Supporting Information

Axially Chiral N-heterocyclic Carbene Gold(I) Complexes Catalyzed Asymmetric Cycloisomerization of 1,6-Enynes

Wenfeng Wang, ${ }^{a}$ Jinming Yang, ${ }^{a}$ Feijun Wang, ${ }^{a}$ and Min Shi* ${ }^{a, b}$

${ }^{\text {a Key }}$ Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry \& Molecular Engineering, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237 China.
${ }^{\mathrm{b}}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032 China.

Mshi@mail.sioc.ac.cn. Fax 86-21-64166128

CONTENTS

(A) General Remarks. S2
(B) Procedures and Spectroscopic Data for the Synthesis of Axially Chiral NHC-Au(I) Complexes 1, 2a, b and 3-11. S3-S54
(C) Preparation of 1,6-enynes and Diaryl Sulfoxides. S54-S67
(D) General Procedure for NHC-Au(I) Complexes-Catalyzed Asymmetric Acetoxycyclization of 1,6-enynes and Analytical Data for Products. S67-S76
(E) General Procedure for NHC-Au(I) Complexes-Catalyzed Enantioselective Oxidative Rearrangement of 1,6-enynes and Analytical Data for Products. S76-S96
(F) References. S97
(G) X-ray Crystal Data of Complex 1.
(H) X-ray Crystal Data of Complex 2a.
(I) X-ray Crystal Data of Complex 6.

(A) General Remarks.

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. Melting points were measured on a Yanagimoto micro melting apparatus and uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded by using a Varian Mercury vx 300 MHz or Bruker 400 MHz spectrometer in CDCl_{3} with tetramethylsilane (TMS) as an internal standard. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ chemical shift were referenced to 0.00 ppm (TMS) and $77.0 \mathrm{ppm}\left(\mathrm{CDCl}_{3}\right)$, respectively. Coupling constants (J) are given in Hz. Optical rotations were determined at 589 nm (sodium D line) by using a Perkin-Elmer 341 MC digital polarimeter with a 10 cm cell (c given in g per 100 mL) and $[\alpha]_{\mathrm{D}}$ values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods. Infrared spectra were recorded on a Perkin-Elmer PE-983 spectrometer with absorption in cm^{-1}. Satisfactory CHN microanalyses were obtained by using a Carlo-Erba 1106 analyzer. X-ray diffraction analysis was performed by using a Bruker Smart-1000 X-ray diffractometer. Chiral HPLC was performed by using a SHIMADZU SPD-10A $v p$ series instrument with chiral columns (Chiralpak AD-H column, ϕ $4.6 \times 250 \mathrm{~mm}$, Daicel Chemical Co. Ltd). All reactions were monitored by TLC with Huanghai GF254 silica gel coated plates. Flash column chromatography was carried out by using 300~400 mesh silica gel at increased pressure, where KMnO_{4} and $\mathrm{H}_{3}\left[\mathrm{P}^{\left.\left(\mathrm{Mo}_{3} \mathrm{O}_{10}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}}\right.$ were used for visualization.

(B) Procedures and Spectroscopic Data for the Synthesis of Axially Chiral NHC-Au(I)

Complexes 1, 2a, b and 3-11.

(1) General Procedure for the Synthesis of Gold(I) Complex 1

Compound $\mathbf{1 2}^{[1]}(97 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.25 \mathrm{~mL}, 4.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ were stirred under reflux for 22 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 13 was used for the next step without any further purification. The imidazolium salt was obtained in almost quantitative yield at this step.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 13 ($77 \mathrm{mg}, 0.1 \mathrm{mmol}$), NaOAc ($33 \mathrm{mg}, 0.4 \mathrm{mmol}$) and [($\left.\left.\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](59 \mathrm{mg}, 0.2 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ as the solvent. After refluxing at $85{ }^{\circ} \mathrm{C}$ for about 9 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 1/1) to give 1 as a white solid in 52% yield. Single crystals of complex 1 suitable for an X-ray diffraction study were grown from the solution of $\mathbf{1}$ in mixed petroleum ether $/ \mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:2:2) (Scheme S1).

Scheme S1

Compound (aR)-12

Complex (aR)-1

White solid; m.p. $300.4-301.5^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+24\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3058, 2923, 2852, 1592, 1462, 1436, 1391, 1360, 1261, 1241, 1133, 1099, 1063, 1014, 862, 828, 806, 763, 738, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 4.24(\mathrm{~s}, 6 \mathrm{H}), 6.54(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55-7.70(\mathrm{~m}, 8 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.99 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$). LRMS (ESI) $m / e 1035.1\left[\mathrm{M}^{+}-\mathrm{I}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{I}_{2} \mathrm{Au}_{2}-\mathrm{I}\right]$ requires 1035.0533, found $1035.0527\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(2) General Procedure for the Synthesis of Gold(I) Complexes 2a and 2b

The precursor of mono-benzimidazole compound $(a S)-\mathbf{1 7}$ was prepared from (S)-binaphthyl-2,2'-diamine (BINAM) according to our previously reported procedures with a sequence of palladium catalyzed coupling, acetylation of primary amine, palladium catalyzed hydrogenation of nitro group, and ring closing with triethyl orthoformate. ${ }^{[2]}$

Compound $17^{[2]}(86 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.125 \mathrm{~mL}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ were stirred under reflux for 24 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 18 was used for the next step without any further purification. The imidazolium salt was obtained in almost quantitative yield at this step.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor $18(57 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{NaOAc}(17 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ as the solvent. After refluxing at $85{ }^{\circ} \mathrm{C}$ for about 12 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 2.5/1) to give complex 2a as a white solid in 54% yield. Single crystals of $\mathbf{2 a}$ suitable for an X-ray diffraction study were grown from the solution of $\mathbf{2 a}$ in mixed ethyl ether/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1)$ (Scheme S2).

(S)-BINAM

Scheme S2

Compound (aS)-14

$1 \mathrm{H}), 7.97-8.02(\mathrm{~m}, 2 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H})$.

Compound (aS)-15

It is a known compound. ${ }^{[2]}$ Red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) δ $1.74(\mathrm{~s}, 3 \mathrm{H}), 6.71-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.16-7.49 (m, 7H), 7.77 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-8.05(\mathrm{~m}, 5 \mathrm{H}), 8.53(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 1 \mathrm{H})$.

Compound (aS)-16

It is a known compound. ${ }^{[2]}$ White solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $1.89(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.95-7.01(\mathrm{~m}, 3 \mathrm{H})$, $7.08(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.93$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$.

