
Supporting Information

Non-Native Interactions in the FF Domain Folding Pathway From an Atomic Resolution Structure of a Sparsely Populated Intermediate: An NMR Relaxation

Dispersion Study

Dmitry M. Korzhnev, Robert M. Vernon, Tomasz L. Religa, Alexandar L. Hansen, David Baker, Alan R. Fersht and Lewis E. Kay Full citation for reference 18:

Shen, Y.; Lange, O.; Delaglio, F.; Rossi, P.; Aramini, J. M.; Liu, G.; Eletsky, A.; Wu, Y.; Singarapu, K. K.; Lemak, A.; Ignatchenko, A.; Arrowsmith, C. H.; Szyperski, T.; Montelione, G. T.; Baker, D.; Bax, A. *Proc. Natl. Acad. Sci. U.S.A.* **2008**, *105*, 4685-90.

Figure S1. Experimental relaxation dispersion profiles for select backbone ¹⁵N ^{1,2}, ¹H^{N 3}, ¹³C^{α 4}, ¹H^{α 5} and ¹³C^{O 4,6} nuclei of the L24A FF domain measured at a static magnetic field of 18.8 T (open circles), along with best fits to a 2-site exchange model, I \leftrightarrow N, performed as described elsewhere ^{7,8} (solid lines).

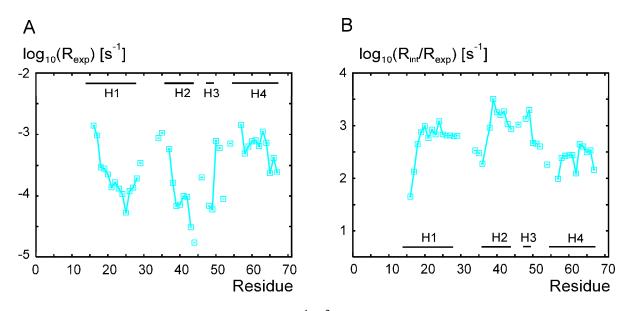
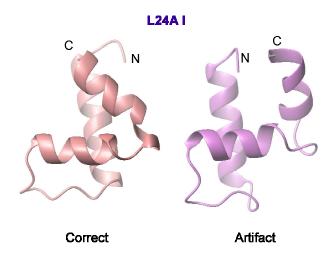
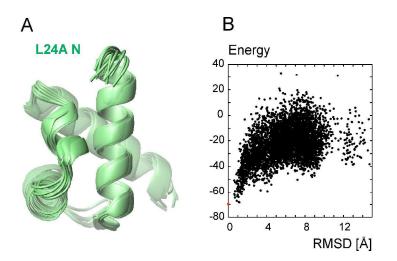




Figure S2. (A) Logarithm of experimental ${}^{1}\text{H}/{}^{2}\text{H}$ -exchange rates for the backbone amide groups of the L24A FF domain, $\log_{10}(R_{exp})$, obtained by dissolving lyophilized protein $({}^{1}\text{H}, {}^{15}\text{N}, \text{selective} - {}^{13}\text{C}^{\alpha} \text{ labeled})$ in 100% D₂O buffer, 20°C, pD=5.3 (uncorrected). ${}^{1}\text{H}/{}^{2}\text{H}$ exchange rates that are faster than 10^{-2} - 10^{-3} /s cannot be measured because of the delay (approximately 10 minutes) between dissolving the sample and recording the first spectrum. (B) Logarithm of protection factors for the backbone amide groups of the L24A FF domain, $\log_{10}(R_{int}/R_{exp})$, where R_{int} are intrinsic random-coil ¹H/²H-exchange rates for the amide groups calculated using the FBMME_HD.xls Microsoft Excel spreadsheet downloaded from http://hx2.med.upenn.edu^{9,10}. Note that the secondary structure elements as they pertain to the N structure and not the I state are listed in the figure. As first outlined by Linderstrom-Lang ¹¹ the ¹H/²H-exchange reaction for a given amide group can be described by, $close \xleftarrow{R_O}{R_C} open \xrightarrow{R_{int}} exchange$, where 'close' and 'open' denote states that are inaccessible and accessible to exchange, respectively, and 'exchange' corresponds to that state where ¹H has been exchanged for ²H. In the EX2 limit, $R_{int} << R_C = k_{f}$, this limit certainly applies here since $R_{int} \sim 10^{-1} - 10^{-2} \text{ s}^{-1}$ and $R_C \sim 300 \text{ s}^{-1}$. In this case the free energy of folding can be calculated from the relation $\Delta G = -RT \ln(R_{exp}/R_{int})$, using the largest protection factors measured in the protein ¹². Assuming that the maximum protection factor $(\log_{10}(R_{int}/R_{exp}) \sim 3.5)$ reflects the relative populations of states U and F while the protection factors for residues 55-65 (that form H4 in N but not I) are sensitive to the combined population of U and I, it can be calculated that $p_U \sim 1/7 p_I$.

Figure S3. Comparison of the two lowest energy structures of L24A FF domain folding intermediate (residues 11-59) generated by CS-Rosetta. In the lowest energy model, shown on the right side of the figure, the N-terminus points in a direction that would cause steric clashes with helix H2 involving the first 10 residues that were not included in calculations. Therefore, the second lowest energy model, left hand side, that is consistent with all remaining lowest energy structures (from an ensemble of 10) has been chosen as representative and used to generate the energy funnel of Figure 1B.

Figure S4. CS-Rosetta modeling of the three-dimensional structure of the N state of the L24A FF domain (residues 11-70) based on experimental ¹⁵N, ¹H^N, ¹³C^{α}, ¹H^{α} and ¹³C^O chemical shifts. (**A**) Superposition of the 10 lowest energy structures. (**B**) Energy of the generated models (total 5,000) *vs.* rmsd to the lowest energy structure (red dot).

