 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and triethylamine $(1.9 \mathrm{~mL}, 13.63$ mmol), and the resulting white suspension was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$, and aldehyde $8(1.8 \mathrm{~g}, 6.19 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ was added slowly. The reaction mixture was stirred for 2 h at $-78^{\circ} \mathrm{C}$ and for additional 2 h at $-20^{\circ} \mathrm{C}$. The reaction mixture was kept in $-20^{\circ} \mathrm{C}$ refrigerator for 14 h . The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ and pH 7 Phosphate buffer solution (8 mL), $\mathrm{MeOH}(2 \mathrm{~mL})$, and $50 \% \mathrm{H}_{2} \mathrm{O}_{2}(5 \mathrm{~mL})$ were added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 1 h at $25^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to afford an inseparable 9:1 mixture of $\mathbf{1 5}$ and $\mathbf{1 5}^{\prime}(1.6 \mathrm{~g}, \mathbf{7 2 \%}$): [For 15] $[\alpha]^{25}{ }_{\mathrm{D}}=-0.7\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{AB}, \Delta \mathrm{v}$ $\left.=32.5 \mathrm{~Hz}, J_{\mathrm{AB}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.26-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.98-4.07(\mathrm{~m}, 3 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.50$ (dd, $J=7.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.71(\mathrm{dd}, J=16.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=16.5,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.76-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.65(\mathrm{~m}, 7 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.5,138.9,128.3$, $127.42,127.36,108.8,82.1,78.8,77.2,75.8,73.2,69.3,67.9,48.1,46.6,42.7,38.3,32.1,31.1$, 28.4, 26.9, 25.7, 24.9, 23.6, 21.6, 21.0, 16.2; IR (neat) $3478,1709,1368,1046,735 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 513.3189\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{6}\right.$ requires 513.3187].

Preparation of 1,3-anti-Diol 16

To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}(3.7 \mathrm{~g}, 14.265 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{HOAc}(1: 1$, $70 \mathrm{~mL})$ was added $15(1.4 \mathrm{~g}, 2.853 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. After stirred for 4 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous NaHCO_{3} solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 7$ to $1 / 2$) to afford 1,3-anti-diol $16(1.05 \mathrm{~g}$, $75 \%):[\alpha]^{25}{ }_{\mathrm{D}}=-4.3\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 4.48(\mathrm{AB}$, $\left.\Delta v=31.0 \mathrm{~Hz}, J_{\mathrm{AB}}=12.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.15-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.71-$ $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.39(\mathrm{~m}, 2 \mathrm{H}), 3.23(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.68(\mathrm{~m}, 10 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, $1.34(\mathrm{~s}, 3 \mathrm{H}), 1.19-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.05-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.87$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.9,128.3,127.52,127.48,108.6,82.3,80.14,77.3$,
$76.5,73.2,72.3,70.8,69.6,42.4,38.95,38.81,38.34,32.4,31.2,28.3,27.0,25.8,24.9,23.6$, 21.8, 21.1, 15.2; IR (neat) $3445,1368,1046,735 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 493.2523\left[(\mathrm{M}+\mathrm{H})^{+}\right.$, $\mathrm{C}_{29} \mathrm{H}_{48} \mathrm{O}_{6}$ requires 493.2524].