Compound (aS)-17

It is a known compound. ${ }^{[2]}$ White solid; m.p. 228-230 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-218(c 0.25$, CHCl_{3}). IR (direct irradiation) v 3223, 3052, 2929, 1656, 1597, 1500, 1488, $1453,1364,1275,1232,865,812,742,715 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 1.64(\mathrm{~s}, 3 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H})$, $7.62-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.88(\mathrm{~m}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.22-8.28(m, 2H).

Complex (aS)-2a

White solid; m.p. $259.5-260.6^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-52\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3324, 1702, 1507, 1482, 1465, 1391, 1354, 1306, 1245, 1150, 1133, 1013, 863, 828, 808, 763, 750, $693 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS) $\delta 2.07(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 6.82(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.12-7.22 (m, 5H), 7.25-7.29 (m, 1H), 7.39-7.46 (m, 2H), 7.64-7.69 (m, 3H), 7.80 (d, J = 8.4 $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) m/e $638.1\left[\mathrm{M}^{+}-I\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 638.1507, found $638.1484\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

Compound $17(86 \mathrm{mg}, 0.2 \mathrm{mmol})$ and benzylbromide $(0.24 \mathrm{~mL}, 2 \mathrm{mmol})$ were refluxed in 1,4-dioxane (3 mL) until completely comsuming 17 by TLC monitoring. When lots of white solids were precipitated in the reaction system, the resulting suspension was cooled to room temperature and filtered through Celite to obtain solids, which were then washed with n-hexane for three times to give mono-benzimidazolium salt 19 in almost quantitative yield without any further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 19 ($60 \mathrm{mg}, 0.1 \mathrm{mmol}$), NaOAc ($17 \mathrm{mg}, 0.2 \mathrm{mmol}$), ${ }^{t} \mathrm{Bu}_{4} \mathrm{NI}(74 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for about 8 h , the reaction mixture
was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 3/1) to give complex $\mathbf{2 b}$ as a white solid in 42% yield (Scheme S3).

Scheme S3

Complex (aS)-2b

White solid; m.p. 291.9-293.0 ${ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-31\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) $v 3428,2923,2853,1701,1618,1595,1568,1495,1423$, 1402, 1346, 1306, 1278, 1252, 1223, 1192, 1013, 839, 823, 755, 731, 697 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.99(\mathrm{~s}, 3 \mathrm{H}), 5.37(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{~d}, J=$ $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.09(\mathrm{~m}, 5 \mathrm{H}), 7.19(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 1 \mathrm{H})$, $7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) $m / e 714.2$ [M ${ }^{+}$-I]; HRMS (ESI) calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{IOAu}-\mathrm{I}\right]$ requires 714.1820, found $714.1821\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(3) General Procedure for the Synthesis of Gold(I) Complex (aS)-3

To a mixture of $\mathbf{1 4}(405 \mathrm{mg}, 1.0 \mathrm{mmol})$ and DMAP ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}$ $(10 \mathrm{~mL})$ was dropwise added $\mathrm{PhC}(\mathrm{O}) \mathrm{Cl}(174 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ and the resulting system was stirred at room temperature for 17 h . The reaction was quenched via addition of water (20 mL) and then extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc: 10/1) to give 20 as a red solid in 98% yield.

A mixture of $20(484 \mathrm{mg}, 0.95 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in EtOAc (40 mL) was stirred under H_{2} atmosphere (1.0 atm) at $60^{\circ} \mathrm{C}$ for 21 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 8/1) to give 21 as a white solid in 74% yield.

In the presence of a catalytic amount of $\mathrm{TsOH}(15 \mathrm{mg})$, compound 21 ($331 \mathrm{mg}, 0.69$ $\mathrm{mmol})$ and triethyl orthoformate (7.0 mL) were heated at $100{ }^{\circ} \mathrm{C}$ for 34 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 2/1) to give 22 as a white solid in 90\% yield.

Compound 22 ($147 \mathrm{mg}, 0.3 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{I}(0.2 \mathrm{~mL}, 3.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$
were stirred under reflux for 22 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 23 was used for the next step without any further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 23 ($126 \mathrm{mg}, 0.2 \mathrm{mmol}$), NaOAc ($33 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](60 \mathrm{mg}, 0.2 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 22 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1) to give complex $\mathbf{3}$ as a white solid in 37% yield (Scheme S4).

Scheme S4

Compound (aS)-20

Red solid; m.p. 108.4-109.9 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+11$ (c 0.25, CHCl_{3}). IR (direct irradiation) $v 3408,3323,3056,2925,1675,1610,1593,1574,1493,1425$, 1338, 1248, 1146, 1074, 1040, 1024, 863, 814, 738, $705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta$ 6.67-6.71 (m, 1H), 7.14-7.23 (m, 6H), 7.27-7.37 (m, 5H), 7.41-7.50 (m, $2 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.99(\mathrm{~m}, 3 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.78$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 115.7,118.3,120.46$, $120.5,121.5,123.3,124.4,125.0,125.3,125.8,126.5,127.2,127.8,128.36,128.39,128.4$, 129.7, 129.9, 130.1, 131.0, 131.1, 131.5, 132.3, 133.1, 134.2, 134.4, 134.5, 135.1, 136.3,
140.6, 165.0. LRMS (ESI) $m / e 510.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{3}+\mathrm{H}\right]$ requires 510.1818 , found $510.1824\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-21

CHBzWhite solid; m.p. $111.1-112.8{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-16\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3461, 3379, 3054, 2953, 2923, 2853, 1672, 1616, 1594, 1500, $1486,1455,1424,1331,1282,1147,1024,816,744,705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.41(\mathrm{br}, 2 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 6.53-6.57(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.89(\mathrm{~m}, 2 \mathrm{H}), 7.06$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.84$ (m, 2H), $7.93(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.85(\mathrm{~d}, J=9.2 \mathrm{~Hz}$,

1 H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 111.4,115.7,116.0,118.6,120.7,120.9,123.0$, $123.5,125.0,125.3,126.6,126.67,126.72,126.74,127.1,127.5,128.29,128.32,128.5,128.6$, $129.6,130.3,131.4,131.6,132.5,133.3,134.4,135.4,142.7,143.1,165.4$ LRMS (ESI) m / e $480.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]$ requires 480.2076, found 480.2080 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-22

White solid; m.p. $168.2-170.2{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-91\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3419, 3055, 2954, 2923, 1668, 1596, 1486, 1454, 1426, 1378, $1281,1235,1145,1025,890,817,796,741,706 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta$ 7.06-7.12 (m, 3H), 7.15-7.24 (m, 6H), 7.34-7.45 (m, 6H), $7.63(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 109.5,120.4,120.6,120.8,122.7,123.5,124.4,124.8,125.3,126.4,126.7,127.2$, 127.7, 128.4, 128.5, 128.6, 128.8, 130.0, 130.8, 131.0, 131.7, 133.0, 133.2, 133.6, 134.3, 134.5, 165.0. LRMS (ESI) m/e $490.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]$ requires 490.1919, found $490.1921\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-3