Table S1. ¹⁵N and ¹H^N chemical shifts for the native, N, and the intermediate, I, states of the L24A FF domain measured on an ¹⁵N/²H sample (50mM NaAc, 100mM NaCl 10%D₂O/90%H₂O, pH=5.7; 20 °C).

anr					/90%⊓20, p⊓=5.7, 20	<i>C)</i> .
rn	³⁵ N ⁵ N	$\frac{\omega_{N}[ppm]}{^{1}H^{N}}$	_{¹⁵N¹⁵N}	$\frac{\omega_{RC}[ppm]}{^{1}H^{N}}$	$\Delta \overline{\omega}_{IN}$ [ppm] ^{15}N	$\Delta \varpi_{IN}$ [ppm] ${}^{1}H^{N}$
3	122.98	8.45	122.5	8.41	-0.09±0.10	0.000±0.000
5	124.60	8.36	124.2	8.44	-0.06±0.15	-0.001±0.072
6	121.15	8.21	119.6	8.33	-0.08±0.11	-0.004±0.027
7	123.58	8.27	122.0	8.41	-0.20±0.05	0.027±0.004
8	116.37	8.04	115.2	8.27	-0.49±0.03	-0.030±0.004
9	122.51	8.23	122.7	8.25	0.12±0.08	-0.049±0.003
10	114.29	7.79	116.4	8.20	1.47±0.04	0.072±0.005
11	120.61	7.67	123.7	8.38	1.71±0.04	0.279±0.011
12	119.27	9.19	121.5	8.36	0.71±0.02	-0.783±0.023
13	108.45	7.69	114.3	8.23	3.87±0.08	0.179±0.005
14	122.61	8.94	122.8	8.42	0.16±0.06	-0.551±0.025
15	118.66	8.40	121.8	8.54	2.19±0.05	-0.100±0.004
16	119.58	7.90	121.4	8.56	1.46±0.04	0.268±0.010
17	124.73	8.05	125.0	8.38	-1.04±0.03	-0.125±0.005
18	116.97	8.01	119.6	8.33	2.15±0.05	-0.047±0.004
19	117.91	7.81	121.4	8.44	1.93±0.05	0.193±0.006
20	122.48	7.99	125.1	8.38	0.91±0.03	0.015±0.010
21	118.71	7.76	119.5	8.34	0.56±0.02	0.284±0.008
22	115.62	7.80	122.8	8.37	5.04±0.11	0.114±0.004
23	120.72	8.39	121.8	8.54	-0.28±0.04	-0.316±0.009
24	122.50	7.55	125.0	8.38	1.28±0.03	0.504±0.013
24	116.18	6.77	123.0	8.20	3.14±0.07	1.118±0.027
25	117.48	7.75	121.0	8.35	3.30±0.08	0.055±0.004
20	121.63	8.84	121.4	8.54	-1.45±0.04	-0.820±0.021
28	116.10	7.44	121.6	8.43	3.75±0.08	0.660±0.017
20 29	115.71	7.44	121.0	8.35	4.99±0.10	0.278±0.009
29 30	120.43	7.63	122.1	8.16		
30 32	120.43	7.63 8.75	121.9	8.51	0.77±0.02 0.51±0.03	0.332±0.010 -0.350±0.010
33	114.84	0.75 7.74	120.6	8.52	4.28±0.09	-0.350±0.010 0.494±0.013
33 34		7.74	120.6		4.28±0.09 0.78±0.03	0.494±0.013 0.453±0.011
34 35	122.76 115.61	7.49 8.27	124.5	8.32 8.35	-0.10±0.08	-0.013±0.008
		8.27 9.19			-0.10±0.08 0.97±0.03	-0.013±0.008 -1.106±0.025
36	122.38		123.2	8.37		
37	116.25	8.57 7.40	123.0 121.0	8.38	2.76±0.06 0.79±0.03	-0.496±0.033 0.417±0.014
38	118.09			8.46		
39 40	121.90	8.01	125.1 118.8	8.38 8.32	0.83±0.03	0.107±0.005
40 41	115.22 115.13	8.10 6.83	121.5	8.32 8.39	1.33±0.04 4.00±0.09	-0.099±0.005
41	114.37	7.28	121.5	8.39 8.40	4.00±0.09 3.53±0.08	× 0.450±0.013
42	107.93	6.99	121.2	8.40 8.10	11.66±0.19	0.776±0.023
43	122.46	7.10	121.0	8.10	-2.18±0.05	0.778±0.023
44	115.60	7.74	124.1	8.57	3.53±0.08	0.165±0.006
46	125.82	8.11	122.3	8.39	-3.09±0.07	-0.261±0.008
40	115.83	9.49	122.1	8.43	2.55±0.06	-1.148±0.028
49	120.38	8.32	120.3	8.26	-2.50±0.06	-0.618±0.018
50	120.56	7.23	118.5	8.36	8.17±0.15	0.639±0.017
50	107.56	7.23	125.7	8.36	1.54±0.04	0.846±0.022
52	111.32	5.73	123.7	8.20	7.53±0.14	2.128±0.052
53	125.98	8.46	121.0	8.30	-3.34±0.08	-0.651±0.017
54	115.69	7.95	119.6	8.33	-3.34±0.08 2.67±0.06	-0.123±0.004
55	127.57	8.89	123.4	8.28	-5.95±0.13	-1.148±0.047
56	111.65	8.58	116.7	8.37	-3.66±0.08	-0.613±0.018
57	121.43	6.56	122.1	8.54	0.98±0.03	1.503±0.041
58	121.43	7.66	122.1	8.43	1.02±0.03	0.440±0.014
59	116.60	7.89	121.0	8.41	5.45±0.13	0.318±0.011
60	118.84	7.57	122.0	8.44	2.27±0.05	0.684±0.020
61	122.68	7.81	121.4	8.38	2.12±0.05	0.004±0.020
62	119.18	8.48	119.5	8.34	0.24±0.04	-0.490±0.019
62 63	118.61	8.49	121.1	8.48	1.96±0.04	-0.490±0.019 -0.381±0.011
64	121.62	7.80	121.1	8.32	2.39±0.06	0.184±0.006
65	121.62	8.08	124.5	8.16	-2.07±0.05	-0.198±0.006
66	120.04	8.08 7.97	123.2	8.34	-2.07±0.05 4.07±0.09	-0.129±0.008
67	114.44	7.97	123.2	8.15	4.07±0.09 7.04±0.14	0.830±0.020
67 68	120.24	7.20	120.8	8.15	7.04±0.14 4.00±0.08	0.830±0.020 0.823±0.018
69	120.24	7.58	123.7	8.50 8.29	4.00±0.08 1.81±0.05	0.369±0.009
69 70	123.12	7.75	122.6	8.29 8.55	0.58±0.02	0.362±0.009
70	123.12	7.90	122.6	8.43	-0.32±0.03	-0.169±0.004
11	127.02	1.11	121.0	0.40	-0.32±0.03	-0.103±0.004

 ^{15}N and $^{1}H^{N}$ chemical shifts in state N, ϖ_{N} , (columns 2 and 3) were measured directly from an $^{15}N/^{1}H^{N}$ HSQC data set recorded at 20°C, 800 MHz spectrometer (referenced indirectly).

