Hydrogen H/D Exchange and Activation of $\mathrm{C}_{1}-n-\mathrm{C}_{4}$ Alkanes on Ga-Modified Zeolite BEA Studied with ${ }^{1}$ H MAS NMR In Situ

Anton A. Gabrienko, ${ }^{1}$ Sergei S. Arzumanov, ${ }^{1}$ Alexander V. Toktarev, ${ }^{1}$ Dieter Freude ${ }^{2}$, Jürgen Haase ${ }^{2}$ and Alexander G. Stepanov ${ }^{{ }^{*}}$

${ }^{1}$ Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia
${ }^{2}$ Universität Leipzig, Fakultät für Physik und Geowissenschaften, Linnéstraße 5, 04103 Leipzig, Germany

Supporting Information

TABLE 1S: Exchange Reactions Used for Simulating the Kinetics of the H/D Exchange for C $\mathbf{C}_{\mathbf{2}} \boldsymbol{n}$ C_{4} alkanes on \mathbf{H}-BEA and $\mathbf{G a} / \mathbf{H}$-BEA Zeolites

no.	Exchange reaction	Rate expression
1	$\mathrm{CD}_{3} \mathrm{CD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CD}_{2} \mathrm{HCD}_{3}+\mathrm{OD}$	$R_{1}=k_{a}\left[\mathrm{CD}_{3} \mathrm{CD}_{3}\right][\mathrm{OH}]-$
		-(1/6) $k_{a}\left[\mathrm{CD}_{2} \mathrm{HCD}_{3}\right][\mathrm{OD}]$
2	$\mathrm{CD}_{2} \mathrm{HCD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CDH}_{2} \mathrm{CD}_{3}+\mathrm{OD}$	$\begin{aligned} & R_{2}=(1 / 3) k_{a}\left[\mathrm{CD}_{2} \mathrm{HCD}_{3}\right][\mathrm{OH}]- \\ & \quad-(1 / 3) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{3}\right][\mathrm{OD}] \end{aligned}$
3	$\mathrm{CD}_{2} \mathrm{HCD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CD}_{2} \mathrm{HCD}_{2} \mathrm{H}+\mathrm{OD}$	$\begin{aligned} & R_{3}=(1 / 2) k_{a}\left[\mathrm{CD}_{2} \mathrm{HCD}_{3}\right][\mathrm{OH}]- \\ &-(1 / 3) k_{a}\left[\mathrm{CD}_{2} \mathrm{HCD}_{2} \mathrm{H}\right][\mathrm{OD}] \end{aligned}$
4	$\mathrm{CDH}_{2} \mathrm{CD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CD}_{3}+\mathrm{OD}$	$\begin{aligned} & R_{4}=(1 / 6) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{3}\right][\mathrm{OH}]- \\ &-(1 / 2) k_{a}\left[\mathrm{CH}_{3} \mathrm{CD}_{3}\right][\mathrm{OD}] \end{aligned}$
5	$\mathrm{CDH}_{2} \mathrm{CD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OD}$	$\begin{aligned} & R_{5}=(1 / 2) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{3}\right][\mathrm{OH}]- \\ &-(1 / 6) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OD}] \end{aligned}$
6	$\mathrm{CH}_{3} \mathrm{CD}_{3}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OD}$	$\begin{aligned} & R_{6}=(1 / 2) k_{a}\left[\mathrm{CH}_{3} \mathrm{CD}_{3}\right][\mathrm{OH}]- \\ & \quad-(1 / 6) k_{a}\left[\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OD}] \end{aligned}$
7	$\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CDH}_{2}+\mathrm{OD}$	$\begin{aligned} & R_{7}=(1 / 3) k_{a}\left[\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OH}]- \\ & \quad-(1 / 3) k_{a}\left[\mathrm{CH}_{3} \mathrm{CDH}_{2}\right][\mathrm{OD}] \end{aligned}$
8	$\mathrm{CH}_{3} \mathrm{CDH}_{2}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{OD}$	$\begin{aligned} & R_{8}=(1 / 6) k_{a}\left[\mathrm{CH}_{3} \mathrm{CDH}_{2}\right][\mathrm{OH}]- \\ &-k_{a}\left[\mathrm{CH}_{3} \mathrm{CH}_{3}\right][\mathrm{OD}] \end{aligned}$
9	$\mathrm{CD}_{2} \mathrm{HCD}_{2} \mathrm{H}+\mathrm{OH} \leftrightarrows \mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OD}$	$\begin{aligned} & R_{9}=(2 / 3) k_{a}\left[\mathrm{CD}_{2} \mathrm{HCD}_{2} \mathrm{H}\right][\mathrm{OH}]- \\ &-(1 / 3) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OD}] \end{aligned}$
10	$\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OD}$	$\begin{array}{r} R_{10}=(1 / 6) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OH}]- \\ -(1 / 2) k_{a}\left[\mathrm{CH}_{3} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OD}] \end{array}$
11	$\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}+\mathrm{OH} \leftrightarrows \mathrm{CDH}_{2} \mathrm{CDH}_{2}+\mathrm{OD}$	$\begin{aligned} & R_{11}=(1 / 3) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CD}_{2} \mathrm{H}\right][\mathrm{OH}]- \\ & -(2 / 3) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CDH}_{2}\right][\mathrm{OD}] \end{aligned}$
12	$\mathrm{CDH}_{2} \mathrm{CDH}_{2}+\mathrm{OH} \leftrightarrows \mathrm{CH}_{3} \mathrm{CDH}_{2}+\mathrm{OD}$	$\begin{array}{r} R_{12}=(1 / 3) k_{a}\left[\mathrm{CDH}_{2} \mathrm{CDH}_{2}\right][\mathrm{OH}]- \\ \\ -(1 / 2) k_{a}\left[\mathrm{CH}_{3} \mathrm{CDH}_{2}\right][\mathrm{OD}] \end{array}$
13	$-\mathrm{CD}_{2-}+\mathrm{OH} \leftrightarrows-\mathrm{CDH}-+\mathrm{OD}$	$R_{13}=k_{b}\left[\mathrm{CD}_{2}\right][\mathrm{OH}]-(1 / 2) k_{b}[\mathrm{CDH}][\mathrm{OD}]$

