Supporting Information

Diastereodivergent Behavior of Alkyl- versus CyanoAllenylcuprates towards Aldehydes: a Key Role for Lithium

Emmanuel Vrancken, ${ }^{*+}$ Hélène Gérard, ${ }^{*+}$ David Linder, ${ }^{\S}$ Souad Ouizem, ${ }^{\S}$ Nacira Alouane, ${ }^{\S}$ Eve Roubineau, ${ }^{\dagger}$ Kamel Bentayeb, ${ }^{\S}$ Jérôme Marrot, ${ }^{\neq}$and Pierre Mangeney** ${ }^{\S}$

[^0]emmanuel.vrancken@enscm.fr(experimental); helene.gerard@upmc.fr (DFT)

List of content:

Computational details S-2
Computational data S-3
General considerations S-7
General procedures S-7
Characterization of new compounds S-9
Spectroscopic data S-13
References of the supporting information S-26

Computational Procedure: Full geometry optimizations were systematically conducted with no symmetry restraints using the Gaussian 03 program i within the framework of the Density Functional Theory (DFT) using the hybrid B3LYP exchange-correlation functional ${ }^{\text {ii }}$ and the $6-31++\mathrm{G}^{* *}$ basis set for all atoms as implemented in the Gaussian program. The electronic plus nuclear energy obtained from SCF and optimization procedures is referred as energy and noted E in the text. As such, $\Delta E_{X / Y}$ is $E(X)-E(Y)$. Solvation at the lithium cation is ensured via an explicit model by including two or three dimethylether molecules (as a model for THF) coordinated to the lithium (no coordination of solvent molecules to the copper could be obtained). For key structures, importance of adding an implicit solvation was examined using single point computations on gas phase optimized geometry. These results are reported only when giving significant difference with gas phase structures. For these computations, the PCM model using the dielectric constant implemented for THF $\left(\varepsilon_{\mathrm{R}}=\right.$ $7.58)^{\text {iii }}$ and the default implemented in Gaussian 03 are used, except for atomic radii where the BONDI values are used for all atoms. Frequencies were evaluated within the harmonic
approximation and used unscaled to compute Gibbs free energy (G) at 183 K using the standard protocol implemented in Gaussian.

Computational data

Table 1. Allenic vs. propargylic nature of the organometallic reagent: energy of the reaction below ($\Delta \mathrm{E}$, computed between most stable minima, in $\mathrm{kcal} \mathrm{mol}^{-1}$) as a function of substitution and counter-ions.

Entry	CuX	R	R^{\prime}	Counter-ion	$\Delta \mathrm{E}$
1^{a}	Cu	OMe	H	None	-3.0
2^{a}	Cu	OMe	Me	None	-1.6
3^{a}	CuCN^{-}	OMe	H	None	-5.9
4^{a}	CuCN^{-}	OMe	Me	None	-4.6
5	CuCN^{-}	Me	H	None	-6.1
6	CuCN^{-}	Me	Me	None	-4.8
7	Cu^{R}	Me	H	None	-4.7
8	CuMe^{-}	Me	H	None	-6.0
9	CuCN^{-}	Me	H	$\mathrm{Li}\left(\mathrm{OMe}_{2}\right)_{2}{ }^{+}$	-6.1
10	CuMe^{-}	Me	H	$\mathrm{Li}\left(\mathrm{OMe}_{2}\right)_{2}{ }^{+}$	-4.0

[^1]Figure 1. Optimized geometries for structures $\mathbf{L 3}$ with $\mathrm{X}=\mathrm{CN}$ (left) and $\mathbf{B 3}$ with $\mathrm{X}=\mathrm{Me}$ (right). Angles are given in degrees and distances in A. Color code : hydrogen (white), lithium (yellow), carbon (green), nitrogen (blue), oxygen (red), silicon (grey), copper (orange).

L3

B3

Figure 2. Relative electronic energies $\Delta \mathrm{E}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right.$, left) computed with respect to arrangement $\mathbf{L 3}(\mathrm{X}=\mathrm{CN}$, in white) or $\mathbf{B 3}(\mathrm{X}=\mathrm{Me}$, in black) of the various arrangements of the solvated lithium ion coordinated (see text for details).