Random coil (RC) ¹⁵N and ¹H^N chemical shifts for the L24A FF domain (¹⁵N: **column 4**; ¹H: **column 5**) predicted using the CSI module of the NMRView program ('Wishart(Peptides)' CSI option) ^{13,14}.

 ^{15}N and $^{1}H^{N}$ chemical shift differences between states I and N, $\Delta \varpi_{IN} = \varpi_{I} - \varpi_{N}$ (columns 6 and 7) were obtained from the analysis of ^{15}N single-quantum (SQ) $^{1.2,15}$ or $^{1}H^{N}$ SQ 3 CPMG relaxation dispersion data measured at 500 and 800 MHz (minimal uncertainties of 2% or 0.2/s, whichever is greater, were assumed for $^{1}H^{N}$ SQ, ^{15}N SQ data). ^{15}N ($^{1}H^{N}$) SQ relaxation dispersion data collected at 20 °C were fit for all residues together using a model of 2-state exchange between states I and

N as described previously ^{7,8}, $I \xleftarrow{k_N}{k_N} N$. ¹⁵N and ¹H^N dispersion data were fit separately, with results from ¹H^N data

shown in parenthesis in what follows. Values of $k_{ex,NI}=k_{IN}+k_{NI} = 223\pm5 \text{ s}^{-1}$, $p_i=3.68\pm0.07\%$ ($k_{ex,NI}=225\pm9 \text{ s}^{-1}$, $p_i=3.08\pm0.10\%$) and a reduced global χ^2 of 0.38(1.0) were obtained. The data for a total of 66(65) residues were included in global fits with 40(40) ¹⁵N SQ (¹H SQ) data points per residue. ¹H SQ data for residue 41 were excluded from the analysis due to spectral overlap with side-chain resonances (indicated in the table by 'x').

Signs of ¹⁵N $\Delta \varpi_{IN}$ values (**column 6**) were selected based on differences in peak positions in HSQC spectra recorded at 500 and 800 MHz, $\delta_{exp} = \varpi_{500} - \varpi_{800}$ ¹⁶. The experimental differences δ_{exp} were compared to δ_{clc} predicted using $\Delta \varpi_{IN}$, $k_{ex,NI}$ and p_I extracted from CPMG dispersion data. In cases where both δ_{exp} and $\delta_{clc} > 0.001$ ppm the signs of $\Delta \varpi_{IN}$ were assigned according to δ_{exp} (chemical shift differences in columns 6 and 7 are marked by bold in these cases).

Signs of ¹H^N chemical shift differences ($\Delta \varpi_{IN}$, **column 7**) were obtained as described in detail previously ¹⁷ from (i) signs of ¹⁵N $\Delta \varpi_{IN}$ values and (ii) from the relative signs of ¹H^N, ¹⁵N $\Delta \varpi_{IN}$ values that were determined experimentally on the basis of a comparison of χ^2 values obtained in per-residue fits of ¹⁵N SQ, ¹H^N SQ, ¹⁵N/¹H^N double-quantum (DQ) and zero-quantum (ZQ) CPMG data sets with $\Delta \varpi_{IN}(^{1}H^{N})x\Delta \varpi_{IN}(^{15}N) > 0$ and $\Delta \varpi_{IN}(^{1}H^{N})x\Delta \varpi_{IN}(^{15}N) < 0$ (using fixed values of k_{ex,NI} and p_I from the global fit of the data).

In cases where signs could not be determined experimentally and where values of $\Delta \varpi_{IN}$ fall below the uncertainty for chemical shift predictions of a given nucleus type (*i.e.*, uncertainty values of 2.53 ppm for ¹⁵N, 0.51 ppm for ¹H^N that correspond to the root-mean-squared deviations between predicted *vs.* experimental chemical shifts in a protein database used by the SPARTA program ¹⁸) the sign of $\Delta \varpi_{IN}$ was assumed to be the same as the sign of ϖ_{RC} - ϖ_N . This assumption follows from the empirical observation that for the great majority of residues for which the signs could be determined experimentally (88% for ¹⁵N, 82% for ^{1HN}) the signs of $\Delta \varpi_{IN}$ and ϖ_{RC} - ϖ_N are the same. We have also assumed the opposite signs for these residues in structure calculations, with little change in the structural properties of the ensemble, as was observed in a previous study of the WT FF domain folding intermediate ⁷. For the several residues where $\Delta \varpi_{IN}$ values are above the SPARTA cutoff and for which signs could not be obtained experimentally we have checked to see if one of the two possibilities, $\varpi_{I=\varpi_N \pm \Delta \varpi_{IN}}$, lies outside the range of chemical shifts that are typically observed for these residue types (outside twice the standard deviation from the mean) and can thus be discarded ⁷.

The chemical shifts of the intermediate state, $\varpi_{N+\Delta} \varpi_{IN}$ (columns 2, 3, 6, 7) were used in CS-Rosetta calculations of I as described in Materials and Methods.