14	$-\mathrm{CDH}-+\mathrm{OH} \leftrightarrows-\mathrm{CH}_{2-}+\mathrm{OD}$	$R_{14}=(1 / 2) k_{b}[\mathrm{CDH}][\mathrm{OH}]-k_{b}\left[\mathrm{CH}_{2}\right][\mathrm{OD}]$
15	$-\mathrm{CD}_{2} \mathrm{CD}_{2}{ }^{-}+\mathrm{OH} \leftrightarrows-\mathrm{CDHCD}_{2}-+\mathrm{OD}$	$R_{15}=k_{c}\left[\mathrm{CD}_{2} \mathrm{CD}_{2}\right][\mathrm{OH}]-$
		- (1/4) $k_{c}\left[\mathrm{CDHCD}_{2}\right][\mathrm{OD}]$
16	$-\mathrm{CDHCD}_{2}{ }^{-}+\mathrm{OH} \leftrightarrows-\mathrm{CH}_{2} \mathrm{CD}_{2}{ }^{-}+\mathrm{OD}$	$\begin{aligned} & R_{16}=(1 / 4) k_{c}\left[\mathrm{CDHCD}_{2}\right][\mathrm{OH}]- \\ & -(1 / 2) k_{c}\left[\mathrm{CH}_{2} \mathrm{CD}_{2}\right][\mathrm{OD}] \end{aligned}$
17	$-\mathrm{CDHCD}_{2}{ }^{-}+\mathrm{OH} \leftrightarrows-\mathrm{CDHCDH}-+\mathrm{OD}$	$\begin{aligned} & R_{17}=(1 / 2) k_{c}\left[\mathrm{CDHCD}_{2}\right][\mathrm{OH}]- \\ & -(1 / 2) k_{c}[\mathrm{CDHCDH}][\mathrm{OD}] \end{aligned}$
18	$-\mathrm{CH}_{2} \mathrm{CD}_{2-}+\mathrm{OH} \leftrightarrows-\mathrm{CH}_{2} \mathrm{CDH}-+\mathrm{OD}$	$\begin{aligned} & R_{18}=(1 / 2) k_{c}\left[\mathrm{CH}_{2} \mathrm{CD}_{2}\right][\mathrm{OH}]- \\ & -(1 / 4) k_{c}\left[\mathrm{CH}_{2} \mathrm{CDH}\right][\mathrm{OD}] \end{aligned}$
19	$-\mathrm{CH}_{2} \mathrm{CDH}-+\mathrm{OH} \leftrightarrows-\mathrm{CH}_{2} \mathrm{CH}_{2}-+\mathrm{OD}$	$\begin{aligned} & R_{19}=(1 / 4) k_{c}\left[\mathrm{CH}_{2} \mathrm{CDH}\right][\mathrm{OH}]- \\ &-k_{c}\left[\mathrm{CH}_{2} \mathrm{CH}_{2}\right][\mathrm{OD}] \end{aligned}$
20	-CDHCDH- + OH $\leftrightarrows-\mathrm{CH}_{2} \mathrm{CDH}-+\mathrm{OD}$	$\begin{array}{r} R_{20}=(1 / 2) k_{c}[\mathrm{CDHCDH}][\mathrm{OH}]- \\ -(1 / 2) k_{c}\left[\mathrm{CH}_{2} \mathrm{CDH}\right][\mathrm{OD}] \end{array}$