Figure 3. Relative Gibbs free energies including implicit solvation ($\mathrm{kcal} \mathrm{mol}^{-1}$) computed with respect to arrangement $\mathbf{L} 3$ ($\mathrm{X}=\mathrm{CN}$, in white) or $\mathbf{B 3}$ ($\mathrm{X}=\mathrm{Me}$, in black) of the various arrangements of the solvated lithium ion coordinated (see text for details).

Figure 4. Optimized geometries for all transition states of the CIP mechanism (see text for details). Angles are given in degrees and distances in \AA. Color code : hydrogen (white), lithium (yellow), carbon (green), nitrogen (blue), oxygen (red), silicon (grey), copper (orange).

General Considerations: Experiments were carried out under dry argon atmosphere. All glassware were dried at $120^{\circ} \mathrm{C}$ and assembled while hot under a stream of argon. All moisture-sensitive reactants are handled under a nitrogen atmosphere. Low temperature experiments are carried out by cooling down a three-necked round bottom flask with an ether/acetone ($-80 /-90^{\circ} \mathrm{C}$), bath, frozen with liquid nitrogen. The flask was equipped with an internal thermometer, an argon inlet and a septum cap. Tetrahydrofuran was distilled from sodium-benzophenone ketyl. Column chromatographies were performed over silica gel Si 0.015-0.040 mesh. Melting points are uncorrected. IR data were recorded on a Perkin Elmer Spectrum 1000 instrument. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 400 MHz , and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz , in CDCl_{3} as solvent on a Bruker Ultra Shield 400 spectrometer. Chemical shifts are reported in ppm (reference TMS for ${ }^{1} \mathrm{H}$ NMR and CDCl_{3} for ${ }^{13} \mathrm{C}$ NMR). Microanalyses were performed by ICSN-CNRS, Gif-sur-Yvette, France. Exact Masses were performed by CCSM, Université Claude Bernard Lyon 1, France. Compounds 3a, ${ }^{\mathrm{V}} \mathbf{3 a} \mathbf{a}^{\mathrm{vi}}{ }^{\mathrm{v}} \mathbf{3 c},{ }^{\mathrm{V}} \mathbf{3 d}{ }^{\mathrm{V}}$ and anti-5 $\mathbf{5}^{\mathrm{vii}}$ have already been described.

General procedure A for the addition of allenyl(methyl)cuprates reagents to aldehydes: Solution A: A solution of $\mathrm{CuI}(3 \mathrm{mmol}, 571 \mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in THF (10 mL) cooled to $-70{ }^{\circ} \mathrm{C}$ was treated dropwise with $1.6 \mathrm{M} \mathrm{MeLi} \mathrm{in} \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{mmol}, 1.9$ mL). The mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 30 min and cooled down to $-80{ }^{\circ} \mathrm{C}$. Solution B: A solution of 1-(trimethylsilyl)dec-1-yne ($2 \mathrm{mmol}, 420 \mathrm{mg}$) or 1 -(trimethylsilyl)but-1-yne ($2 \mathrm{mmol}, 252 \mathrm{mg}$) in THF (15 mL) cooled to $-90^{\circ} \mathrm{C}$ was treated dropwise with 1.3 M s -BuLi in cyclohexane/hexane ($2.05 \mathrm{mmol}, 1.6 \mathrm{~mL}$) maintaining the internal temperature bellow $-88{ }^{\circ} \mathrm{C}$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-80^{\circ} \mathrm{C}$. The solution B was then added dropwise via a cannula to the solution A at $-80^{\circ} \mathrm{C}$. The mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred an additional 30 min
at this temperature. The resulting solution was cooled to $-90^{\circ} \mathrm{C}$ and a solution of the aldehyde (2.1 mmol) in THF (10 mL) was added over 1 h via a syringe pump. After an additional hour at $-90{ }^{\circ} \mathrm{C}$, the reaction was quenched by the addition of an aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(2: 1)$ solution and extracted with diethylether ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over magnesium sulfate, and filtered off. The solvents were removed in vacuo, and the product was then subjected to FC (flash chromatography) on SiO_{2} using the appropriate pentane/ $\mathrm{Et}_{2} \mathrm{O}$ eluant.