Table S2. ¹³C^{α} and ¹H^{α} chemical shifts in the N and I states of the L24A FF domain (ϖ_N and $\varpi_I = \varpi_N + \Delta \varpi_{IN}$). ¹³C^{α} relaxation dispersion measurements ⁴ were performed on a U-¹⁵N, selectively-¹³C, ¹H labeled L24A FF domain generated in ¹H₂O M9 medium using 2-¹³C-pyruvate as the sole carbon source (50mM NaAc, 100mM NaCl, 100% D₂O, pD=5.3, 30°C; **sample 1**) ¹⁹. ¹H^{α} relaxation dispersion experiments ⁵ were measured on a U-¹⁵N, ¹³C and partially-²H labeled L24A FF domain sample produced in 50%H₂O/50%D₂O M9 medium using ²H/¹³C-glucose as the sole carbon source (50mM NaAc, 100mM NaCl, 100% D₂O, pD=5.3, 30°C; **sample 2**) ⁵

	-20, 0- 0.0	, ,	/			
rn	$\varpi_{N} [ppm]_{13}C^{\alpha}$	$\varpi_{N} [ppm]_{^{1}H^{\alpha}}$	$\overline{\omega}_{RC}$ [ppm] $^{13}C^{\alpha}$	$\overline{\omega}_{RC}$ [ppm] ${}^{1}H^{\alpha}$	$\Delta \varpi_{IN} [ppm]$	$\Delta \varpi_{IN} [ppm]$
	ē				-	
3	53.71	4.68	53.7	4.65	-0.23±0.02	-0.011±0.026
4	63.06	4.41	63.3	4.42	0.33±0.02	0.009±0.032
5	52.27	4.28	52.5	4.32	0.10±0.04	0.001±0.229
6	56.07	4.28	56.2	4.32	0.15±0.03	0.007±0.045
8	61.44	4.24	61.8	4.35	0.14±0.03	0.000±0.000
9	57.26	4.58	57.9	4.55	0.32±0.02	-0.037±0.010
10	60.63	3.98	61.8	4.35	0.94±0.02	0.243±0.008
11	56.46	4.85	57.5	4.66	0.84±0.02	-0.195±0.007
12	54.58	4.86	53.1	4.74	-0.72±0.02	-0.165±0.006
13	59.29	4.79	61.8	4.35	1.82±0.05	-0.354±0.013
14	58.49	4.17	56.2	4.32	-0.38±0.03	0.050±0.010
15	59.83	4.04	56.6	4.35	-1.34±0.03	0.084±0.008
16	59.06	4.12	56.6	4.35	-1.00±0.03	0.076±0.009
17	55.02	3.46	52.5	4.32	-1.01±0.02	0.401±0.017
18	60.17	3.76	56.2	4.32	-1.46±0.04	0.305±0.012
19	58.69	4.02	55.7	4.34	-1.32±0.03	X
20	54.96	4.12	52.5	4.32	-0.81±0.02	0.068±0.009
21	62.06	3.62	57.7	4.62	-2.39±0.07	0.705±0.029
22	60.24	3.90	56.2	4.32	-1.33±0.03	0.090±0.008
23	59.18	4.02	56.6	4.35	-1.08±0.03	0.112±0.008
24	55.52	3.96	52.5	4.32	-1.27±0.03	0.138±0.008
26	59.12	4.26	56.2	4.32	-1.10±0.03	-0.117±0.008
27	59.43	4.02	56.6	4.35	-2.09±0.06	0.190±0.010
28	54.83	4.24	56.2	4.32	1.08±0.03	0.020±0.024
29	55.86	3.88	56.0	4.34	0.47±0.02	0.376±0.014
30	61.77	3.93	59.8	4.44	x	x
			63.3		-0.36±0.02	-0.259±0.009
31	63.21	4.67		4.42		
32	60.90	4.02	58.3	4.47	-1.56±0.04	0.304±0.013
33	51.64	4.83	53.1	4.74	1.15±0.03	-0.127±0.006
34	52.49	4.44	52.5	4.32	0.36±0.02	-0.149±0.007
35	56.66	4.85	58.3	4.47	1.32±0.03	-0.312±0.011
36		3.80	57.5	4.66	-0.50±0.03	0.517±0.026
	59.86					
37	60.67	3.26	56.6	4.35	-1.34±0.04	0.444±0.018
38	58.12	3.84	55.7	4.34	х	0.259±0.009
39	54.93	3.67	52.5	4.32	-0.46±0.02	0.390±0.015
40	58.16	3.36	55.4	4.48	-1.31±0.09	0.755±0.049
41	58.84	3.67	56.2	4.32	-0.38±0.02	0.366±0.014
42	58.39	4.11	55.4	4.48	-1.29±0.04	0.200±0.008
43	61.39	4.49	61.1	4.17	х	-0.437±0.017
44	63.05	2.85	61.1	4.17	х	х
45	52.63	4.80	53.1	4.74	0.69±0.02	-0.084±0.007
46	51.65	4.92	52.2	4.90	0.21±0.03	-0.076±0.009
47	65.31	4.51	63.3	4.42	-1.10±0.06	-0.090±0.007
48	57.65	3.97	56.0	4.34	-0.42±0.03	0.089±0.008
49	61.18	4.14	57.9	4.55	-3.01±0.09	0.467±0.021
50	58.23	4.22	58.3	4.47	2.43±0.07	0.051±0.010
51	54.73	3.56	52.5	4.32	-0.83±0.02	0.676±0.027
53	54.45	4.04	52.5	4.32	-0.76±0.02	0.151±0.006
54	55.47	4.41	56.2	4.32	1.44±0.03	-0.183±0.007
					-1.92±0.05	0.384±0.024
56	61.00	3.85	58.3	4.47		
57	58.53	4.01	56.6	4.35	-1.85±0.06	х
58	59.57	3.01	56.2	4.32	-2.80±0.08	х
59	60.21	3.57	56.2	4.32	-3.22±0.08	0.743±0.029
60	59.12	4.08	55.7	4.34	-2.33±0.08	0.170±0.008
61	54.98	4.29	52.5	4.32	-2.15±0.06	0.010±0.046
				_		
62	60.44	4.62	57.7	4.62	-2.28±0.07	-0.090±0.008
63	56.37	4.12	53.1	4.74	-2.99±0.13	0.445±0.018
64	54.76	4.17	52.5	4.32	-1.82±0.05	0.022±0.023
65	60.54	4.21	57.9	4.55	-2.53±0.07	0.270±0.010
66	59.92	3.49	56.2	4.32	-3.59±0.09	0.801±0.028
67	63.54	3.98	62.2	4.12	-0.00±0.00	0.068±0.007
68	56.65	4.26	55.7	4.34	-0.82±0.02	X
69	62.50	4.19	61.8	4.35	-0.80±0.01	0.132±0.005
70	56.71	4.28	56.6	4.35	-0.38±0.01	х
·		•				

71 57.64 4.14 56.2 4.32 -0.04±0.09 0.002±0.123
--

¹³C^α and ¹H^α chemical shifts in the native state N, ϖ_N , (columns 2 and 3) obtained from a ¹³C^α, ¹H^α HSQC spectrum recorded on sample 1 at 30 °C, 800 MHz spectrometer (referenced indirectly).