Preparation of Acetal 17

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 1,3-anti-diol $\mathbf{1 6}(1.0 \mathrm{~g}, 2.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ were added p-anisaldehyde dimethyl acetal $(1.1 \mathrm{~g}, 6.089 \mathrm{mmol})$ and PPTS ($102 \mathrm{mg}, 0.406 \mathrm{mmol}$). After stirred for 2 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/ hexanes, 1/10) to afford 3:2 mixture of acetal $17(1.05 \mathrm{~g}, 85 \%):[\alpha]^{25}{ }_{\mathrm{D}}=-4.3\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 3: 2$ mixture, * denotes minor peaks) $\delta 7.42^{*}(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, 2H), 7.26-7.35 (m, 5H), 6.88* (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.67^{*}$ $(\mathrm{s}, 1 \mathrm{H}), 4.45-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.42^{*}(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.76(\mathrm{~m}$, $1 \mathrm{H}), 3.45-3.52^{*}(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26-3.30^{*}(\mathrm{~m}, 2 \mathrm{H}), 3.25$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20^{*}(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.38^{*}(\mathrm{~m}, 1 \mathrm{H})$, $2.10-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.45-1.71(\mathrm{~m}, 7 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}$,
$3 \mathrm{H}), 1.36^{*}(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.30(\mathrm{~m}, 3 \mathrm{H}), 0.96^{*}(\mathrm{~s}, 3 \mathrm{H}), 0.90-0.91(\mathrm{~m}, 9 \mathrm{H})$; IR (neat) 1516, 1246, 1048, $669 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 633.3754\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{37} \mathrm{H}_{54} \mathrm{O}_{7}\right.$ requires 633.3762].

Preparation of Alcohol 18

To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of acetal $17(50 \mathrm{mg}, 0.081 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added diisobutylaluminum hydride $(1.0 \mathrm{M}, 0.4 \mathrm{~mL}, 0.405 \mathrm{mmol})$. After stirred for 1 h at the same temperature, the reaction mixture was quenched with addition of saturated aqueous potassium sodium tartate solution and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/10) to afford $18(27 \mathrm{mg}, 54 \%)$ and $\mathbf{1 8}^{\prime}(9 \mathrm{mg}, 18 \%)$: [For 18] $[\alpha]^{25}{ }_{\mathrm{D}}=$ $+8.6\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.11(\mathrm{~m}, 4 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{ddd}, J=5.5,5.0,5.0$ Hz, 1H), 3.58 (dd, $J=10.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.66(\mathrm{~m}, 10 \mathrm{H}), 1.41$ $(\mathrm{s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.04-1.13(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.1,138.9,131.3,129.4,128.3,127.48$, $127.42,113.8,108.6,82.1,79.8,79.3,77.3,76.3,73.3,72.0,69.5,68.8,55.3,43.9,38.45,38.38$, $35.8,32.4,31.7,29.0,27.0,25.8,24.9,23.7,21.6,21.1,14.3$; IR (neat) $3501,1516,1250 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 635.3910\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{37} \mathrm{H}_{56} \mathrm{O}_{7}\right.$ requires 635.3918].
[For 18'] $[\alpha]^{25}{ }_{\mathrm{D}}=+3.6\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.25(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.42(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.07(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(\mathrm{s}, 3 \mathrm{H}), 3.61-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 1 \mathrm{H}), 1.92-1.99(\mathrm{~m}, 1 \mathrm{H})$, $1.81-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.64(\mathrm{~m}, 9 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.02-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.3,139.2,130.5,129.6,128.3,127.42,127.36,113.9,108.7,81.6,77.2,76.6$, $74.7,73.9,73.3,72.2,70.4,69.6,55.4,39.6,38.91,38.68,35.6,32.3,31.2,28.3,27.1,25.9,25.0$, 24.0, 21.6, 20.7, 15.4.

Determination of Absolute Stereochemistry of C9

[(R)-MTPA ester of 18] ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.33(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.61(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$
$(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.99(\mathrm{~m}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.13(\mathrm{~m}, 1 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.85$ $(\mathrm{m}, 2 \mathrm{H}), 1.65-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.52(\mathrm{~m}, 5 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H})$, $1.08-1.24(\mathrm{~m}, 3 \mathrm{H}), 0.92-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
[(S)-MTPA ester of 18] ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 3 \mathrm{H})$, $7.22-7.33(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.50-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ $(\mathrm{d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.01(\mathrm{~m}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.89(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.55(\mathrm{~m}, 5 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 3 \mathrm{H}), 1.00-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H})$.

