Hydrogen H/D Exchange and Activation of C₁–*n*-C₄ Alkanes on Ga-Modified Zeolite BEA Studied with ¹H MAS NMR In Situ

Anton A. Gabrienko,¹ Sergei S. Arzumanov,¹ Alexander V. Toktarev,¹ Dieter Freude², Jürgen Haase² and Alexander G. Stepanov^{1*}

¹Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Prospekt Akademika Lavrentieva 5, Novosibirsk 630090, Russia

²Universität Leipzig, Fakultät für Physik und Geowissenschaften, Linnéstraße 5, 04103 Leipzig, Germany

Supporting Information

TABLE 1S: Exchange Reactions Used for Simulating the Kinetics of the H/D Exchange for C₂–*n*-C₄ alkanes on H-BEA and Ga/H-BEA Zeolites

no.	Exchange reaction	Rate expression
1	$CD_3CD_3 + OH \leftrightarrows CD_2HCD_3 + OD$	$R_1 = k_a \left[\text{CD}_3 \text{CD}_3 \right] [\text{OH}] -$
-		$-(1/6) k_a [CD_2HCD_3][OD]$
2	$CD_2HCD_3 + OH \leftrightarrows CDH_2CD_3 + OD$	$R_2 = (1/3) k_a [CD_2HCD_3][OH] -$
		$-(1/3) k_a [CDH_2CD_3][OD]$
3	$CD_2HCD_3 + OH \leftrightarrows CD_2HCD_2H + OD$	$R_3 = (1/2) k_a [CD_2HCD_3][OH] -$
		$-(1/3) k_a [CD_2HCD_2H][OD]$
4	$CDH_2CD_3 + OH \leftrightarrows CH_3CD_3 + OD$	$R_4 = (1/6) k_a [CDH_2CD_3][OH] -$
		$-(1/2) k_a [CH_3CD_3][OD]$
5	$CDH_2CD_3 + OH \leftrightarrows CDH_2CD_2H + OD$	$R_5 = (1/2) k_a [CDH_2CD_3][OH] -$
		$-(1/6) k_a [CDH_2CD_2H][OD]$
6	$CH_3CD_3 + OH \leftrightarrows CH_3CD_2H + OD$	$R_6 = (1/2) k_a [CH_3CD_3][OH] - (1/C) l_1 [CH_2CD_3][OH]$
	CU CD U + OU ← CU CDU → OD	$-(1/6) k_a [CH_3CD_2H][OD]$
7	$CH_3CD_2H + OH \leftrightarrows CH_3CDH_2 + OD$	$R_7 = (1/3) k_a [CH_3CD_2H][OH] - (1/3) k_a [CH_3CDH_2][OD]$
0	$CH_3CDH_2 + OH \leftrightarrows CH_3CH_3 + OD$	$R_8 = (1/6) k_a [CH_3CDH_2][OH] -$
8	$c_{113}c_{2112} + o_{11} \rightarrow c_{113}c_{113} + o_{22}$	$-k_a [CH_3CH_3][OD]$
9	$CD_2HCD_2H + OH \leftrightarrows CDH_2CD_2H + OD$	$R_9 = (2/3) k_a [CD_2HCD_2H][OH] -$
9		$-(1/3) k_a [CDH_2CD_2H][OD]$
10	$CDH_2CD_2H + OH \leftrightarrows CH_3CD_2H + OD$	$R_{10} = (1/6) k_a [CDH_2CD_2H][OH] -$
10	v _	$-(1/2) k_a [CH_3CD_2H][OD]$
11	$CDH_2CD_2H + OH \leftrightarrows CDH_2CDH_2 + OD$	$R_{11} = (1/3) k_a [CDH_2CD_2H][OH] -$
		$-(2/3) k_a [CDH_2CDH_2][OD]$
12	$CDH_2CDH_2 + OH \leftrightarrows CH_3CDH_2 + OD$	$R_{12} = (1/3) k_a [CDH_2CDH_2][OH] -$
		$-(1/2) k_a [CH_3CDH_2][OD]$

15	$-CD_2CD_2 + OH \leftrightarrows -CDHCD_2 + OD$	$R_{15} = k_c \left[\text{CD}_2 \text{CD}_2 \right] \left[\text{OH} \right] -$
		$-(1/4) k_c [CDHCD_2][OD]$
16	$-CDHCD_2 - + OH \leftrightarrows -CH_2CD_2 - + OD$	$R_{16} = (1/4) k_c [\text{CDHCD}_2][\text{OH}] -$
		$-(1/2) k_c [CH_2CD_2][OD]$
17	$-CDHCD_2 + OH \leftrightarrows -CDHCDH + OD$	$R_{17} = (1/2) k_c [\text{CDHCD}_2][\text{OH}] -$
		$-(1/2) k_c $ [CDHCDH][OD]
18	$-CH_2CD_2 - + OH \leftrightarrows -CH_2CDH - + OD$	$R_{18} = (1/2) k_c [CH_2CD_2][OH] -$
	2 2 2	$-(1/4) k_c [CH_2CDH][OD]$
19	$-CH_2CDH - + OH \leftrightarrows -CH_2CH_2 - + OD$	$R_{19} = (1/4) k_c [CH_2CDH][OH] -$
		$-k_c [CH_2CH_2][OD]$
20	-CDHCDH- + OH \leftrightarrows -CH ₂ CDH- + OD	$R_{20} = (1/2) k_c \text{ [CDHCDH][OH]} -$
		$-(1/2) k_c [CH_2CDH][OD]$