Random coil (RC) ${}^{13}C^{\alpha}$ (column 4) and ${}^{1}H^{\alpha}$ (column 5) chemical shifts for the L24A FF domain were predicted using the CSI module of the NMRView program ('Wishart(Peptides)' CSI option) 13,14 .

¹³C^α chemical shift differences between I and N states, $\Delta \varpi_{IN}$ (column 6) were obtained from the analysis of ¹³C^α SQ CPMG relaxation dispersion data measured on sample 1 at 30 °C, 600 and 800 MHz spectrometer frequencies (¹H). Minimal uncertainties of 2% or 0.2/s, whichever is greater, were assumed for individual relaxation rates of the dispersion profiles. From a global fit of ¹³C^α SQ CPMG data for 60 residues (26 data points per residue) values of k_{ex.NI}=784±14s⁻¹, p_I=2.68±0.03% and a reduced global χ^2 of 1.22 were obtained. The data for the following residues were excluded from the analysis, denoted by 'x' in the table: 38 (overlapped with folded peak); 30, 43, 44, 67 (these are IIe, Val residues; the labeling scheme used results in ¹³C^α-¹³C^β pairs for these residues that renders the ¹³C^α dispersion experiment difficult to analyze in these cases ¹⁹. Leu 25, 52, 55 could not be quantified because Leu residues are not labeled at the ¹³C^α position using the 2-¹³C-pyruvate labeling scheme ¹⁹.

¹H^α chemical shift differences between the I and N states, $\Delta \varpi_{IN}$, (**column 7**) were obtained from the analysis of ¹H^α SQ CPMG dispersion data measured for sample 2 at 30 °C, 500 and 800 MHz spectrometers (minimal uncertainties of 3% of 0.5/s, whichever is greater, were assumed for each dispersion point). Parameters from a global fit of ¹H^α SQ CPMG data for 58 residues (26 data points per residue) resulted in k_{ex,NI}=625±20s⁻¹, p_I=4.02±0.08% and χ^2 =0.79. The data for the following residues were excluded from the analysis due to resonance overlap: 19/57, 68/70, and 44, 58 ('x' in table). Additional resonance overlap was noted in data sets recorded at 500 MHz for residues 16/27, 28/61, 64 (with a folded peak); the data recorded at this field were therefore excluded for these amino acids. Dispersion profiles for T8, T10, T13, S32, S50, S56 and S69 were included in the analysis despite the potential for modulation due to ¹H^α-1H^β couplings that are not refocused, since the high level of deuteration at the β position (~66% for Thr, ~88% for Ser) ensures that the artifacts are minimal ⁵.

Signs of ${}^{13}C^{\alpha}$ chemical shift differences between I and N states, $\Delta \varpi_{IN}$, (column 6) were selected based on differences in peak positions along the ${}^{13}C$ dimension, δ_{exp} , in (1) ${}^{1}H^{\alpha_{-}13}C^{\alpha}$ HSQC spectra recorded at 500 and 800 MHz and in (2) ${}^{1}H^{\alpha_{-}13}C^{\alpha}$ HMQC and HSQC spectra recorded at 500 MHz and 800 MHz (all spectra were recorded at 30 °C). The differences were considered significant if both experimental and predicted differences, δ_{exp} and δ_{clc} , were greater then 0.002ppm. Signs of $\Delta \varpi_{IN}$ were taken as reliable and assigned according to signs of experimental peak shifts, δ_{exp} , if all of the data were self-consistent. If only 1 value of $\delta_{exp} > 0.002ppm$ was obtained for a given residue the sign was assumed correct only if it was the same as $\varpi_{RC} - \varpi_{N}$, where ϖ_{RC} is the ${}^{13}C^{\alpha}$ random-coil chemical shift predicted using the CSI module of the NMRView program 13,14 . In addition, signs were also obtained by off-resonance $R_{1\rho}$ experimental signs could be obtained are marked by bold in the Table.

Signs of ¹H^{α} chemical shift differences between the I and N states, $\Delta \varpi_{IN}$, (column 7) were obtained by off-resonance R_{1p} experiments as described previously previously ^{20,21}.

In cases where experimentally determined signs could not be obtained and where $\Delta \varpi_{IN}$ values were less than the uncertainty of chemical shift predictions by the SPARTA program ¹⁸ (0.97 ppm and 0.27 ppm for ¹³C^{α} and ¹H^{α}, respectively) the signs of $\Delta \varpi_{IN}$ were assumed to be identical to those of ϖ_{RC} - ϖ_{N} . It is worth noting that all of the signs of ¹³C^{α} and ¹H^{α} $\Delta \varpi_{IN}$ values that were determined experimentally were in agreement with the signs of ϖ_{RC} - ϖ_{N} . CS-Rosetta calculations were performed with these signs inverted as well and very similar structures were obtained.

The chemical shifts of the intermediate, $\varpi_N + \Delta \varpi_{IN}$ (columns 2, 3, 6, 7) were used in CS-Rosetta calculations of the I state (see Materials and Methods).

Table S3. ¹³C^O chemical shifts for the N and I states of the L24A FF domain (ϖ_N and $\varpi_N + \Delta \varpi_{IN}$) measured on an ¹⁵N/¹³C/²H labeled sample (50mM NaAc, 100mM NaCl 10%D₂O/90%H₂O, pH=5.7; 20 °C).