White solid; m.p. $141.5-142.9{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-149\left(c \quad 0.25, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$
(direct irradiation) $v 3419,3057,2924,2852,1682,1596,1501,1487,1466,1427,1391,1346$, 1277, 1238, 1099, 1024, 860, 820, 744, $706 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.77$ (s , $3 \mathrm{H}), 6.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}$, $5 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.66(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.76-7.81 (m, 3H), $8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) m/e $700.2\left[\mathrm{M}^{+}-I\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{IOAu}-\mathrm{I}\right]$ requires 700.1663, found $700.1661\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(4) General Procedure for the Synthesis of Gold(I) Complex (aS)-4

Acetyl compound $\mathbf{1 7}(2.14 \mathrm{~g}, 5 \mathrm{mmol})$ was refluxed in $4.0 \mathrm{M} \mathrm{HCl}(50 \mathrm{~mL})$ and ethanol $(80 \mathrm{~mL})$ for 22 h . The reaction system was cooled to room temperature and neutralized to pH >7 with saturated aqueous NaOH solution, which was followed by the extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 1/2) to give benzimidazole-primary amine 24 as a white solid in 99% yield.

A mixture of $24(385 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{Boc}_{2} \mathrm{O}(240 \mathrm{mg}, 1.1 \mathrm{mmol})$ and DMAP (122 mg , 1.0 mmol) in dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ was stirred at $50{ }^{\circ} \mathrm{C}$ for 40 h . After removing volatiles under reduced pressure, the crude product was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 3/1) to provide $\mathbf{2 5}$ as a white solid in 60%
yield.
Compound 25 ($291 \mathrm{mg}, 0.6 \mathrm{mmol}$) and $\mathrm{CH}_{3} \mathrm{I}(0.75 \mathrm{~mL}, 12 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ were stirred under reflux for 60 h until completely consuming 25. After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 26 was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 26 ($125 \mathrm{mg}, 0.2 \mathrm{mmol}$), NaOAc ($33 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](60 \mathrm{mg}, 0.2 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 6/1) to give complex 4 as a white solid in 30% yield (Scheme S5).

Scheme S5

Compound (aS)-24 ${ }^{[2 \mathrm{~b}]}$

White solid; m.p. $134-136{ }^{\circ} \mathrm{C} .[\alpha]^{20}=-27\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3461, 3370, 3318, 3196, 2956, 2925, 2853, 1619, 1488, 1453, 1382, 1285, $1235,1146,816,740,623 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.55(\mathrm{~s}$, 2H), 6.89-6.93 (m, 2H), 7.04-7.12 (m, 2H), 7.17-7.23 (m, 2H), 7.38-7.45 (m, 3H), 7.58-7.68 $(\mathrm{m}, 5 \mathrm{H}), 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
($75 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 109.7,111.4,117.7,120.0,122.09,122.14,123.0,124.4,126.4$, 126.6, 127.1, 127.6, 128.1, 128.3, 129.8, 129.9, 130.3, 133.1, 133.3, 133.5, 133.7, 134.2, 142.5, 142.9, 143.0. LRMS (ESI) $m / e 386.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 386.1657 , found $386.1660\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-25

White solid; m.p. $143.8-145.8{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-119\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3423, 3054, 2964, 2925, 1722, 1598, 1489, 1453, 1427, 1366, 1284, 1266, 1232, 1153, 1085, 1065, 1034, 888, 867, 820, $741 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.26(\mathrm{~s}, 9 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.34(\mathrm{~m}$,
$6 \mathrm{H}), 7.41(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.67(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.24(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 27.9,80.7,109.7,119.3,120.2,122.6,123.6,124.4,124.5,124.6,126.6$, 127.1, 127.5, 128.0, 128.4, 128.5, 129.1, 129.8, 130.0, 130.8, 133.1, 133.3, 134.0, 134.9, 142.2, 142.6, 151.9. LRMS (ESI) $m / e 486.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]$ requires 486.2182 , found $486.2180\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-4

White solid; m.p. $153.4-154.5{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-9.0\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3420, 2973, 2925, 1715, 1599, 1502, 1455, 1427, 1391,

1367, 1346, 1270, 1232, 1153, 1083, 1059, 871, 820, 804, $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS $) \delta 1.53(\mathrm{~s}, 9 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 6.56-6.61(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.10(\mathrm{~m}, 2 \mathrm{H})$, 7.19-7.23 (m, 2H), 7.29-7.32 (m, 1H), 7.37-7.45 (m, 2H), $7.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.69$ (m, 2H), $7.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}$). LRMS (ESI) m/e $696.2\left[\mathrm{M}^{+}-\mathrm{I}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{IO}_{2} \mathrm{Au}-\mathrm{I}\right]$ requires 696.1925 , found $696.1937\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(5) General Procedure for the Synthesis of Gold(I) Complex 5

Under argon atmosphere, compound (S)-27 ($646 \mathrm{mg}, 3.0 \mathrm{mmol}$), DCC ($619 \mathrm{mg}, 3.0$ mmol) and DMAP ($122 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was stirred at room temperature for 15 minutes followed by the addition of solution of (aS) - $\mathbf{1 4}$ ($405 \mathrm{mg}, 1.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 mL), and the resulting system was further stirred at room temperature for 11 h . Then the suspension was filtered through Celite to remove white solids, and the filtrate was washed in sequence with water, saturated KHSO_{4}, water, saturated NaHCO_{3} and brine. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc: 4/1) to give (aS,S)-28 as a red solid in $\mathbf{9 8 \%}$ yield.

A mixture of ($\mathrm{a} S, S$) $\mathbf{- 2 8}(603 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in EtOAc $(40 \mathrm{~mL})$ was stirred under H_{2} atmosphere (1.0 atm) at $60{ }^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were
removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1) to give (aS,S)-29 as a white solid in 93\% yield.

Compound (aS,S)-29 ($516 \mathrm{mg}, 0.9 \mathrm{mmol}$) and triethyl orthoformate $(9.0 \mathrm{~mL})$ containing a catalytic amount of $\mathrm{TsOH}(18 \mathrm{mg})$ were heated at $100^{\circ} \mathrm{C}$ for 10 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 2/1) to give (aS,S)-30 as a white solid in 83% yield.