Chemical shift of (R) and (S)-MTPA ester of 18

	$\mathrm{H}-1 \mathrm{~A}$	$\mathrm{H}-2^{\prime}$	$\mathrm{H}-2^{\prime}$	$\mathrm{H}-3$	$\mathrm{H}-16 \mathrm{~A}$	$\mathrm{H}-16 \mathrm{~B}$	$\mathrm{H}-17^{\prime}$	$\mathrm{H}-17^{\prime}$	$\mathrm{H}-12^{\prime}$
$(S)-\mathrm{MTPA}$ ester	3.237	0.888	0.828	3.092	3.448	3.991	1.403	1.355	0.845
$(R)-\mathrm{MTPA}$ ester	3.244	0.892	0.829	3.140	3.429	3.965	1.401	1.353	0.795
$\delta_{S}-\delta_{R}$ (ppm)	-0.007	-0.004	-0.001	-0.048	+0.019	+0.026	+0.002	+0.002	+0.050

Preparation of 19

To a solution of alcohol $\mathbf{1 8}(300 \mathrm{mg}, 0.489 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ were added N, N diisopropylethylamine ($1.7 \mathrm{~mL}, 9.790 \mathrm{mmol}$) and chloromethyl methyl ether $(0.37 \mathrm{~mL}, 4.895$ mmol) at $25{ }^{\circ} \mathrm{C}$. After stirred for 24 h at the same temperature, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to afford $19(299 \mathrm{mg}, 92 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+11.2(c$ $\left.0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.36(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.39(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.96-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.80$ $(\mathrm{s}, 3 \mathrm{H}), 3.57-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{dd}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.36-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.69$ $(\mathrm{m}, 8 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.08-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 159.1,139.3,131.4,129.3,128.2,127.33,127.26$, $113.7,108.7,96.2,81.7,79.1,77.2,76.4,74.5,73.22,73.18,70.9,69.6,55.8,55.3,42.8,38.6$, $35.8,34.9,32.3,31.9,29.3,27.1,25.8,25.0,24.1,21.45,21.27,13.9$; IR (neat) $1514,1246,1034$, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 679.4170\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{8}\right.$ requires 679.4180].

Preparation of Diol 24

To a solution of $\mathbf{1 9}(295 \mathrm{mg}, 0.449 \mathrm{mmol})$ in $\mathrm{CHCl}_{3} / \mathrm{MeOH}(1: 1,14 \mathrm{~mL})$ was added PPTS (113 $\mathrm{mg}, 0.449 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After stirred for 48 h at the same temperature, the reaction mixture was quenched with addition of saturated aqueous NaHCO_{3} solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 3$ to $2 / 1$) to afford diol $24(249 \mathrm{mg}, 91 \%):[\alpha]^{25}=$ $+15.3\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.36(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.66(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.45(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.81-$ $1.96(\mathrm{~m}, 3 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.41-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.12-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,139.3,131.3,129.3,128.2$, 127.34, 127.27, 113.7, 96.1, 81.7, 78.9, 77.2, 74.5, 73.31, 73.19, 72.6, 70.8, 66.8, 55.8, 55.3, 42.8, $38.6,35.7,34.9,32.3,31.4,29.1,25.0,24.1,21.43,21.24,14.1$; IR (neat) $3418,1456,1250,739$ $\mathrm{cm}^{-1} ;$ HRMS (ESI) $m / z 639.3851\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{8}\right.$ requires 639.3867].

Preparation of Epoxide 6

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of diol $24(245 \mathrm{mg}, 0.397 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added NaH (60% dispersion in mineral oil, $48 \mathrm{mg}, 1.192 \mathrm{mmol}$) and the resulting mixture was stirred for 20 \min before 1-tosylimidazole ($106.0 \mathrm{mg}, 0.476 \mathrm{mmol}$) was added. After stirred for 6 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to afford epoxide $6(214 \mathrm{mg}, 90 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+22.7\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-$ $7.33(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ $(\mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, 1H), 3.93-3.99 (m, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.54-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.27$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.74$ (dd, $J=4.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=5.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.41-1.71(\mathrm{~m}, 9 \mathrm{H}), 1.12-1.31(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 159.1,139.3,131.4,129.3,128.2,127.33,127.25,113.8,96.2,81.7$, $79.1,77.2,74.5,73.24,73.17,70.9,55.8,55.3,52.6,47.1,42.8,38.6,35.8,34.7,32.3,30.8,29.4$, 25.0, 24.1, 21.44, 21.25, 13.9; IR (neat) 1513, 1247, 1035, $668 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 621.3753$ $\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{36} \mathrm{H}_{54} \mathrm{O}_{7}\right.$ requires 621.3762].