For kinetics modeling the H/D exchange in alkanes the following reactions from Table 1 S were taken into account:

- ethane- d_{6} : reactions $1-12$ with OH represented by SiOHAl $\left(k_{a}=k_{\mathrm{SiOHAI}}\right)$ and the same reactions 1-12 with OH represented by SiOH (i.e. $k_{a}=k_{\mathrm{SiOH}}$);
- propane- d_{8} : reactions $1-12$ to describe the exchange in the methyl groups ($k_{a}=k_{\mathrm{CH}}$) and reactions 13-14 to describe the exchange in the methylene groups ($k_{b}=k_{\mathrm{CH} 2}$);
- \boldsymbol{n}-butane- $\boldsymbol{d}_{\mathbf{1 0}}$: reactions 1-12 to describe the exchange in the methyl groups ($k_{a}=k_{\mathrm{CH} 3}$) and reactions 15-20 to describe the exchange in the methylene groups ($k_{c}=k_{\mathrm{CH} 2}$);

(1) H / D exchange in $\mathrm{C}_{1}, \mathrm{C}_{2}$ alkanes.

On the base of correspondent reactions from Table1 and Table 1S the following kinetic equations are derived for SiODAl and SiOD groups

$$
\begin{align*}
& \frac{\mathrm{d}[\mathrm{SiODAl}]}{\mathrm{d} t}=k_{\mathrm{SiOHAl}}\left\{\left[\mathrm{CD}_{\mathrm{n}}\right]_{0}[\mathrm{SiOHAl}]_{0}-\left[\mathrm{CD}_{\mathrm{n}}\right]_{0}[\mathrm{SiODAl}]-\frac{1}{n}\left[\mathrm{X}_{\mathrm{CHn}}\right][\mathrm{SiOHAl}]_{0}\right\} \\
& \frac{\mathrm{d}[\mathrm{SiOD}]}{\mathrm{d} t}=k_{\mathrm{SiOH}}\left\{\left[\mathrm{CD}_{\mathrm{n}}\right]_{0}[\mathrm{SiOH}]_{0}-\left[\mathrm{CD}_{\mathrm{n}}\right]_{0}[\mathrm{SiOD}]-\frac{1}{n}\left[\mathrm{X}_{\mathrm{CHn}}\right][\mathrm{SiOH}]_{0}\right\} \tag{1S}
\end{align*}
$$

where $\left[\mathrm{CD}_{n}\right]_{0}$ is the initial concentrations of alkane; $[\mathrm{X}]_{\mathrm{CHn}}$ is the concentration of protium in alkane calculated as following

$$
\left[\mathrm{X}_{\mathrm{CHn}}\right]=\sum_{k=1}^{n} k\left[\mathrm{CD}_{n-k} \mathrm{H}_{k}\right]
$$

The system of differential equations (1S) is easily transformed into system (2), assuming that $\left[\mathrm{X}_{\mathrm{CHn}}\right]=[\mathrm{SiODAl}]+[\mathrm{SiOD}]$ and mole fractions of D isotope are determined via equalities

$$
F_{\mathrm{SiODAl}}=\frac{[\mathrm{SiODAl}]}{[\mathrm{SiOHAl}]_{0}}, \quad F_{\mathrm{SiOD}}=\frac{[\mathrm{SiOD}]}{[\mathrm{SiOH}]_{0}}
$$

(2) H/D exchange in $\mathrm{C}_{3}, n-\mathrm{C}_{4}$ alkanes.

