Supporting Information

Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal-Organic Frameworks by Spillover

Wenxiu Cao, Yingwei Li,* Liming Wang,* and Shijun Liao

Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

E-mail: liyw@scut.edu.cn

Table S1. H₂ Uptakes at 298 K and 7.3 MPa for the MIL-53 (Al, Cr, or Fe) and MIL-68 (V) materials.

MOF	Formula unit	Formula weight (g/mol)	Expected H_2 capacity, q_e (wt%) a	Net H_2 uptake by spillover, $q_n (wt\%)^b$	Enhancement factor
MIL-53 (Al)	Al(OH)(BDC)	208	0.18	0.23	2.25
MIL-53 (Cr)	Cr(OH)(BDC)	233	0.18	0.20	2.09
MIL-53 (Fe)	Fe(OH)(BDC)	237	0.16	0.20	2.26
MIL-68 (V)	V(OH)(BDC)	232	0.20	0.20	2.00

^a Based on the weighted average of the Pt/C-MOF mixture assuming no spillover. $q_e = 0.9 \times q_{\text{mof}} + 0.1 \times q_{\text{catalyst}}$, q_{mof} , and q_{catalyst} are the H₂ uptakes of pristine MOF, and catalyst, respectively. ^b The net spillover enhancement for the Pt/C-MOF mixture over the expected H₂ uptake ($q_n = q - q_e$, here q is the total H₂ uptake measured on the Pt/C-MOF mixture).

Table S2. H₂ Uptakes at 298 K and 7.3 MPa for the IRMOF type materials.

MOF	Formula unit	Formula weight (g/mol)	Expected H_2 capacity, q_e $(wt\%)^a$	Net H ₂ uptake by spillover, q _n (wt%) ^b	Enhancement factor	H _s / (x-BDC) ^c
IRMOF-1	$Zn_4O(BDC)_3$	770	0.28	0.27	1.96	0.69
IRMOF-2	Zn ₄ O(Br-BDC) ₃	1006	0.25	0.51	3.00	1.89
MTV-MOF-5-AE	$Zn_4O(BDC)_{2.1}$ (NO ₂ -BDC) _{0.9}	810	0.25	0.34	2.37	1.43 ^d
IRMOF-3	Zn ₄ O(NH ₂ -BDC) ₃	815	0.29	0.17	1.60	0.51
MTV-MOF-5-AF	Zn ₄ O(BDC) _{1.3} ((CH ₃) ₂ -BDC) _{1.7}	817	0.23	0.15	1.67	0.29 ^e

^a Based on the weighted average of the Pt/C-MOF mixture assuming no spillover. $q_e = 0.9 \times q_{mof} + 0.1 \times q_{catalyst}$, q_{mof} , and $q_{catalyst}$ are the H₂ uptakes of pristine MOF, and catalyst, respectively. ^b The net spillover enhancement for the Pt/C-MOF mixture over the expected H₂ uptake ($q_n = q - q_e$, here q is the total H₂ uptake measured on the Pt/C-MOF mixture). ^c Average amount of H_s per BDC linker. ^d H_s/(NO₂-BDC). ^e H_s/((CH₃)₂-BDC).

Figure S1. Powder XRD patterns of IRMOF-3 samples: (a) pristine IRMOF-3; (b) Pt/C-IRMOF-3 physical mixture; (c) Pt/C-IRMOF-3 after H₂ exposure.

Figure S2. Nitrogen adsorption isotherms for IRMOF-3 at 77 K. Symbols: ■ pristine IRMOF-3; ● Pt/C-IRMOF-3 physical mixture. Open symbols indicate desorption branches. The BET surface area of the Pt/C-IRMOF-3 mixture is ca. 2015 m²/g.

Figure S3. High-pressure hydrogen adsorption at 298 K for the MTV-MOF-5-AF. Dotted line is prediction based on the weighted average of the mixture.

Figure S4. High-pressure hydrogen isotherms at 298 K for two Pt/C–IRMOF-2 physical mixtures prepared independently.

Figure S5. High-pressure hydrogen adsorption at 298 K for the Pt/C–IRMOF-2 physical mixture: first adsorption (\spadesuit), desorption (\bigcirc), and second adsorption (\blacktriangle).