Preparation of Allyl Alcohol 5

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $7(405 \mathrm{mg}, 2.138 \mathrm{mmol})$ in THF/HMPA $(4: 1,12.5 \mathrm{~mL})$ was added dropwise $t-\mathrm{BuLi}(2.5 \mathrm{~mL}, 1.7 \mathrm{M}$ in pentane, 4.276 mmol$)$ and the resulting mixture was stirred for 5 min before epoxide $\mathbf{6}(160 \mathrm{mg}, 0.267 \mathrm{mmol})$ was added. After stirred for 1 h at -78 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/2) to afford allyl alcohol $5(168 \mathrm{mg}, 80 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+7.0\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.25-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.81-5.86(\mathrm{~m}, 1 \mathrm{H})$, 5.69-5.74 (m, 1H), $4.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=12.5$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=12.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 1 \mathrm{H})$, $3.38(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-3.00(\mathrm{~m}, 5 \mathrm{H}), 2.73(\mathrm{dd}, J=15.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.80-2.09$ $(\mathrm{m}, 7 \mathrm{H}), 1.62-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.59(\mathrm{~m}, 8 \mathrm{H}), 1.12-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,139.3,132.0,131.4,129.3,128.2$, $127.32,127.22,126.2,113.7,96.1,81.7,79.0,77.2,74.5,73.25,73.14,70.7,69.1,58.4,55.8$,
$55.3,51.9,44.7,42.8,38.6,37.3,36.2,35.6,34.7,32.3,29.0,26.46,26.25,25.03,24.89,24.1$, 21.41, 21.19, 13.9; IR (neat) 3445, 1516, 1249, 1039, $739 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 811.4242$ $\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{44} \mathrm{H}_{68} \mathrm{O}_{8} \mathrm{~S}_{2}\right.$ requires 811.4248].

Preparation of 2,6-cis-Tetrahydropyran Aldehyde 20 by Tandem Oxidation/Oxa-Michael

Reaction

To a stirred solution of allyl alcohol $5(128 \mathrm{mg}, 0.162 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(212 \mathrm{mg}, 2.433 \mathrm{mmol})$ at $25^{\circ} \mathrm{C}$. After stirred for 8 h at the same temperature, the reaction mixture was filtered through celite with EtOAc and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 5$ to $1 / 3$) to afford 2,6-cistetrahydropyran aldehyde $20(115 \mathrm{mg}, 90 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+15.1\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.35(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.82(\mathrm{~m}$, $1 \mathrm{H}), 3.54-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-3.00(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{ddd}, J=16.5,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.47 (ddd, $J=16.5,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.92(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.69(\mathrm{~m}, 11 \mathrm{H}), 1.12-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J$
$=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.9,159.0,139.3,131.4,129.3$, $128.2,127.31,127.21,113.7,96.2,81.7,79.2,77.2,74.5,73.21,73.14,73.03,70.8,68.5,55.8$, $55.3,49.1,47.8,43.20,42.90,42.78,38.6,35.8,34.8,33.9,32.3,28.8,26.00,25.93,25.81,25.0$, 24.1, 21.4, 21.2, 13.9; IR (neat) 1725, 1512, 1035, $668 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 809.4087$ $\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{8} \mathrm{~S}_{2}\right.$ requires 809.4081].