Compound (aS,S)-30 (117 mg, 0.2 mmol$)$ and $\mathrm{CH}_{3} \mathrm{I}(0.125 \mathrm{~mL}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}$ $(4.0 \mathrm{~mL})$ were stirred under reflux for 20 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid ($\mathrm{a} S, S$)-31 was used for the next step without any further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor (aS,S)-31 (72 mg, 0.1 mmol), NaOAc ($17 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5.0 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 13 h , the reaction mixture was cooled to room temperature and filtered through Celite. Volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1) to give complex (aS,S)-5 as a white solid in 53% yield (Scheme S6).

On the other hand, $\mathrm{NHC}-\mathrm{Au}(\mathrm{I})$ complex $(\mathrm{a} S, R)-\mathbf{5}$ was prepared from compounds $(R)-\mathbf{2 7}$ and $(\mathrm{a} S)-\mathbf{1 4}$ as a diastereoisomer according to the same procedure for the preparation of complex (aS,S)-5.

Scheme S6

Compound (aS,S)-28

Red solid; m.p. 101.6-103.2 ${ }^{\circ} \mathrm{C}$ (dec.). IR (direct irradiation) v 3360, 3270, 2973, 2958, 2930, 2873, 1694, 1611, 1593, 1573, 1493, 1414, 1365, 1340, 1248, 1159, 1087, 1039, 863, 815, 777, $738 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.47-2.30(\mathrm{~m}, 6 \mathrm{H}), 2.93-2.95(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{br}, 1 \mathrm{H})$, 6.66 (br, 1H), 7.17-7.58 (m, 8H), 7.78 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85-8.06 (m, 5H), 8.73 (d, $J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H})$ (Signals between $\delta 0.8-1.3 \mathrm{ppm}$ were attributed to minor containing petroleum ether). LRMS (ESI) $m / e 625.2\left[\mathrm{M}^{+}+\mathrm{Na}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{5}+\mathrm{Na}\right]$ requires 625.2427 , found $625.2431\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.

Compound (aS,S)-29

White solid; m.p. $109.8-111.5{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-80\left(c 0.25, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$ (direct irradiation) $v 3467,3353,3054,2973,2927,2875,1690,1618,1593$, $1499,1455,1417,1365,1344,1299,1250,1158,1118,1087,869,817,776$, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.28-2.23(\mathrm{~m}$, $6 \mathrm{H}), 2.82-2.99(\mathrm{~m}, 1 \mathrm{H}), 3.69(\mathrm{br}, 2 \mathrm{H}), 4.08-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 6.62-6.63(\mathrm{~m}, 2 \mathrm{H})$, 6.90-7.00 (m, 3H), 7.14-7.38 (m, 6H), 7.79 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.68-8.83(\mathrm{~m}, 1 \mathrm{H})($ Signals between $\delta 0.8-1.3$ ppm were attributed to minor containing petroleum ether). LRMS (ESI) m/e $573.3\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{36} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}\right]$ requires 573.2866, found $573.2862\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS,S)-30

White solid; m.p. $134.0-136.5{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-66\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) $v 3364,3055,2972,2927,2873,1694,1614,1597,1502$, $1489,1453,1392,1365,1284,1236,1159,1120,1087,821,742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.09$ (s, 9H), 1.50-2.60 (m, 6H), 2.96 (dt, J $=7.2,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.08(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.61(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$ (Signals between δ
$0.8-1.3 \mathrm{ppm}$ were attributed to minor containing petroleum ether). LRMS (ESI) m/e 583.3
$\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{37} \mathrm{H}_{34} \mathrm{~N}_{4} \mathrm{O}_{3}+\mathrm{H}\right]$ requires 583.2709, found $583.2706\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
$\underbrace{\text { ² }}$

Complex (aS,S)-5

White solid; m.p. 224.9-225.8 ${ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-102\left(c 0.25, \mathrm{CHCl}_{3}\right) . \mathrm{IR}$ (direct irradiation) $v 3360,2924,2853,1691,1596,1501,1467,1451,1425$, 1391, 1362, 1305, 1274, 1254, 1156, 1114, 1089, 873, 831, 817, $745 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.20(\mathrm{~s}, 9 \mathrm{H}), 1.62-2.10(\mathrm{~m}, 6 \mathrm{H}), 2.86(\mathrm{~s}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{br}, 1 \mathrm{H}), 7.10-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.31$ $(\mathrm{d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H})$ (Signals between $\delta 0.8-1.3 \mathrm{ppm}$ were attributed to minor containing petroleum ether). LRMS (ESI) m/e $793.2\left[\mathrm{M}^{+}-\mathrm{I}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{38} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{IO}_{3} \mathrm{Au}-\mathrm{I}\right]$ requires 793.2453 , found $793.2471\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(6) General Procedure for the Synthesis of Gold(I) Complex 6

Under argon atmosphere, to the solution of $\mathbf{1 4}(810 \mathrm{mg}, 2 \mathrm{mmol})$ in dry toluene (4 mL) was added ${ }^{i}{ }{ }^{2} \mathrm{~N}$ NEt $(0.76 \mathrm{~mL}, 4.4 \mathrm{mmol})$ and $\mathrm{Br}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Br}(0.26 \mathrm{~mL}, 2.2 \mathrm{mmol})$ in sequence. After refluxing at $110^{\circ} \mathrm{C}$ for two days, the reaction system was cooled to room temperature and quenched via addition of water (30 mL) followed by the extraction with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc: 50/1) to give $\mathbf{3 2}$ as a red solid in 66% yield.

A mixture of 32 ($575 \mathrm{mg}, 1.25 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(125 \mathrm{mg})$ in EtOAc (40 mL) was stirred under H_{2} atmosphere (1 atm) at $60{ }^{\circ} \mathrm{C}$ for 9 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 25/1) to give $\mathbf{3 3}$ as a white solid in 79% yield.

Compound 33 ($350 \mathrm{mg}, 0.81 \mathrm{mmol}$) and triethyl orthoformate (10 mL) containing a catalytic amount of $\mathrm{TsOH}\left(16 \mathrm{mg}\right.$) were heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 3/1) to give 34 as a pale yellow solid in 80% yield.

Compound $34(110 \mathrm{mg}, 0.25 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.16 \mathrm{~mL}, 2.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$
were stirred under reflux for 19 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 35 was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 35 ($118 \mathrm{mg}, 0.2 \mathrm{mmol}$), NaOAc ($33 \mathrm{mg}, 0.4 \mathrm{mmol}$) and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](60 \mathrm{mg}, 0.2 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(10 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 22 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 / 1$) to give complex $\mathbf{6}$ as a white solid in 64% yield. Single crystals of complex 6 suitable for an X-ray diffraction study were grown from the solution of 6 in mixed petroleum ether/ $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:1:1) (Scheme S7).