General procedure B for the addition of allenyl(tert-butyl)cuprates reagents to aldehydes: Solution A: A solution of $\mathrm{CuI}(3 \mathrm{mmol}, 571 \mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in THF (10 mL) cooled to $-85^{\circ} \mathrm{C}$ was treated dropwise with $1.6 \mathrm{M} t$-BuLi in pentane (3 mmol , $1.9 \mathrm{~mL})$. The mixture was stirred 10 mn at $-80^{\circ} \mathrm{C}$ to give a pale grey suspension. Solution B: A solution of 1-(trimethylsilyl)dec-1-yne ($2 \mathrm{mmol}, 420 \mathrm{mg}$) or 1-(trimethylsilyl)but-1-yne (2 $\mathrm{mmol}, 252 \mathrm{mg})$ in THF $(15 \mathrm{~mL})$ cooled to $-90^{\circ} \mathrm{C}$ was treated dropwise with 1.3 M s -BuLi in cyclohexane/hexane ($2.05 \mathrm{mmol}, 1.6 \mathrm{~mL}$) maintaining the internal temperature bellow $-88^{\circ} \mathrm{C}$. The mixture was warmed to $0{ }^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-90^{\circ} \mathrm{C}$. The solution B was then added dropwise via a cannula to the solution A at $-90^{\circ} \mathrm{C}$ and the resulting suspension was stirred 30 min maintaining the internal temperature below $-80^{\circ} \mathrm{C}$. A solution of the aldehyde (2.1 mmol) in THF $(10 \mathrm{~mL})$ was added at $-90^{\circ} \mathrm{C}$ over 1 h via a syringe pump. After an additional hour at $-90^{\circ} \mathrm{C}$, the reaction was quenched by the addition of an aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(2: 1)$ solution and extracted with diethylether (2 x 50 mL). The combined organic layers were washed with water and brine, dried over magnesium sulfate, and filtered off. The solvents were removed in vacuo, and the product was then subjected to FC on SiO_{2} using the appropriate pentane/ $\mathrm{Et}_{2} \mathrm{O}$ eluant.
syn-2-methyl-4-phenylhept-5-yn-3-ol 3b: This compound was prepared according to the general procedure A , using 1-(trimethylsilyl)dec-1-yne 1a ($2 \mathrm{mmol}, 420 \mathrm{mg}$) and pivalaldehyde 2b ($2.1 \mathrm{mmol}, 0.228 \mathrm{~mL}$). The diastereoselectivity of the reaction was determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture to be $>95: 5$ based on the chemical shift of propargylic ($\delta=3.41$) and homo-propargylic protons $(\delta=2.57$). Purification by FC (pentane/Et $\mathrm{E}_{2} \mathrm{O} 98: 2, \mathrm{Rf}=0.3$) gave $\mathbf{3 b}(473 \mathrm{mg}, 80 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.41(\mathrm{dd}, J=4.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.57(\mathrm{ddd}, J=3.8,6.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.74(\mathrm{~d}, J=4.5$ $\mathrm{Hz}, 1 \mathrm{H}) ; 1.69-1.30(\mathrm{~m}, 12 \mathrm{H}) ; 1.02(\mathrm{~s}, 9 \mathrm{H}) ; 0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.15(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 109.7,87.3,80.5,35.9,35.8,31.8,30.3,29.4,29.2,27.2,26.9,22.6$, 14.1, 0.0. IR (neat) $v=3462\left(\right.$ br), 2956, 2166, 1467, 1365, 1249, 1005, $846 \mathrm{~cm}^{-1}$. HRMS (CI): m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 297.2614$; found: 297.2614.
anti-2,4-dimethyl-6-phenylhex-5-yn-3-ol anti-5: A solution of 1-phenyl-1-butyne (2 $\mathrm{mmol}, 284 \mathrm{~mL}$) in THF (15 mL) cooled to $-90^{\circ} \mathrm{C}$ was treated dropwise with $1.3 \mathrm{M} s$ - BuLi in cyclohexane/hexane ($2.05 \mathrm{mmol}, 1.6 \mathrm{~mL}$) maintaining the internal temperature bellow $-88^{\circ} \mathrm{C}$. The mixture was warmed to $-40^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-80^{\circ} \mathrm{C}$. A solution of $\mathrm{CuCN}(3 \mathrm{mmol}, 270 \mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in THF $(10 \mathrm{~mL})$ was then added dropwise, the reaction was stirred an additional 30 min at $-80^{\circ} \mathrm{C}$ and iso-butyraldehyde ($2.1 \mathrm{mmol}, 0.2 \mathrm{~mL}$) was added dropwise. The reaction mixture was allowed to warm to -60 ${ }^{\circ} \mathrm{C}$ over 1 h , stirred an additional hour at this temperature, quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(2 / 1)$ solution and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried over magnesium sulfate, filtered off and the solvents were removed in vacuo. The regio- and the diastereoselectivity of the reaction were determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture to be $>95: 5$ based on the chemical shift of propargylic $(\delta=3.12)$ and homo-propargylic protons $(\delta=2.93)$.