Preparation of Alkyne 4

To a suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(351 \mathrm{mg}, 2.541 \mathrm{mmol})$ and p-toluenesulfonyl azide $(1.0 \mathrm{M}, 1.02 \mathrm{~mL}$, 1.016 mmol) in $\mathrm{CH}_{3} \mathrm{CN}(7 \mathrm{~mL})$ was added dimethyl-2-oxopropylphosphonate ($169 \mathrm{mg}, 1.016$ mmol) at $25^{\circ} \mathrm{C}$. The resulting suspension was stirred for 2 h at the same temperature and then the aldehyde $20(160 \mathrm{mg}, 0.203 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added. After stirred for 18 h at the same temperature, the solvents were removed in vacuo and the residue was dissolved in $\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}(1: 1,30 \mathrm{~mL})$. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vасиo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to afford alkyne $4(141 \mathrm{mg}, 89 \%):[\alpha]^{25}=+16.2\left(c 0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.25-7.35(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.52(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=11.0$ Hz, 1H), 3.95-4.05 (m, 1H), 3.89-3.95 (m, 1H), 3.80 (s, 3H), 3.74-3.81 (m, 1H), 3.55-3.59 (m,
$1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.35-3.42(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~d}$, $J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-3.02(\mathrm{~m}, 4 \mathrm{H}), 2.57(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{ddd}, J=16.5,5.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{ddd}, J=16.5,7.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-2.10(\mathrm{~m}, 3 \mathrm{H}), 1.81-$ $1.94(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.70(\mathrm{~m}, 11 \mathrm{H}), 1.12-1.29(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $0.88(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 159.0,139.4,131.5,129.3,128.2,127.34,127.23$, $113.7,96.2,81.7,80.5,79.3,77.2,74.5,73.22,73.17,73.15,71.2,70.8,70.5,55.8,55.3,48.0$, 43.2, 42.9, 42.1, 38.6, 35.8, 34.8, 34.0, 32.3, 28.9, 26.03, 25.93 (2 carbons), 25.5, 25.0, 24.1, 21.4, 21.2, 13.8; IR (neat) $3304,1514,1248,1038,738 \mathrm{~cm}^{-1}$; HRMS (ESI) $\mathrm{m} / \mathrm{z} 805.4136$ $\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{45} \mathrm{H}_{66} \mathrm{O}_{7} \mathrm{~S}_{2}\right.$ requires 805.4142].

Preparation of 21

4

NaHMDS B-OMe-9-BBN, KBr $\xrightarrow[\substack{\text { reflux, } 3 \mathrm{~h} \\ 73 \%}]{\mathrm{PdCl}_{2}(\mathrm{dppf}), \mathrm{THF}}$

21

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of alkyne $4(117 \mathrm{mg}, 0.149 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ was added NaHMDS ($1.0 \mathrm{M}, 0.30 \mathrm{~mL}, 0.299 \mathrm{mmol}$). After stirred for 30 min at the same temperature, B-OMe-9-BBN ($1.0 \mathrm{M}, 0.37 \mathrm{~mL}, 0.374 \mathrm{mmol}$) was added and the resulting mixture was then warmed to $25^{\circ} \mathrm{C}$. After stirred for $30 \mathrm{~min}, \mathrm{KBr}(36 \mathrm{mg}, 0.299 \mathrm{mmol}), \mathrm{PdCl}_{2}(\mathrm{dppf})(22 \mathrm{mg}, 0.030$ $\mathrm{mmol})$, and triflate $3(98 \mathrm{mg}, 0.299 \mathrm{mmol})$ were added. After refluxed for 3 h , the reaction mixture was cooled to $25^{\circ} \mathrm{C}$ and quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined
organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 10$ to $1 / 5$) to afford 21 (122 $\mathrm{mg}, 73 \%):[\alpha]^{25}=+1.6\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{dd}, J=8.5,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 8 \mathrm{H}), 6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.55(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=$ $12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, $3.73-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.31-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.27(\mathrm{~m}, 4 \mathrm{H})$, 2.74-3.05 (m, 2H), $2.85(\mathrm{dd}, J=17.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.63$ (dd, $J=17.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.97(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 1.41-1.69(\mathrm{~m}$, $11 \mathrm{H}), 1.10-1.23(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,158.9,156.6,139.4,134.9,131.5,129.4,129.1,128.2,127.37,127.25$, $125.9,116.9,114.3,113.8,105.6,96.2,93.9,81.8,80.6,79.2,77.2,74.6,73.25,73.20,72.7,71.9$, $70.8,55.8,55.4,48.2,43.6,42.9,42.2,38.6,35.8,34.8,34.1,32.3,28.9,26.9,26.08,26.02$, $25.86,25.85,25.76,25.1,24.1,21.5,21.2,13.8$; IR (neat) $2232,1738,1271,1036,734 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 981.4615\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{55} \mathrm{H}_{74} \mathrm{O}_{10} \mathrm{~S}_{2}\right.$ requires 981.4616].