Scheme S7

Compound (aS)-32

Red solid; m.p. $72.6-74.6{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+362$ (c $0.125, \mathrm{CHCl}_{3}$). IR (direct irradiation) v 3298, 3061, 2957, 2870, 1611, 1594, 1570, 1494, 1443, 1427, 1413, 1343, 1297, 1245, 1146, 1077, 1039, 1006, 864, 809, 767, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$

NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.63-1.71(\mathrm{~m}, 4 \mathrm{H}), 2.86-2.94(\mathrm{~m}, 2 \mathrm{H}), 3.01-3.06(\mathrm{~m}, 2 \mathrm{H})$, 6.57-6.63 (m, 1H), $6.95(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.38$ (m, 2H), 7.42-7.47 (m, 1H), $7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.99-8.02(\mathrm{~m}, 1 \mathrm{H}), 9.52(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 25.5,50.4,115.3,116.5,116.9,117.1,122.1,122.5,124.4$, $125.2,126.1,126.3,126.7,127.4,127.8,127.85,127.88,128.5,129.3,130.5,131.1,133.4$, 134.0, 135.0, 135.2, 135.6, 142.2, 147.0. LRMS (ESI) m/e $460.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]$ requires 460.2025 , found $460.2037\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-33

White solid; m.p. 103.8-105.8 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+45\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3457, 3358, 3055, 2962, 2925, 2867, 1615, 1594, 1502, 1459, $1415,1378,1344,1295,1248,1216,1148,1004,808,744 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.62-1.71(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.97(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{br}, 2 \mathrm{H})$, $5.12(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.01-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.32(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.77(\mathrm{~m}, 3 \mathrm{H}), 7.83$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 25.7,50.1,113.5,115.3,115.7$, $117.3,118.3,118.6,122.1,122.2,124.3,125.5,126.2,126.3,126.6,126.7,127.87,127.89$, 127.95, 127.96, 128.1, 128.7, 129.3, 134.6, 135.2, 142.2, 143.0, 146.6. LRMS (ESI) m/e 430.2 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 430.2283, found $430.2270\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-34

Pale yellow solid; m.p. 126.3-127.8 ${ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=+66\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct

irradiation) v 3055, 2958, 2925, 2866, 1614, 1595, 1505, 1487, 1453, 1427, 1379, 1349, 1284, $1234,1147,1002,809,741 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.24-1.28(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.52(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{dd}, J=9.2,16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.01-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 1 \mathrm{H})$, 7.57-7.61 (m, 1H), 7.64-7.72 (m, 4H), $7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 25.5,49.8,109.6,113.3,116.8$, $119.9,122.02,122.04,122.7,123.9,124.2,126.7,126.8,127.2,127.5,128.1,128.2,128.3$, 129.2, 129.7, 132.9, 133.5, 134.3, 134.6, 135.18, 135.21, 142.7, 142.8, 146.3. LRMS (ESI) $m / e 440.2\left[\mathrm{M}^{+}+\mathrm{H}\right] ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 440.2127 , found 440.2125 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-6

White solid; m.p. $286.0-287.5^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+172\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3061, 3035, 2957, 2922, 2899, 2853, 2831, 1614, 1595, 1504, 1468, 1440, 1426, 1393, 1377, 1345, 1244, 1150, 1133, 1010, 856, 822, $810,746 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.80-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 2 \mathrm{H})$, $2.61(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-3.05(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H}), 6.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.23$ (m, 1H), $7.27(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.63-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 1H), 7.92 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.06$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) $m / e 650.2\left[\mathrm{M}^{+}-\mathrm{I}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 650.1870, found 650.1880 [$\left.\mathrm{M}^{+}-I\right]$. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{AuIN}_{3}$ requires: C 49.44, H 3.50, N 5.40. Found: C 49.24, H $3.69, \mathrm{~N} 5.25 \%$.

(7) General Procedure for the Synthesis of Gold(I) Complex 7

To a mixture of $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ (aqueous, 1 mL) and $40 \% \mathrm{HCHO}$ (aqueous, 1 mL) in THF (4 mL) were added dropwise the solution of $\mathbf{1 4}(405 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (20 mL) and simultaneously the solution of $\mathrm{NaBH}_{4}(265 \mathrm{mg}, 7 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ within 15 minutes. After further stirring at $0{ }^{\circ} \mathrm{C}$ for 1 h , the reaction system was quenched via addition of
$20 \% \mathrm{NaOH}$ (aqueous) until $\mathrm{pH}>7$ and then extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (petroleum ether/EtOAc: 150/1) to give $\mathbf{3 6}$ as a red solid in 87% yield.

A mixture of $36(347 \mathrm{mg}, 0.8 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(80 \mathrm{mg})$ in EtOAc (16 mL) was stirred under H_{2} atmosphere (1 atm) at $60{ }^{\circ} \mathrm{C}$ for 18 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 20/1) to give 37 as a white solid in 82% yield.

Compound 37 ($260 \mathrm{mg}, 0.64 \mathrm{mmol}$) and triethyl orthoformate (10 mL) containing a catalytic amount of $\mathrm{TsOH}\left(13 \mathrm{mg}\right.$) were heated at $100{ }^{\circ} \mathrm{C}$ for 21 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1) to give 38 as a white solid in 68% yield.

Compound $38(124 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.2 \mathrm{~mL}, 3 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ were stirred under reflux for 16 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid compound 39 was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 39 ($56 \mathrm{mg}, 0.1 \mathrm{mmol}$), NaOAc ($17 \mathrm{mg}, 0.2 \mathrm{mmol}$) and [($\left.\left.\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 8/1) to give complex 7 as a white solid in 42% yield (Scheme S8).