rn	$\varpi_{N} [ppm]_{^{13}C^{O}}$	$\varpi_{RC}[ppm]$	$\Delta \varpi_{IN} [ppm]$
rn 2	174.20	174.6	0.08±0.02
4	176.56	177.2	0.08±0.02
5	177.76	177.9	0.06±0.03
6	176.42	176.6	0.09±0.02
7	176.05	176.4	0.27±0.01
8	173.50	174.5	0.28±0.01
9	174.73	175.7	0.75±0.02
10	172.73	174.1	х
11	175.12	175.9	0.77±0.02
12	175.26	175.7	Х
13	175.21	174.5	-0.24±0.01
14	178.89	176.4 176.4	-1.12±0.03
15 16	179.65 179.53	176.4	-1.66±0.04 -1.72±0.05
17	178.61	176.6	-0.12±0.05
18	178.93	176.6	-0.90±0.02
19	178.00	175.8	-0.00±0.02
20	178.69	175.0	-0.24±0.01
21	177.16	175.8	-0.97±0.02
22	178.97	176.1	-0.92±0.02
23	178.93	176.4	-1.56±0.04
24	179.20	177.8	-0.49±0.01
25	177.70	177.6	0.90±0.02
26	181.55	176.5	-3.89±0.08
27	178.75	176.4	-2.12±0.06
28	174.64	176.6	1.38±0.03
29	176.61	176.1	-0.58±0.01
31	177.52	177.2	-0.35±0.01
32	174.02	174.7	0.60±0.02
33	175.85	175.0	-0.63±0.02
34 35	177.57 175.24	177.6 174.6	0.67±0.02 -0.11±0.02
36	175.24	174.6	0.92±0.02
37	179.17	175.5	-0.85±0.02
38	178.18	176.0	-0.58±0.01
39	178.89	177.7	0.23±0.01
40	177.58	176.3	-0.15±0.01
41	178.58	176.4	-1.04±0.03
42	178.36	176.1	-1.19±0.03
43	176.67	176.2	-0.11±0.02
44	174.52	176.2	1.54±0.04
45	175.00	175.0	х
47	178.58	177.3	-0.53±0.01
48	177.86	176.4	-0.37±0.01
49	176.84	175.7	-0.32±0.01
50	174.27	174.0	1.10±0.03
51 52	176.74 174.84	177.6 177.6	2.20±0.06 3.19±0.07
52 53	174.84	177.6	-0.36±0.01
53 54	178.91	176.6	-0.36±0.01
55	178.50	170.0	-0.56±0.01
56	177.41	174.5	X
57	179.22	176.4	x
58	178.30	176.6	-1.48±0.04
59	179.15	176.4	-2.12±0.06
60	178.98	175.8	-2.97±0.07
61	179.95	177.7	-2.23±0.06
62	176.37	175.8	-0.81±0.02
63	177.63	174.7	X
64	179.85	177.6	-2.29±0.06
65	177.37	175.9	-1.65±0.04
66 67	177.93	176.0	-1.84±0.05
67 68	177.24	176.1	-0.97±0.02
68 60	176.58	175.9	-0.56±0.01
69 70	174.64 175.51	174.6 176.4	-0.20±0.01 0.10±0.02
	1/3.31	1/0.4	0.10±0.0Z

 ${}^{13}C^{\circ}$ chemical shifts in the native state N, ϖ_N , (column 2) were obtained from a ${}^{13}C^{\circ}$, ${}^{1}H^N$ HSQC spectrum recorded at 20 °C, 800 MHz spectrometer (referenced indirectly).

Random coil (RC) ¹³C^O chemical shifts for the L24A FF domain (**column 3**) were predicted using the CSI module of the NMRView program (Wishart (Peptides)' CSI option) ^{13,14}.

¹³C^O chemical shift differences between the I and N states, $\Delta \varpi_{IN}$, (column 4) were obtained from the analysis of ¹³C^O SQ relaxation dispersion profiles measured at 500 and 800 MHz. Minimal uncertainties of 2% or 0.2/s (whichever is greater) were assumed for individual data points (relaxation rates) of the dispersion curves. From a global fit of ¹³C^O dispersion data values of k_{ex,NI}=193±5 s⁻¹, p_I=4.90±0.11% and a reduced global χ^2 of 0.73 were obtained. The data from a total of 60 residues were included in the fit with 36 ¹³C^O SQ data points per residue. Residues 10, 12 (Asn), 45 (Asn), 56, 57 and 63 (Asn) were excluded from the analysis ('x' in table) - peaks from residues 10 and 57 are overlapped, while dispersion profiles for all Asn residues (except for Asn 33) are artifactual due to the 3-bond coupling to the side-chain ¹³C^O 6.22, leading to large contributions to the global χ^2 . Poor quality dispersions were also obtained for residue Ser 56 and these data were excluded from analysis as well.

Signs of ${}^{13}\text{C}^\circ$ chemical shift differences between I and N states, $\Delta \varpi_{IN}$, (column 4) were selected based on differences in peak positions along the ${}^{13}\text{C}^\circ$ dimension in ${}^{13}\text{C}^\circ$, ${}^{1}\text{H}^N$ HSQC spectra recorded at 500 and 800 MHz, δ_{exp} , at (1) 20 °C and (2) at 30 °C, and based on differences in F₁ peak positions in ${}^{13}\text{C}^\circ$, ${}^{1}\text{H}^N$ HSQC and HMQC (${}^{15}\text{N}-{}^{13}\text{C}^\circ$ MQ coherences) data sets measured at 500 MHz at 20 °C (3) and at 30 °C (4). The differences were considered significant if both experimental and predicted differences, δ_{exp} and δ_{clc} , were greater then 0.003ppm at 30 °C or 0.002ppm at 20 °C. δ_{clc} values at 20 and 30 °C were predicted using exchange parameters obtained from a global fit of ${}^{15}\text{N}$ SQ CPMG data recorded at 5 temperatures ranging form 10 to 25 °C (10, 15, 20, 22.5, 25 °C) assuming an Arrhenius temperature dependence of populations and rate constants, $k_{ex,NI}=242/\text{s}$, $p_I=3.53\%$ at 20 °C and $k_{ex,NI}=407/\text{s}$, $p_I=9.27\%$ at 30 °C. Signs of $\Delta \varpi_{IN}$ were considered reliable and obtained from experimental peak shifts, δ_{exp} , if all of the data were self-consistent. In cases where only 1 value of $\delta_{exp} > 0.002ppm$ (20 °C) or 0.003 ppm (30 °C) the sign was assumed correct only if it was the same as $\varpi_{RC}-\varpi_{N}$, where ϖ_{RC} is ${}^{13}C^{\alpha}$ random-coil chemical shift predicted using the CSI module of the NMRView program 13,14 . All $\Delta \varpi_{IN}$ values for which experimental signs could be obtained are marked by bold in the table. In cases where experimentally determined signs could not be obtained and where $\Delta \varpi_{IN}$ were assumed to be identical to those of $\varpi_{RC}-\varpi_{N}$. Notably 95% of the signs of ${}^{13}C^{\circ}$ $\Delta \varpi_{IN}$ values are greater than the SPARTA uncertainty and for which sign information was not forthcoming from experimental 7 .