On the base of correspondent reactions from Table 1 S the following kinetic equations are derived for concentration of protium in the methyl groups $[\mathrm{H}]_{\mathrm{CH} 3}$ and the methylene groups $[\mathrm{H}]_{\mathrm{CH} 2}$:

$$
\begin{align*}
\frac{\mathrm{d}\left[\mathrm{X}_{\mathrm{H}}^{a}\right]}{\mathrm{d} t} & =k_{\mathrm{CH} 3}\left\{\left[\mathrm{RD}_{a}^{(\mathrm{CH} 3)}\right]_{0}[\mathrm{OH}]_{0}-\left[\mathrm{RD}_{a}^{(\mathrm{CH} 3)}\right]_{0}[\mathrm{OD}]-\frac{1}{a}\left[\mathrm{X}_{\mathrm{H}}^{a}\right][\mathrm{OH}]_{0}\right\} \tag{2S}\\
\frac{\mathrm{d}\left[\mathrm{X}_{\mathrm{H}}^{b}\right]}{\mathrm{d} t} & =k_{\mathrm{CH} 2}\left\{\left[\mathrm{RD}_{b}^{(\mathrm{CH} 2)}\right]_{0}[\mathrm{OH}]_{0}-\left[\mathrm{RD}_{b}^{(\mathrm{CH} 2)}\right]_{0}[\mathrm{OD}]-\frac{1}{b}\left[\mathrm{X}_{\mathrm{H}}^{b}\right][\mathrm{OH}]_{0}\right\}
\end{align*}
$$

where $\left[\mathrm{RD}_{a}^{(\mathrm{CH} 3)}\right]_{0}$ and $\left[\mathrm{RD}_{b}^{(\mathrm{CH} 2)}\right]_{0}$ represent the initial concentrations of the methyl and the methylene groups (in $\mu \mathrm{mol} \mathrm{g}^{-1}$), respectively; a and b is the total number of hydrogen atoms in methyl groups and methylene groups of a hydrocarbon, respectively; $[\mathrm{OH}]_{0}=[\mathrm{SiOHAl}]_{0}+[\mathrm{SiOH}]_{0}$ is the total initial concentration of zeolitic OH groups.

Protium concentrations $[\mathrm{H}]_{\mathrm{CH} 3},[\mathrm{H}]_{\mathrm{CH} 2}$ correspond to

$$
[\mathrm{H}]_{\mathrm{CH} 3}=\sum_{k=1}^{a} k\left[\mathrm{RD}_{a-k} \mathrm{H}_{k}\right], \quad[\mathrm{H}]_{\mathrm{CH} 2}=\sum_{l=1}^{b} l\left[\mathrm{RD}_{b-l} \mathrm{H}_{l}\right]
$$

The system of differential equations (2S) is easily transformed into system (6), assuming that $[\mathrm{OD}]=[\mathrm{H}]_{\mathrm{CH} 3}+[\mathrm{H}]_{\mathrm{CH} 2}$ and mole fractions of H isotope are determined via equalities

$$
F_{\mathrm{H}}^{a}=\frac{[\mathrm{H}]_{\mathrm{CH} 3}}{a\left[\mathrm{RD}_{a}^{(\mathrm{CH} 3)}\right]_{0}}, \quad \quad F_{\mathrm{H}}^{b}=\frac{[\mathrm{H}]_{\mathrm{CH} 2}}{b\left[\mathrm{RD}_{b}^{(\mathrm{CH} 2)}\right]_{0}} .
$$

Figure 1S. ${ }^{27}$ Al MAS NMR spectra of zeolites H-BEA and Ga/H-BEA. Asterisks * belong to spinning sidebands.

Figure 2S. ${ }^{29}$ Si MAS NMR spectra of zeolites H-BEA and Ga/H-BEA.

Figure 3S. ${ }^{71}$ Ga MAS NMR spectrum of zeolite $\mathrm{Ga} / \mathrm{H}-\mathrm{BEA}$.