Purification by FC (pentane/Et $\mathrm{t}_{2} \mathrm{O} 85: 15 \mathrm{Rf}=0.35$) gave anti-5 $(283 \mathrm{mg}, 70 \%)$ as a colorless oil which spectral are in good accordance to those previously reported in ref. vii
syn-2,4-dimethyl-6-phenylhex-5-yn-3-ol syn-5: Solution A: A solution of CuI (3 mmol, $571 \mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in THF $(10 \mathrm{~mL})$ cooled to $-70^{\circ} \mathrm{C}$ was treated dropwise with 1.6 M MeLi in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{mmol}, 1.9 \mathrm{~mL})$. The mixture was allowed to reach $0{ }^{\circ} \mathrm{C}$ over 30 min and cooled down to $-80^{\circ} \mathrm{C}$. Solution B: A solution of 1-phenyl-1-butyne ($2 \mathrm{mmol}, 284$ mL) in THF (15 mL) cooled to $-90{ }^{\circ} \mathrm{C}$ was treated dropwise with 1.3 M suLi in cyclohexane/hexane ($2.05 \mathrm{mmol}, 1.6 \mathrm{~mL}$) maintaining the internal temperature bellow $-88^{\circ} \mathrm{C}$. The mixture was warmed to $-40^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-80^{\circ} \mathrm{C}$. The solution B was then added dropwise via a cannula to the solution A at $-80^{\circ} \mathrm{C}$. The mixture was warmed to $-20^{\circ} \mathrm{C}$ and stirred an additional 30 min at this temperature. The resulting solution was cooled to $-60^{\circ} \mathrm{C}$ and a solution of iso-butyraldehyde ($2.1 \mathrm{mmol}, 0.2 \mathrm{~mL}$) in THF (10 mL) was added over 1 h via a syringe pump. After an additional hour at $-40^{\circ} \mathrm{C}$, the reaction was quenched by the addition of an aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ (2:1) solution and extracted with diethylether ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over magnesium sulfate, filtered off, and the solvent were removed in vacuo. The regioand the diastereoselectivity of the reaction were determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture to be $>95: 5$ based on the chemical shift of propargylic ($\delta=3.44$) and homo-propargylic protons ($\delta=2.85$). Purification by $\mathrm{FC}\left(\right.$ pentane $\left./ \mathrm{Et}_{2} \mathrm{O} 90: 10, \mathrm{Rf}=0.30\right)$ gave syn-5 (343 mg , 85%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43-7.28(\mathrm{~m}, 5 \mathrm{H}) ; 3.44(\mathrm{dd}, J=5.7$, $10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{p}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 2.10-2.02(\mathrm{~m}, 1 \mathrm{H}) ; 1.77-1.75(\mathrm{~m}, 1 \mathrm{H}) ; 1.32(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}$); 1.01 (dd, $J=6.8,14.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 131.6, 128.2, 127.8, $123.5,92.0,82.3,79.2,31.0,30.4,19.7,16.8,15.7$. IR (neat) $v=3339$ (br), 2959, 2933, 1489, 1457, 1144, 755, $690 \mathrm{~cm}^{-1}$. Elemental anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.12 ; \mathrm{H}, 8.97 ; \mathrm{O}, 7.91$. Found: C, 83.04; H, 9.06; O, 7.81
anti-2-methyl-4-phenylhept-5-yn-3-ol anti-6: A solution of 1-phenyl-1-butyne (2 mmol , 284 mL) in THF (15 mL) cooled to $-90{ }^{\circ} \mathrm{C}$ was treated dropwise with $1.3 \mathrm{M} s$ - BuLi in cyclohexane/hexane ($2.05 \mathrm{mmol}, 1.6 \mathrm{~mL}$) maintaining the internal temperature bellow $-88^{\circ} \mathrm{C}$. The mixture was warmed to $-40{ }^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-80^{\circ} \mathrm{C}$. Freshly distilled diisopropylamine ($0.1 \mathrm{mmol}, 0.014 \mathrm{~mL}$) was then added, the mixture was warmed to room temperature, stirred 30 mn and cooled to $-80^{\circ} \mathrm{C}$. A solution of CuCN (3 $\mathrm{mmol}, 270 \mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in $\mathrm{THF}(10 \mathrm{~mL})$ was then added dropwise, the reaction was stirred an additional 30 min at $-80^{\circ} \mathrm{C}$ and iso-butyraldehyde ($2.1 \mathrm{mmol}, 0.2 \mathrm{~mL}$) was slowly added. The reaction mixture was allowed to warm to $-60^{\circ} \mathrm{C}$ over 1 h , stirred an additional hour at this temperature, quenched by the addition of aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}(2 / 1)$ solution and extracted with diethyl ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water, brine, dried over magnesium sulfate, filtered off and the solvents were removed in vacuo. The regio- and the diastereoselectivity of the reaction were determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture to be $>95: 5$ based on the chemical shift of propargylic ($\delta=$ 3.87) and homo-propargylic protons $(\delta=3.36)$. Purification by FC (pentane $/ \mathrm{Et}_{2} \mathrm{O} 88: 12, \mathrm{Rf}=$ 0.35) gave anti-6 ($331 \mathrm{mg}, 82 \%$) as a colorless solid. $\mathrm{mp}: 37-38^{\circ} \mathrm{C}$ (recristalized from pentane). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.25(\mathrm{~m}, 5 \mathrm{H}) ; 3.87(\mathrm{dq}, J=2.3,4.8 \mathrm{~Hz}, 1 \mathrm{H})$; $3.36(\mathrm{dd}, J=4.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.93(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.81(\operatorname{sextd}, J=6.8,13.5 \mathrm{~Hz}, 1 \mathrm{H})$; $1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 139.9,128.6,128.1,127.0,80.8$, 80.5, 77.0, 42.8, 31.3, 19.8, 17.6, 3.8. IR (neat) $v=3456$ (br), 2959, 2918, 1491, 1452, 1044, $698 \mathrm{~cm}^{-1 .}$ Elemental anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.12 ; \mathrm{H}, 8.97 ; \mathrm{O}, 7.91$. Found: C, 82.91; H, 8.93; O, 8.08. Crystallographic data for the structural analysis of anti-6 have been deposited with the crystallographic Data Center, no. CCDC 720316.
syn-2-methyl-4-phenylhept-5-yn-3-ol syn-6: Solution A: A solution of CuI (3 mmol, 571 $\mathrm{mg})$ and $\mathrm{LiBr}(6 \mathrm{mmol}, 521 \mathrm{mg})$ in THF $(10 \mathrm{~mL})$ cooled to $-85^{\circ} \mathrm{C}$ was treated dropwise with
$1.6 \mathrm{M} t$-BuLi in pentane ($3 \mathrm{mmol}, 1.9 \mathrm{~mL}$). The mixture was stirred 10 min at $-80^{\circ} \mathrm{C}$ to give a pale grey suspension. Solution B: A solution of 1-phenyl-1-butyne ($2 \mathrm{mmol}, 284 \mathrm{~mL}$) in THF $(15 \mathrm{~mL})$ cooled to $-90^{\circ} \mathrm{C}$ was treated dropwise with $1.3 \mathrm{M} \mathrm{s} s \mathrm{BuLi}$ in cyclohexane/hexane $(2.05 \mathrm{mmol}, 1.6 \mathrm{~mL})$ maintaining the internal temperature bellow $-88^{\circ} \mathrm{C}$. The mixture was warmed to $-40^{\circ} \mathrm{C}$, stirred 1 h at this temperature and cooled to $-80^{\circ} \mathrm{C}$. Diisopropylamine $(0.1$ $\mathrm{mmol}, 0.014 \mathrm{~mL}$) was then added, the mixture was warmed to room temperature, stirred 30 min and cooled to $-80^{\circ} \mathrm{C}$. The solution B was then added dropwise via a cannula to the solution A at $-80^{\circ} \mathrm{C}$. The mixture was stirred an additional 30 min at this temperature and a solution of the iso-butyraldehyde ($2.1 \mathrm{mmol}, 0.2 \mathrm{~mL}$) in THF (10 mL) was added over 1 h via a syringe pump. After an additional hour at $-40^{\circ} \mathrm{C}$, the reaction was quenched by the addition of an aqueous $\mathrm{NH}_{4} \mathrm{Cl} / \mathrm{NH}_{4} \mathrm{OH}$ (2:1) solution and extracted with diethylether ($2 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water and brine, dried over magnesium sulfate, filtered off, and the solvent were removed in vacuo. The regio- and the diastereoselectivity of the reaction were determined by ${ }^{1} \mathrm{H}$ NMR of the crude mixture to be $>95: 5$ for the regioselectivity and 80:20 for the diastereoselectivity (based on the chemical shift of propargylic ($\delta=3.62$) and homo-propargylic protons ($\delta=3.56$). Purification by FC (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 95:5, $\mathrm{Rf}=0.35$) gave $\boldsymbol{\operatorname { s y n }} \mathbf{- 6}(210 \mathrm{mg}, 52 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.42-7.26 (m, 5H); 3.64-3.60 (m, 1H); 3.58-3.54 (m, 1H); $2.15(\mathrm{~d}$ sept., $J=$ $3.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}) ; 1.49(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}) ; 1.01(\mathrm{dd}, J=6.8,12.9 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,128.7,128.6,127.3,79.6,79.5,78.7,43.0,30.2$, $20.4,15.2,3.7$. IR (neat) $v=3468(b r), 2961,2872,1493,1452,1045,996,746,698 \mathrm{~cm}^{-1}$. Elemental anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 83.12$; H, 8.97; O, 7.91. Found: C, 82.94; H, 8.89; O, 7.75

