Supporting Information Effects of Metal Ions and Ligand Functionalization on Hydrogen Storage in Metal-Organic Frameworks by Spillover Wenxiu Cao, Yingwei Li,* Liming Wang,* and Shijun Liao Key Lab for Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China. E-mail: liyw@scut.edu.cn **Table S1.** H₂ Uptakes at 298 K and 7.3 MPa for the MIL-53 (Al, Cr, or Fe) and MIL-68 (V) materials. | MOF | Formula unit | Formula
weight
(g/mol) | Expected H_2 capacity, q_e (wt%) a | Net H_2 uptake
by spillover,
$q_n (wt\%)^b$ | Enhancement factor | |-------------|--------------|------------------------------|---|---|--------------------| | MIL-53 (Al) | Al(OH)(BDC) | 208 | 0.18 | 0.23 | 2.25 | | MIL-53 (Cr) | Cr(OH)(BDC) | 233 | 0.18 | 0.20 | 2.09 | | MIL-53 (Fe) | Fe(OH)(BDC) | 237 | 0.16 | 0.20 | 2.26 | | MIL-68 (V) | V(OH)(BDC) | 232 | 0.20 | 0.20 | 2.00 | ^a Based on the weighted average of the Pt/C-MOF mixture assuming no spillover. $q_e = 0.9 \times q_{\text{mof}} + 0.1 \times q_{\text{catalyst}}$, q_{mof} , and q_{catalyst} are the H₂ uptakes of pristine MOF, and catalyst, respectively. ^b The net spillover enhancement for the Pt/C-MOF mixture over the expected H₂ uptake ($q_n = q - q_e$, here q is the total H₂ uptake measured on the Pt/C-MOF mixture). **Table S2.** H₂ Uptakes at 298 K and 7.3 MPa for the IRMOF type materials. | MOF | Formula unit | Formula
weight
(g/mol) | Expected H_2 capacity, q_e $(wt\%)^a$ | Net H ₂ uptake by spillover, q _n (wt%) ^b | Enhancement factor | H _s / (x-BDC) ^c | |--------------|---|------------------------------|---|---|--------------------|---------------------------------------| | IRMOF-1 | $Zn_4O(BDC)_3$ | 770 | 0.28 | 0.27 | 1.96 | 0.69 | | IRMOF-2 | Zn ₄ O(Br-BDC) ₃ | 1006 | 0.25 | 0.51 | 3.00 | 1.89 | | MTV-MOF-5-AE | $Zn_4O(BDC)_{2.1}$
(NO ₂ -BDC) _{0.9} | 810 | 0.25 | 0.34 | 2.37 | 1.43 ^d | | IRMOF-3 | Zn ₄ O(NH ₂ -BDC) ₃ | 815 | 0.29 | 0.17 | 1.60 | 0.51 | | MTV-MOF-5-AF | Zn ₄ O(BDC) _{1.3} ((CH ₃) ₂ -BDC) _{1.7} | 817 | 0.23 | 0.15 | 1.67 | 0.29 ^e | ^a Based on the weighted average of the Pt/C-MOF mixture assuming no spillover. $q_e = 0.9 \times q_{mof} + 0.1 \times q_{catalyst}$, q_{mof} , and $q_{catalyst}$ are the H₂ uptakes of pristine MOF, and catalyst, respectively. ^b The net spillover enhancement for the Pt/C-MOF mixture over the expected H₂ uptake ($q_n = q - q_e$, here q is the total H₂ uptake measured on the Pt/C-MOF mixture). ^c Average amount of H_s per BDC linker. ^d H_s/(NO₂-BDC). ^e H_s/((CH₃)₂-BDC). **Figure S1.** Powder XRD patterns of IRMOF-3 samples: (a) pristine IRMOF-3; (b) Pt/C-IRMOF-3 physical mixture; (c) Pt/C-IRMOF-3 after H₂ exposure. **Figure S2.** Nitrogen adsorption isotherms for IRMOF-3 at 77 K. Symbols: ■ pristine IRMOF-3; ● Pt/C-IRMOF-3 physical mixture. Open symbols indicate desorption branches. The BET surface area of the Pt/C-IRMOF-3 mixture is ca. 2015 m²/g. **Figure S3.** High-pressure hydrogen adsorption at 298 K for the MTV-MOF-5-AF. Dotted line is prediction based on the weighted average of the mixture. **Figure S4.** High-pressure hydrogen isotherms at 298 K for two Pt/C–IRMOF-2 physical mixtures prepared independently. **Figure S5.** High-pressure hydrogen adsorption at 298 K for the Pt/C–IRMOF-2 physical mixture: first adsorption (\spadesuit), desorption (\bigcirc), and second adsorption (\blacktriangle).