Preparation of Alcohol 22

To a stirred solution of coupling product $21(40 \mathrm{mg}, 0.042 \mathrm{mmol})$ in $\mathrm{EtOH}(0.5 \mathrm{~mL})$ was added Raney ${ }^{\circledR} 2400$ nickel slurry in EtOH (2 pipets). After stirred under H_{2} atmosphere for 40 h at 50 ${ }^{\circ} \mathrm{C}$, the reaction mixture was then filtered through celite with EtOAc and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, $1 / 5$ to $2 / 1$) to afford alcohol $25(16 \mathrm{mg}, 50 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+26.6\left(c 0.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.38(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J=10.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.36(\mathrm{~m}, 5 \mathrm{H}), 3.09(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.95(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.68(\mathrm{~s}, 6 \mathrm{H}), 1.54-1.67(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.52$ $(\mathrm{m}, 10 \mathrm{H}), 1.24-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.08-1.20(\mathrm{~m}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 160.2,159.1,157.1,148.3,135.1,130.8,129.8,125.2$, $115.1,113.7,112.0,104.9,96.3 .83 .7,78.9,78.0,77.7,75.4,73.2,70.7,70.2,55.6,55.3,42.2$, 38.0, 36.4, 34.81 (2 carbons), $34.27,34.24,32.0,31.69$ (2 carbons), 29.1, 27.1, 25.72, 25.62, 25.0, 23.9, 23.7, 22.7, 19.5, 13.4; IR (neat) $3520,1738,1038,751 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $791.4702\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{45} \mathrm{H}_{68} \mathrm{O}_{10}\right.$ requires 791.4705].

Preparation of Benzyl Ester 27

[Dess-Martin Oxidation] To a stirred solution of alcohol $25(16 \mathrm{mg}, 0.021 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ $\mathrm{mL})$ were added pyridine $(3.4 \mu \mathrm{~L}, 0.042 \mathrm{mmol})$ and Dess-Martin periodinane $(13 \mathrm{mg}, 0.032$ mmol) at $25{ }^{\circ} \mathrm{C}$. After stirred for 5 h , the reaction mixture was quenched with addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and saturated aqueous NaHCO_{3}. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/ hexanes, 1/2) to afford aldehyde 22 ($15 \mathrm{mg}, 93 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.53(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.89(\mathrm{~m}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.24-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.17-3.23(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J$
$=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.94(\mathrm{~m}, 5 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.52(\mathrm{~m}$, $11 \mathrm{H}), 1.08-1.23(\mathrm{~m}, 5 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.
[Oxidation to Carboxylic Acid] To a solution of aldehyde $22(15 \mathrm{mg}, 0.019 \mathrm{mmol})$ in $t-\mathrm{BuOH} /$ $\mathrm{H}_{2} \mathrm{O}(1 / 1,2 \mathrm{~mL})$ were added 2-methyl-2-butene ($83 \mu \mathrm{~L}, 0.782 \mathrm{mmol}$), sodium phosphate monobasic monohydrate ($5.2 \mathrm{mg}, 0.038 \mathrm{mmol}$), and sodium chlorite $(3.5 \mathrm{mg}, 0.038 \mathrm{mmol})$ at 25 ${ }^{\circ} \mathrm{C}$. After stirred for 4 h at $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc and $\mathrm{H}_{2} \mathrm{O}$. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to afford the crude carboxylic acid 26, which was employed in the next step without further purification.
[Esterification] To a solution of carboxylic acid $\mathbf{2 6}$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ were added $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (31 $\mathrm{mg}, 0.095 \mathrm{mmol})$ and benzyl bromide ($23 \mu \mathrm{~L}, 0.190 \mathrm{mmol}$) at $25^{\circ} \mathrm{C}$. After stirred for 2 h at 25 ${ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with EtOAc. The layers were separated, and the aqueous layer was extracted with EtOAc. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to afford benzyl ester 27 ($14 \mathrm{mg}, 84 \%$ for two steps): $[\alpha]^{25}{ }_{\mathrm{D}}=+14.1\left(c 0.15, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{dd}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.24(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.91(\mathrm{~m}, 1 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.49-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H})$, $3.24-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.22(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.82$ $(\mathrm{m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}), 1.32-1.64(\mathrm{~m}, 16 \mathrm{H}), 1.08-1.24(\mathrm{~m}, 5 \mathrm{H}), 1.19(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.7,160.4,159.1,157.3,148.3,136.7,135.3$, $131.5,129.4,128.6,128.00,127.91,125.3,115.3,113.8,112.2,105.1,96.3,82.1,79.3,78.2$,
$77.9,75.0,73.2,70.7,66.1,55.8,55.4,46.9,42.9,36.6,35.9,35.0,34.7,34.4,32.01,31.82$ (2 carbons), 29.2, 27.3, 25.85, 25.76, 25.70, 23.90, 23.82, 22.2, 20.3, 13.8; IR (neat) 1737, 1513, 1389, 1039, $669 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 895.4966\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{52} \mathrm{H}_{72} \mathrm{O}_{11}\right.$ requires 895.4967].