Scheme S8

Compound (aS)-36

It is a known compound. ${ }^{[3]}$ Red solid; m.p. $135 \cdot 5-136.9{ }^{\circ} \mathrm{C} \cdot[\alpha]^{20}{ }_{\mathrm{D}}=+53(c$ $0.25, \mathrm{CHCl}_{3}$). IR (direct irradiation) v 3325, 2957, 2923, 2853, 1611, 1592, 1568, 1493, 1409, 1332, 1257, 1245, 1211, 1189, 1144, 1080, 1039, 989, 964, 863, 813, $737 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.60(\mathrm{~s}, 6 \mathrm{H}), 6.58$ (ddd, $J=1.6,6.4$, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.44(\mathrm{ddd}, J=3.6,4.8,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.92$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.96 (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=1.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.56(\mathrm{~s}$, 1H). LRMS (ESI) m/e $434.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]$ requires 434.1869, found $434.1868\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-37

It is a known compound. ${ }^{[3]}$ White solid; m.p. 144.5-146.0 ${ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 3448, 3375, 3052, 2921, 2783, 1615, 1593, 1500, 1478, 1414, 1342, 1294, 1249, 1213, 1129, 1049, 987, 964, 937, 861, 814, $743 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.55(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{br}, 2 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.18(\mathrm{~m}$, $5 \mathrm{H}), 7.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.74(\mathrm{~m}$, $2 \mathrm{H}), 7.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) $m / e 404.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 404.2127 , found $404.2125\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-38 ${ }^{[3]}$

White solid; m.p. $151.4-152.8{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-72\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3055, 2924, 2853, 2785, 1681, 1614, 1594, 1505, 1488, 1453, $1428,1343,1303,1284,1235,1142,985,818,742 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS) $\delta 1.92(\mathrm{~s}, 6 \mathrm{H}), 7.02-7.04(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.33 (m, 2H), 7.39 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.66-7.68 (m, 1H), 7.74-7.79 (m, 3H), $8.04(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 42.6,110.0,119.0,119.9,121.4,121.9,122.8,123.6,124.69$, $124.73,126.6,126.8,127.3,127.5,128.4,129.2,129.3,129.9,132.7,133.1,133.2,134.3$, 134.5, 134.8, 142.7, 142.8, 150.0. LRMS (ESI) $m / e 414.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 414.1970, found $414.1967\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-7

White solid; m.p. $259.0-260.7{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+48\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3061, 2923, 2899, 2852, 2776, 1712, 1593, 1505, 1464, 1397, 1360, 1245, 1126, 1097, 1081, 977, 859, 819, 804, 743, $702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.46(\mathrm{~s}, 6 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.45$ $(\mathrm{m}, 2 \mathrm{H}), 7.58-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$). LRMS (ESI) m/e $624.2\left[\mathrm{M}^{+}-\mathrm{I}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 624.1714 , found $624.1696\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(8) General Procedure for the Synthesis of Gold(I) Complex 8

To the solution of $\mathbf{1 4}(405 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (30 mL) were added benzaldehyde (1 mL , 10 mmol) and $20 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ aqueous (2 mL) followed by the addition of $\mathrm{NaBH}_{4}(378 \mathrm{mg}, 10$ mmol) carefully at room temperature within 15 minutes. After further stirring at room temperature for 1 h , the reaction system was quenched via addition of $20 \% \mathrm{NaOH}$ (aqueous) until $\mathrm{pH}>7$ and then extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc: 60/1) to give $\mathbf{4 0}$ as a red solid in 78% yield.

A mixture of $40(248 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(50 \mathrm{mg})$ in $\mathrm{EtOAc}(15 \mathrm{~mL})$ was stirred under H_{2} atmosphere (1 atm) at $60^{\circ} \mathrm{C}$ for 12 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, $15 / 1$; containing minor NEt_{3}) to give $\mathbf{4 1}$ as a white solid in > 99\% yield.

Compound $41(210 \mathrm{mg}, 0.45 \mathrm{mmol})$ and triethyl orthoformate (10 mL) containing a catalytic amount of TsOH (9 mg) were heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1) to give $\mathbf{4 2}$ as a white solid in 66% yield.

Compound $42(95 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.25 \mathrm{~mL}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(6 \mathrm{~mL})$ were stirred under reflux for 60 h . After cooling to room temperature, volatiles were removed under reduced pressure and the obtained solid 43 was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 43 ($62 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{NaOAc}(17 \mathrm{mg}, 0.2 \mathrm{mmol})$ and [($\left.\left.\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum
ether/EtOAc, 8/1) to give complex $\mathbf{8}$ as a pale yellow solid in 30% yield (Scheme S9).

Scheme S9

Compound (aS)-40

Red solid; m.p. 87.4-89.0 ${ }^{\circ} \mathrm{C}$. $[\alpha]^{20}{ }_{\mathrm{D}}=+186$ (c $0.25, \mathrm{CHCl}_{3}$). IR (direct irradiation) v 3417, 3326, 3053, 2956, 2924, 2853, 1611, 1592, 1572, 1492, 1413, 1339, 1293, 1246, 1146, 1077, 1040, 1025, 971, 864, 809, 736, $696 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 4.01(\mathrm{br}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72$ (ddd, $J=1.2,6.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=0.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 8 \mathrm{H})$, $7.29-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{dd}, J=0.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{ddd}, J=2.4,6.0,8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.74-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=1.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 47.6,111.9,113.9,116.2,117.9,121.8,122.1,123.1,125.3,125.5,125.9$, 126.6, 126.79, 126.82, 126.9, 127.2, 127.6, 128.2, 128.3, 128.4, 129.3, 130.1, 131.5, 133.4, 133.9, 134.1, 135.2, 136.2, 139.3, 141.5, 143.6. LRMS (ESI) $m / e 496.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]$ requires 496.2025 , found $496.2025\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

White solid; m.p. $117.2-118.5^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-124\left(c 0.125, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3415, 3370, 3051, 2956, 2923, 2853, 1615, 1594, 1497, 1454, $1415,1338,1294,1247,1213,1149,1024,970,810,741,696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.40-4.46\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NH}+\mathrm{NH}_{2}\right), 4.38(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J$ $=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-7.27(\mathrm{~m}, 13 \mathrm{H}), 7.75-7.82(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 47.5$, $111.8,113.4,114.1,115.7,116.1,118.7,122.1,122.7,123.5,124.2,126.4,126.78,126.81$, 126.90 , 126.94, 126.96, 127.6, 127.8, 128.2, 128.3, 128.5, 128.7, 129.5, 129.9, 133.8, 139.6, 142.7, 143.1, 144.2. LRMS (ESI) m/e $466.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{33} \mathrm{H}_{27} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 466.2283 , found $466.2279\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-42

028White solid; m.p. $106.5-107.5^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-50\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3054, 2954, 2923, 2853, 1616, 1597, 1487, 1453, 1426, 1343,
 $1285,1235,1151,810,739,696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.84$ (br, 1H), $4.06(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=4.4,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.90-6.93 (m, 2H), 7.09-7.12 (m, 5H), 7.19-7.26 (m, 2H), 7.38-7.44 (m, 3H), $7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.61(\mathrm{ddd}, J=2.0,6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.79(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 47.7,109.9,111.3$, $113.7,120.3,122.0,122.4,123.1,123.4,124.5,126.6,126.8,126.9,127.0,127.2,127.3$, 127.7, 128.37, 128.44, 130.1, 130.2, 130.3, 133.5, 133.6, 133.9, 134.1, 134.3, 139.0, 142.9, 143.1, 143.7. LRMS (ESI) $m / e 476.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 476.2127, found $476.2128\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-8