 ${}^{13}C^{\circ}$ chemical shifts $\varpi_N + \Delta \varpi_{IN}$ (columns 2, 4) were used in CS-Rosetta calculations of the structure of the I state, as described in Methods. A second set of structure calculations with the signs of $\Delta \varpi_{IN}$ inverted in cases where experimental information is not obtained and where the sign has been assumed to be the same as $\varpi_{RC} - \varpi_N$ has been performed, with the structures essentially unchanged.

Table S4. ¹⁵N-¹H^N residual dipolar couplings in the N and I states measured on a sample of the ¹⁵N/¹³C/²H L24A FF domain weakly aligned in a PEG $C_{12}E_5$ /hexanol mixture, 20 °C (~14.1/4.8µl PEG $C_{12}E_5$ /hexanol, D₂O splitting 16.6Hz; 50mM NaAc, 100mM NaCl 10%D₂O/90%H₂O, pH=5.7).

rn	J _N (n-al)	J _N (al)	$\Delta \varpi_{IN}$ [Hz]	∆D _{IN} [Hz]	Comment
3	-93.29	-96.72	-0.08±0.05	-3.48±7.79	S ² <0.6
5	-93.32	-97.05	0.08±0.04	1.21±6.63	S ² <0.6
6	-93.05	-95.75	-0.11±0.03	-0.86±5.13	S ² <0.6
7	-93.03	-98.66	-0.20±0.02	-0.82±2.91	S ² <0.6
8	-92.78	-97.12	-0.49±0.01	-1.80±1.48	S ² <0.6
9	-92.50	-96.20	0.12±0.03	0.26±4.74	S ² <0.6
10	-92.70	-95.81	1.22±0.01	0.37±1.78	S ² <0.6
11	-92.83	-95.37	X	X	$S^{2} < 0.6$
12	-91.13	-93.29	0.60±0.01	3.25±1.48	$S^{2} < 0.6$
13 14	-92.26 -93.21	-98.25	3.17±0.03	8.00±5.09 -10.05±4.37	S ² <0.6
14	-93.21	-100.70 -99.01	0.17±0.03 1.91±0.02	-10.05±4.37 7.24±2.93	
16	-93.53	-96.02	1.28±0.01	5.73±2.04	
17	-93.67	-101.16	-1.15±0.01	6.68±1.87	
18	-93.52	-101.42	1.95±0.02	5.99±3.03	
19	-93.39	-97.60	1.68±0.02	4.20±2.63	
20	-94.05	-98.38	0.74±0.01	5.10±1.57	
21	-93.62	-101.71	0.67±0.01	8.80±1.56	
22	-93.19	-101.82	4.45±0.05	7.10±7.53	
23	-93.82	-96.77	-0.52±0.01	6.92±1.63	
24	-94.35	-100.13	1.09±0.01	9.30±1.83	
25	-92.87	-101.11	2.89±0.04	8.06±5.91	
26	-93.56	-99.37	3.15±0.03	6.84±5.14	
27	-93.43	-97.54	-1.83±0.02	13.42±3.10	
28	-93.26	-99.95	2.98±0.03	15.90±4.89	S ² <0.6
29	-93.83	-99.37	3.97±0.04	-3.56±6.15	S ² <0.6
30	-94.22	-94.00	0.29±0.01	9.48±2.40	S ² <0.6
32	-92.43	-95.22	0.51±0.01	12.92±1.59	S ² <0.6
33	-92.87	-97.32	4.02±0.04	10.01±6.41	S ² <0.6
34	-93.88	-95.72	0.77±0.01	23.37±1.67	S ² <0.6
35	-93.02	-99.41	-0.14±0.03	-25.89±4.60	
36 37	-93.10 -92.98	-87.72 -84.23	1.22±0.02 2.42±0.03	41.83±2.15 29.76±4.00	
37	-92.98 -93.66	-84.23 -85.27	2.42±0.03 0.85±0.01	29.76±4.00 44.81±2.09	
39	-94.40	-89.02	0.92±0.01	46.09±2.13	
40	-93.62	-86.63	1.10±0.01	38.67±2.13	
41	-93.60	-82.64	3.83±0.05	46.64±6.68	
42	-93.85	-87.36	3.27±0.04	56.56±4.91	
43	-92.37	-87.63	11.46±0.11	56.67±16.52	
44	-91.97	-86.86	-3.64±0.04	68.79±6.16	
45	-92.85	-90.55	2.73±0.03	39.84±4.27	
46	-93.95	-86.05	-2.75±0.03	-20.62±4.37	
48	-91.70	-97.08	2.50±0.03	30.13±3.82	
49	-93.06	-95.01	-2.68±0.03	-10.00±4.37	
50	-92.04	-90.11	8.08±0.09	9.73±14.69	
51	-93.44	-97.55	1.26±0.01	5.92±2.04	
52 53	-90.46 -93.26	-99.10 -100.05	7.64±0.07 -3.60±0.04	12.55±11.33 31.13±5.43	
53 54	-93.26 -93.65	-100.05 -99.24	-3.80±0.04 2.39±0.02	11.98±3.52	
55	-93.65	-99.24 -94.25	-6.13±0.07	1.60±12.20	
56	-93.16	-94.25	-0.15±0.07 3.30±0.04	19.06±5.48	S ² <0.6
57	-92.09	-87.68	0.84±0.01	3.49±1.62	S ² <0.6
58	-93.19	-94.31	X	x	S ² <0.6
59	-95.76	-94.92	5.34±0.07	2.33±11.27	S ² <0.6
60	-93.43	-90.50	2.16±0.02	9.50±3.31	S ² <0.6
61	-93.29	-91.43	2.14±0.02	3.43±3.45	S ² <0.6
62	-93.60	-94.45	0.12±0.03	-0.64±5.13	S ² <0.6
63	-93.71	-94.63	1.87±0.02	12.04±3.19	S ² <0.6
64	-93.28	-88.97	2.34±0.02	-4.84±3.62	S ² <0.6
65	-93.39	-93.44	-2.09±0.02	2.57±3.24	$S^{2} < 0.6$
66 67	-93.18	-95.23	4.03±0.04	10.52±6.41	$S^{2} < 0.6$
67	-92.59	-91.55	7.09±0.07	-0.54±12.26	$S^{2} < 0.6$
68 60	-93.24	-91.32 -95.20	3.99±0.04 1.86±0.02	3.71±6.04	S ² <0.6 S ² <0.6
69 70	-92.67 -92.76	-95.20 -94.86	0.58±0.02	2.94±2.67 2.11±1.42	S <0.6 S ² <0.6
70	-92.76	-94.86 -92.97	-0.33±0.01	1.49±1.90	S ² <0.6
_ / 1	JL.L1	-92.97	-0.00±0.01	1.43±1.90	0 (0.0