Preparation of 2

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of benzyl ester $27(14 \mathrm{mg}, 0.016 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1,1.1$ mL) was added DDQ ($11 \mathrm{mg}, 0.048 \mathrm{mmol}$). After stirred for 1 h at $25^{\circ} \mathrm{C}$, the reaction mixture was quenched with addition of saturated aqueous NaHCO_{3} solution. The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (silica gel, EtOAc/hexanes, 1/5) to $2(12 \mathrm{mg}, 98 \%):[\alpha]^{25}{ }_{\mathrm{D}}=+7.9$ (c 0.07, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 5 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.37(\mathrm{~m}, 3 \mathrm{H}), 3.35$ (s, 3H), 3.06-3.13 (m, 2H), $2.94(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.88(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}, 6 \mathrm{H}), 1.38-1.65$ $(\mathrm{m}, 16 \mathrm{H}), 1.07-1.28(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.9,160.4,157.3,148.4,136.6,135.2,128.6,128.1,127.9,125.4,115.3$, $112.2,105.1,96.2,82.4,78.4,77.8,75.1,73.6,71.7,66.3,55.9,46.9,41.3,39.1,37.2,36.6,34.4$,
$34.3,32.0,31.9,31.7,28.3,27.3,25.9,25.8,25.3,23.9,23.8,21.3,20.7,15.3$; IR (neat) 3521 , 1733, 1456, 1038, $734 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 775.4390\left[(\mathrm{M}+\mathrm{Na})^{+}, \mathrm{C}_{44} \mathrm{H}_{64} \mathrm{O}_{10}\right.$ requires 775.4392].

Table 1. Comparison of ${ }^{1} \mathrm{H}$ NMR data for $2\left(\mathrm{CDCl}_{3}\right)^{1}$