Pale yellow solid; m.p. $198.3-199.8^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+20\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3399, 2955, 2922, 2852, 1710, 1617, 1598, 1494, 1454, 1392, 1343, 1295, 1240, 1081, 827, 808, 740, $696 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 3.95(\mathrm{~s}, 3 \mathrm{H}), 4.38(\mathrm{dd}, J=6.0,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{dd}, J=5.6,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.05(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.45(\mathrm{~m}$, $3 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=2.8,5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) $m / e 686.2\left[\mathrm{M}^{+}-\mathrm{I}\right] ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 686.1870, found $686.1844\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(9) General Procedure for the Synthesis of Gold(I) Complex 9

To the suspension of $40(248 \mathrm{mg}, 0.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(104 \mathrm{mg}, 0.75 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(12 \mathrm{~mL})$ was added $\mathrm{BnBr}(0.6 \mathrm{~mL}, 5 \mathrm{mmol})$ and the resulting mixture was refluxed at $85^{\circ} \mathrm{C}$ for 35 h . After cooling to room temperature, the reaction was quenched with water and then extracted with ethyl acetate for three times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure, and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc: 150/1) to give $\mathbf{4 4}$ as a red solid in $>99 \%$ yield.

A mixture of $44(398 \mathrm{mg}, 0.68 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(68 \mathrm{mg})$ in EtOAc (15 mL) was stirred under H_{2} atmosphere (1 atm) at $60^{\circ} \mathrm{C}$ for 50 h . After cooling to room temperature, the suspension was filtered through Celite to remove Pd / C. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 25/1) to give $\mathbf{4 5}$ as a pale yellow solid in 64% yield.

Compound 45 ($232 \mathrm{mg}, 0.41 \mathrm{mmol}$) and triethyl orthoformate (10 mL) containing a catalytic amount of $\mathrm{TsOH}(9 \mathrm{mg})$ were heated at $100{ }^{\circ} \mathrm{C}$ for 9 h . After removing triethyl orthoformate under reduced pressure, the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 8/1) to give $\mathbf{4 6}$ as a white solid in 85% yield.

Compound 46 (113 mg, 0.2 mmol) and $\mathrm{CH}_{3} \mathrm{I}(0.25 \mathrm{~mL}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ were stirred under reflux for 60 h . After cooling to room temperature, volatiles were removed under
reduced pressure and the obtained solid 47 was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 47 ($71 \mathrm{mg}, 0.1 \mathrm{mmol}$), NaOAc ($17 \mathrm{mg}, 0.2 \mathrm{mmol}$) and [$\left.\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 24 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 6/1) to give complex 9 as a white solid in 66% yield (Scheme S10).

Scheme S10

Compound (aS)-44
Red solid; m.p. $90.2-91.5^{\circ} \mathrm{C}($ dec. $) .[\alpha]^{20}{ }_{\mathrm{D}}=+12\left(c 0.125, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3330, 3059, 3027, 2962, 2923, 2849, 1611, 1592, 1571, 1494,
 1444, 1413, 1339, 1248, 1210, 1146, 1106, 1076, 1027, 960, 812, 737, 697 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.89(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.60(\mathrm{ddd}, J=1.2,6.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.06-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.33-7.39$ (m, 2H), 7.44 (ddd, $J=2.0,6.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.97(\mathrm{~m}, 3 \mathrm{H}), 9.34(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 55.6,116.1,117.7,122.0,122.6,124.6,124.7,125.3,125.5,126.5,126.75,126.80,127.0$, 127.9, 128.1, 128.2, 128.67, 128.72, 128.8, 129.3, 130.5, 131.5, 133.5, 133.6, 134.1, 135.0,
135.2, 137.5, 141.6, 148.9. LRMS (ESI) $m / e 586.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{2}+\mathrm{H}\right]$ requires 586.2495, found $586.2496\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-45

Pale yellow solid; m.p. $114.5-115.0^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+17\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) $v 3458,3372,3056,3026,2923,2850,1615,1592,1502$, 1453, 1414, 1341, 1297, 1210, 1146, 1071, 1026, 958, 812, 742, $698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.43$ (br, 2H), $4.03(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=14.8 \mathrm{~Hz}$, 2H), 5.01 (s, 1H), 6.58-6.62 (m, 2H), 6.88-6.93 (m, 6H), 7.05-7.19 (m, 9H), 7.24-7.28 (m, 2H), 7.34-7.37 (m, 2H), $7.40(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$,
7.84-7.89 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 55.8,115.7,116.2,117.5,118.8$, $122.6,122.8,124.6,124.8,125.1,125.2,125.97,125.99,126.5,126.8,127.98,128.03,128.2$, 128.7, 128.8, 128.9, 129.0, 130.7, 133.7, 133.9, 138.0, 141.3, 142.6, 149.7. LRMS (ESI) m/e $556.3\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 556.2753, found 556.2750 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Compound (aS)-46

White solid; m.p. $53.8-55.6^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-49\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3057, 3028, 2960, 2923, 2853, 1593, 1488, 1452, 1363, 1283, 1260, 1235, 1209, 1192, 1081, 1018, 963, 799, 740, $697 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 3.67(\mathrm{~s}, 4 \mathrm{H}), 6.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.97-7.01(\mathrm{~m}, 4 \mathrm{H}), 7.03-7.08(\mathrm{~m}$, $3 \mathrm{H}), 7.12-7.27(\mathrm{~m}, 7 \mathrm{H}), 7.34-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 56.4,111.0,120.1,122.5,123.06,123.11,124.1,124.6$, 124.7, 125.2, 126.6, 126.7, 127.1, 127.3, 127.5, 127.8, 128.1, 128.3, 128.4, 129.4, 129.6, 130.1, 131.8, 132.8, 133.0, 134.0, 134.1, 135.2, 137.7, 142.8, 143.1, 148.4. LRMS (ESI) m / e $566.3\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{41} \mathrm{H}_{31} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires 566.2596, found 566.2590 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-9

White solid; m.p. $240.8-241.8{ }^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=+51\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3059, 3023, 2923, 2852, 2814, 1618, 1596, 1505, 1450, 1392, 1353, 1216, 1150, 1124, 1098, 1070, 971, 942, 824, 807, 738, 699, 684 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.32(\mathrm{~s}, 4 \mathrm{H}), 6.58(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H})$, $6.67(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $4 \mathrm{H}), 7.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.42(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.67(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $8.14(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$. LRMS (ESI) m/e $776.2\left[\mathrm{M}^{+}\right.$-I]; HRMS (ESI) calcd for $\left[\mathrm{C}_{42} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 776.2340 , found $776.2352\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(10) General Procedure for the Synthesis of Gold(I) Complexes 10 and 11