For kinetics modeling the H/D exchange in alkanes the following reactions from Table 1S were taken into account:

- **ethane-***d*₆: reactions 1-12 with OH represented by SiOHAl ($k_a = k_{SiOHAl}$) and the same reactions 1-12 with OH represented by SiOH (i.e. $k_a = k_{SiOH}$);
- **propane-** d_8 : reactions 1-12 to describe the exchange in the methyl groups ($k_a = k_{CH3}$) and reactions 13-14 to describe the exchange in the methylene groups ($k_b = k_{CH2}$);
- *n*-butane-*d*₁₀: reactions 1-12 to describe the exchange in the methyl groups ($k_a = k_{CH3}$) and reactions 15-20 to describe the exchange in the methylene groups ($k_c = k_{CH2}$);

(1) H/D exchange in C₁,C₂ alkanes.

On the base of correspondent reactions from Table1 and Table 1S the following kinetic equations are derived for SiODAl and SiOD groups

$$\frac{d[\text{SiODAl}]}{dt} = k_{\text{SiOHAl}} \left\{ [\text{CD}_{n}]_{0} [\text{SiOHAl}]_{0} - [\text{CD}_{n}]_{0} [\text{SiODAl}] - \frac{1}{n} [\text{X}_{\text{CHn}}] [\text{SiOHAl}]_{0} \right\}$$
(1S)
$$\frac{d[\text{SiOD}]}{dt} = k_{\text{SiOH}} \left\{ [\text{CD}_{n}]_{0} [\text{SiOH}]_{0} - [\text{CD}_{n}]_{0} [\text{SiOD}] - \frac{1}{n} [\text{X}_{\text{CHn}}] [\text{SiOH}]_{0} \right\}$$

where $[CD_n]_0$ is the initial concentrations of alkane; $[X]_{CHn}$ is the concentration of protium in alkane calculated as following

$$[\mathbf{X}_{\text{CHn}}] = \sum_{k=1}^{n} k [\text{CD}_{n-k}\mathbf{H}_k]$$

The system of differential equations (1S) is easily transformed into system (2), assuming that $[X_{CHn}]=[SiODAI]+[SiOD]$ and mole fractions of D isotope are determined via equalities

$$F_{\text{SiODAl}} = \frac{[\text{SiODAl}]}{[\text{SiOHAl}]_0}, \qquad F_{\text{SiOD}} = \frac{[\text{SiOD}]}{[\text{SiOH}]_0}.$$

(2) H/D exchange in C₃, *n*-C₄ alkanes.

On the base of correspondent reactions from Table 1S the following kinetic equations are derived for concentration of protium in the methyl groups $[H]_{CH3}$ and the methylene groups $[H]_{CH2}$:

$$\frac{d[X_{\rm H}^{a}]}{dt} = k_{\rm CH3} \left\{ [RD_{a}^{(\rm CH3)}]_{0} [OH]_{0} - [RD_{a}^{(\rm CH3)}]_{0} [OD] - \frac{1}{a} [X_{\rm H}^{a}] [OH]_{0} \right\}$$

$$\frac{d[X_{\rm H}^{b}]}{dt} = k_{\rm CH2} \left\{ [RD_{b}^{(\rm CH2)}]_{0} [OH]_{0} - [RD_{b}^{(\rm CH2)}]_{0} [OD] - \frac{1}{b} [X_{\rm H}^{b}] [OH]_{0} \right\}$$
(2S)

where $[RD_a^{(CH3)}]_0$ and $[RD_b^{(CH2)}]_0$ represent the initial concentrations of the methyl and the methylene groups (in µmol g⁻¹), respectively; *a* and *b* is the total number of hydrogen atoms in methyl groups and methylene groups of a hydrocarbon, respectively; $[OH]_0$ =[SiOHAl]_0+[SiOH]_0 is the total initial concentration of zeolitic OH groups.

Protium concentrations [H]_{CH3}, [H]_{CH2} correspond to

$$[H]_{CH3} = \sum_{k=1}^{a} k [RD_{a-k}H_k], \qquad [H]_{CH2} = \sum_{l=1}^{b} l [RD_{b-l}H_l]$$

The system of differential equations (2S) is easily transformed into system (6), assuming that $[OD]=[H]_{CH3}+[H]_{CH2}$ and mole fractions of H isotope are determined via equalities

$$F_{\rm H}^{a} = \frac{[{\rm H}]_{\rm CH3}}{a[{\rm RD}_{a}^{({\rm CH3})}]_{0}}, \qquad F_{\rm H}^{b} = \frac{[{\rm H}]_{\rm CH2}}{b[{\rm RD}_{b}^{({\rm CH2})}]_{0}}.$$

Figure 1S.²⁷Al MAS NMR spectra of zeolites H-BEA and Ga/H-BEA. Asterisks * belong to spinning sidebands.

Figure 2S. ²⁹Si MAS NMR spectra of zeolites H-BEA and Ga/H-BEA.

Figure 3S. ⁷¹Ga MAS NMR spectrum of zeolite Ga/H-BEA.