Spectroscopic data

(wdd)

のdDEIDEdLEEAT
-109.7303

- 87.3052
80.5409
-77.2746
$=76.9546$
$=76.6345$
-76.6345

-43.0633
-30.1741
-20.4273
-15.2411
-3.7266

-43.0633
-30.1741
-20.4273
-15.2411
-3.7266

References of the supporting information:

${ }^{\text {i }}$ complete citation for ref 46 is: Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.
${ }^{\text {ii }}$ a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200-206. c) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
${ }^{\text {iii }}$ Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43-54 and references therein.
${ }^{\text {iv }}$ Vrancken, E.; Alouane, N.; Gérard, H.; Mangeney, P. J. Org. Chem. 2007, 72, 1770-1779
${ }^{\text {v }}$ Alouane, N.; Vrancken, E.; Mangeney, P. Synthesis 2007, 1261-1264.
${ }^{\text {vi }}$ Chemla, F.; Bernard, N.; Normant, J. Eur. J. Org. Chem. 1999, 9, 2067-2078.
${ }^{\text {vii }}$ See supporting information of: Harada, T.; Katsuhira, T.; Osada, A.; Iwasaki, K.; Maejima, K.; Oku, A. J. Am. Chem. Soc. 1996, 118, 11377-11390.

[^0]: ${ }^{\dagger}$ Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM2-UM1-ENSCM, 8, rue de l'école Normale, 34296 Montpellier, France, Fax: (+33) 4-67-14-43-22. ${ }^{\ddagger}$ Laboratoire de Chimie Théorique, UMR 7616 UPMC - Univ. Paris 06, CNRS case 137, 4 Place Jussieu 75262 Paris Cedex 05, France. ${ }^{8}$ Laboratoire de Chimie Organique, UMR 7611 Institut de Chimie Moléculaire, FR 2769, UPMC - Univ. Paris 06, CNRS, case 43, 4 Place Jussieu 75262 Paris Cedex 05, France. ${ }^{¥}$ Institut Lavoisier de Versailles, UMR 8180, Université de Versailles, 45 Av des Etats-Unis, 78035 Versailles Cedex, France

[^1]: ${ }^{a}$ obtained at the B3LYP/6-31+G** level, see ref