 $^{15}N-^{1}H^{N}$ couplings in state N measured without and with alignment, $J_{NH}(n-al)$ and $J_{HN}(al)$, respectively, (columns 2 and 3) were obtained from $^{15}N-^{1}H^{N}$ IPAP spectra recorded at 800 MHz.

 ^{15}N chemical shift and $^{15}N^{-1}H^{N}$ RDC differences, $\Delta \varpi_{N}$ and ΔD_{NH} , between I and N states of the L24A FF domain (**columns 4 and 5**) were obtained from a global fit of ^{15}N single-quantum (SQ), TROSY (TR) and anti-TROSY (AT) CPMG relaxation dispersion data measured at 500 and 800 MHz (minimal uncertainties of 2% or 0.2/s, whichever is greater, were assumed for ^{15}N SQ, TR and AT data). The data for 64 residues (99 points per residue) were fit together to a global 2-state exchange model, with values of $k_{ex,NII}$ =217±2 s⁻¹, p_{II} =5.89±0.04% and χ^{2} =0.61 (residues 11 and 58 were excluded due to spectral overlap, 'x').

Relative signs of $\Delta \varpi_{IN}$ and ΔD_{IN} were determined by fitting ¹⁵N SQ/TR/AT CPMG dispersion data as described previously ². Signs of $\Delta \varpi_{IN}$ were assumed to be the same as those obtained from measurements without alignment media (see Table S1; $\Delta \varpi_{IN}$ and ΔD_{IN} where signs determined from experiment are marked by bold).

Only RDC values for residues with S²>0.6 were used in CS-Rosetta calculations of the structure of the folding intermediate; residues with low order parameters are marked by 'S²<0.6' in **column 6**). ¹⁵N-¹H^N dipolar couplings, D_N, in the N state were calculated as $J_N(al)-J_N(n-al)$ (**columns 2, 3**), and the corresponding values in the I state were obtained from the relation $D_N+\Delta D_{IN}$ (**columns 2, 3**, 5).

References

- (1) Hansen, D.F.; Vallurupalli, P.; Kay, L.E. J. Phys. Chem. B 2008, 112, 5898.
- (2) Vallurupalli, P.; Hansen, D.F.; Stollar, E.; Meirovitch, E.; Kay, L.E. *Proc. Natl. Acad. Sci. U. S. A.* **2007**, *104*, 18473.
- (3) Ishima, R.; Torchia, D.A. J. Biomol. NMR 2003, 25, 243.
- (4) Hansen, D.F.; Vallurupalli, P.; Lundstrom, P.; Neudecker, P.; Kay, L.E. J. Am. Chem. Soc. 2008, 130, 2667.
- (5) Lundstrom, P.; Hansen, D.F.; Vallurupalli, P.; Kay, L.E. J. Am. Chem. Soc. 2009, 131, 1915.
- (6) Lundstrom, P.; Hansen, D.F.; Kay, L.E. J. Biomol. NMR 2008, 42, 35.
- (7) Korzhnev, D.M.; Religa, T.L.; Banachewicz, W.; Fersht, A.R.; Kay, L.E. Science 2010, 329, 1312.
- (8) Korzhnev, D.M.; Religa, T.L.; Lundström, P.; Fersht, A.R.; Kay, L.E. J. Mol. Biol. 2007, 37, 497.
- (9) Bai, Y.W.; Milne, J.S.; Mayne, L.; Englander, S.W. Proteins 1993, 17, 75.
- (10) Connelly, G.P.; Bai, Y.W.; Jeng, M.F.; Englander, S.W. Proteins 1993, 17, 87.
- (11) Englander, S.W.; Mayne, L.; Bai, Y.; Sosnick, T.R. Protein Sci. 1997, 6, 1101.
- (12) Englander, S.W. Annu. Rev. Biophys. Biomolec. Struct. 2000, 29, 213.
- (13) Wishart, D.S.; Bigam, C.G.; Holm, A.; Hodges, R.S.; Sykes, B.D. J. Biomol. NMR 1995, 5, 67.
- (14) Johnson, B.A.; Blevins, R.A. J. Biomol. NMR **1994**, 4, 603.
- (15) Loria, J.P.; Rance, M.; Palmer, A.G. J. Am. Chem. Soc. 1999, 121, 2331.
- (16) Skrynnikov, N.R.; Dahlquist, F.W.; Kay, L.E. J. Am. Chem. Soc. 2002, 124, 12352.
- (17) Korzhnev, D.M.; Neudecker, P.; Mittermaier, A.; Orekhov, V.Y.; Kay, L.E. J. Am. Chem. Soc. **2005**, *127*, 15602.
- (18) Shen, Y.; Bax, A. J. Biomol. NMR **2007**, *38*, 289.
- (19) Lundstrom, P.; Teilum, K.; Carstensen, T.; Bezsonova, I.; Wiesner, S.; Hansen, D.F.; Religa, T.L.; Akke, M.; Kay, L.E. J. Biomol. NMR 2007, 38, 199.
- (20) Korzhnev, D.M.; Orekhov, V.Y.; Kay, L.E. J. Am. Chem. Soc. 2005, 127, 713.
- (21) Auer, R.; Neudecker, P.; Muhandiram, D.R.; Lundstrom, P.; Hansen, D.F.; Konrat, R.; Kay, L.E. J. *Am. Chem. Soc.* **2009**, *131*, 10832.
- (22) Ishima, R.; Baber, J.; Louis, J.M.; Torchia, D.A. J. Biomol. NMR 2004, 29, 187.