Carbon \#	chemical shifts (δ)		Carbon \#	chemical shifts (δ)	
	De Brabander (400 MHz)	Hong (500 MHz)		De Brabander (400 MHz)	$\begin{gathered} \text { Hong } \\ (500 \mathrm{MHz}) \end{gathered}$
1	-	-	20	1.39-1.65 (m)	1.38-1.65 (m)
2	-	-	21	1.74-1.88 (m)	1.74-1.88 (m)
3	3.51 (d)	3.50 (d)		1.07-1.28 (m)	1.06-1.28 (m)
4	1.39-1.65 (m)	1.38-1.65 (m)	22	3.06-3.13 (m)	3.06-3.13 (m)
5	1.74-1.88 (m)	1.74-1.88 (m)	23	-	-
	1.39-1.65 (m)	1.38-1.65 (m)	24	6.78 (d)	6.78 (d)
6	1.39-1.65 (m)	1.38-1.65 (m)	25	7.28 (t)	7.38 (t)
	1.07-1.28 (m)	1.06-1.28 (m)	26	6.93 (d)	6.93 (d)
7	3.17-3.40 (m)	3.17-3.37 (m)	27	-	-
8	1.39-1.65 (m)	1.38-1.65 (m)	28	-	-
9	3.90-4.00 (m)	3.92-3.98 (m)	29	-	-
10	1.39-1.65 (m)	1.38-1.65 (m)	30	-	-
11	3.63-3.69 (m)	3.63-3.68 (m)	1- $\mathrm{OCH}_{2} \mathbf{P h}$	7.27-7.40 (m)	7.27-7.35 (m)
12	1.39-1.65 (m)	1.38-1.65 (m)	1-OCH2 ${ }_{2} \mathrm{Ph}$	4.58 (d)	4.58 (d)
13	1.39-1.65 (m)	1.38-1.65 (m)	1-OCH2 ${ }_{2}$	4.61 (d)	4.61 (d)
	1.07-1.28 (m)	1.06-1.28 (m)	2-Me	1.12 (s)	1.12 (s)
14	1.07-1.28 (m)	1.06-1.28 (m)	2-Me	1.20 (s)	1.20 (s)
15	3.17-3.40 (m)	3.17-3.37 (m)	9- $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$	5.12 (s)	5.12 (s)
16	1.39-1.65 (m)	1.38-1.65 (m)	9- $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$	3.35 (s)	3.35 (s)
17	1.39-1.65 (m)	1.38-1.65 (m)	11-OH	2.95 (m)	2.94 (d)
	1.74-1.88 (m)	1.74-1.88 (m)	12-Me	0.86 (d)	0.86 (d)
18	1.39-1.65 (m)	1.38-1.65 (m)	30-Me	1.69 (s)	1.69 (s)
	1.07-1.28 (m)	1.06-1.28 (m)	30-Me	1.69 (s)	1.69 (s)
19	3.17-3.40 (m)	3.17-3.37 (m)			

${ }^{1}$ Chemical shifts of methylenes in the upfield region may be interchangeable.

Table 2. Comparison of ${ }^{13} \mathrm{C}$ NMR data for $2\left(\mathrm{CDCl}_{3}\right)$

Carbon \#	chemical shifts (δ)		Carbon \#	chemical shifts (δ)	
	De Brabander (100 MHz)	$\begin{gathered} \text { Hong } \\ (125 \mathrm{MHz}) \end{gathered}$		De Brabander (100 MHz)	$\begin{gathered} \text { Hong } \\ (125 \mathrm{MHz}) \end{gathered}$
1	176.9	176.9	22	34.4	34.4
2	46.9	46.9	23	148.4	148.4
3	82.4	82.4	24	125.4	125.4
4	36.6	36.6	25	135.3	135.2
5	23.8	23.8	26	115.3	115.3
6	32.0	32.0	27	112.2	112.2
7^{1}	75.2	75.1	28	160.4	160.4
8	41.4	41.3	29	157.3	157.3
9	73.6	73.6	30	105.1	105.1
10	39.1	39.1	1- $\mathrm{OCH}_{2} \mathbf{P h}$	136.6	136.6
11	71.7	71.7		128.6	128.6
12	37.2	37.2		128.1	128.1
13	27.3	27.3		127.9	127.9
14	25.3	25.3	1-OCH2 ${ }_{2} \mathrm{Ph}$	66.3	66.3
15^{1}	77.8	77.8	2-Me	21.4	21.3
16	31.9	31.9	2-Me	20.7	20.7
17	23.9	23.9	9- $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$	96.2	96.2
18	31.7	31.7	$9-\mathrm{OCH}_{2} \mathrm{OCH}_{3}$	56.0	55.9
19^{1}	78.5	78.4	12-Me	15.3	15.3
20	34.3	34.3	30-Me	25.9	25.9
21	28.4	28.3	30-Me	25.8	25.8

[^0]

S29

s31

S32

S34

S39

S44

S50

S55

S60

S62

S63

S67

S71

S72

S73

S78

S82

S85

[^0]: ${ }^{1}$ Chemical shifts may be interchangeable.