Chiral imine compounds $\mathbf{4 8}$ and $\mathbf{5 0}$ were prepared according to our previously reported procedures with compound $\mathbf{2 4}$ as the starting material. ${ }^{[2 b]}$

Compound 48 ($98 \mathrm{mg}, 0.2 \mathrm{mmol}$) or $\mathbf{5 0}(95 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{CH}_{3} \mathrm{I}(0.25 \mathrm{~mL}, 4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ were refluxed for 11 h or 20 h . After cooling to room temperature, volatiles were removed under reduced pressure and the respectively obtained solid $\mathbf{4 9}$ and $\mathbf{5 1}$ was used for the next step without further purification.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 49 ($63 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathrm{NaOAc}(13 \mathrm{mg}, 0.15 \mathrm{mmol}$)
and $\left[\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 48 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1; containing minor NEt_{3}) to give complex 10 as a yellow solid in 66% yield (Scheme S11).

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added NHC precursor 51 ($62 \mathrm{mg}, 0.1 \mathrm{mmol}$), NaOAc ($17 \mathrm{mg}, 0.2 \mathrm{mmol}$) and [$\left.\left(\mathrm{Me}_{2} \mathrm{~S}\right) \mathrm{AuCl}\right](30 \mathrm{mg}, 0.1 \mathrm{mmol})$ followed by the addition of dry $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ as the solvent. After refluxing at $85^{\circ} \mathrm{C}$ for 20 h , the reaction mixture was cooled to room temperature and filtered through Celite. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 4/1; containing minor NEt_{3}) to give complex 11 as a pale yellow solid in 41% yield (Scheme S11).

Scheme S11

Compound (aS)-48 ${ }^{[2 b]}$

6.67-6.74 (m, 3H), $6.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.19(\mathrm{~m}, 3 \mathrm{H})$,
$7.26-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.35-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.99(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 11.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 110.4,116.6,116.7,118.6,119.0,119.5,122.0,122.8,124.2$, $125.8,125.9,126.6,126.9,127.2,127.3,127.4,128.3,128.4,130.0,130.5,131.5,132.1$, 132.2, 132.8, 132.9, 133.0, 133.3, 133.7, 134.1, 142.4, 142.6, 143.5, 160.4, 162.5. LRMS (ESI) $m / e 490.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}+\mathrm{H}\right]$ requires 490.1919, found $490.1902\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Complex (aS)-10
Yellow solid; m.p. $150.0-151.2^{\circ} \mathrm{C}$ (dec. $) \cdot[\alpha]^{20}{ }_{\mathrm{D}}=-49\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR
(direct irradiation) v3055, 2921, 2851, 2814, 1710, 1606, 1571, 1493, 1461, 1390, 1279, 1239, 1203, 1188, 1151, 1081, 964, 903, 859, 818, $744,692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 3.76$ (s, 3H), 6.68 (ddd, $J=2.8,6.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dt}, J=1.2$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.43-7.47(\mathrm{~m}$, $1 \mathrm{H}), 7.55(\mathrm{dt}, J=1.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48$ $(\mathrm{s}, 1 \mathrm{H}), 11.82(\mathrm{~s}, 1 \mathrm{H})$. LRMS (ESI) m/e $700.2\left[\mathrm{M}^{+}-\mathrm{I}\right] ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{IOAu}-\mathrm{I}\right]$ requires 700.1663 , found $700.1666\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

Compound (aS)-50 ${ }^{[2 b]}$

Yellow solid; m.p. $129-131{ }^{\circ} \mathrm{C} .[\alpha]^{20}{ }_{\mathrm{D}}=-209\left(c \quad 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3053, 2961, 2923, 2853, 1612, 1487, 1451, 1283, 1234, 1202, $1100,1024,815,740,691 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 6.82(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.37(\mathrm{~m}, 10 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.88(\mathrm{~m}, 3 \mathrm{H}), 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}$) (containing minor of benzaldehyde); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ 110.7, 118.7, 119.7, 122.1, 122.8, 124.0, 124.9, 125.2, 125.5, 126.6, 127.1, 127.2, 128.1, 128.3, 128.4, 128.7, 129.4, 130.3, 131.1, 131.7, 132.0, 132.8, 133.1, 133.7, 134.1, 135.8, 142.9, 148.0, 160.7. LRMS (ESI) m/e $474.2\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~N}_{3}+\mathrm{H}\right]$ requires

Complex (aS)-11

Pale yellow solid; m.p. $133.0-134.5^{\circ} \mathrm{C}$ (dec.). $[\alpha]^{20}{ }_{\mathrm{D}}=-42\left(c 0.25, \mathrm{CHCl}_{3}\right)$. IR (direct irradiation) v 3055, 2923, 2853, 1700, 1611, 1576, 1505, 1458, 1390, 1308, 1241, 1202, 1098, 964, 870, 815, 742, $692 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}, TMS) $\delta 3.80(\mathrm{~s}, 3 \mathrm{H}), 6.86$ (ddd, $\left.J=1.6,6.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15-7.26$ (m, 4H), $7.29-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.01$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H})$. LRMS (ESI) m/e $684.2\left[\mathrm{M}^{+}-\mathrm{I}\right]$;

HRMS (ESI) calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{IAu}-\mathrm{I}\right]$ requires 684.1714, found $684.1713\left[\mathrm{M}^{+}-\mathrm{I}\right]$.

(C) Preparation of 1,6-enynes and Diaryl Sulfoxides.
(1) 1,6-enyne 52a

Scheme S12

To a mixture of propargylamine ($412 \mu \mathrm{~L}, 6 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(0.92 \mathrm{~mL}, 6.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise the solution of $\mathrm{TsCl}(1258 \mathrm{mg}, 6.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 mL) at $0^{\circ} \mathrm{C}$. Then the reaction system was warmed to room temperature and further stirred for 5 h followed by quenching with 20 mL of water. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times, the combined organic phases were washed with saturated brine and then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was concentrated under reduced pressure and then purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, $5 / 1$; containing minor NEt_{3}) to give $\mathbf{S 1}$ as a white solid in 84% yield. It is a known compound. ${ }^{[4 \mathrm{a}]}{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.11(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{dd}, J=6.0,2.4 \mathrm{~Hz}, 2 \mathrm{H})$,
$4.73(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$.
Under argon atmosphere, to the solution of $\mathbf{S} \mathbf{1}$ ($1046 \mathrm{mg}, 5 \mathrm{mmol}$), cinnamyl alcohol ($738 \mathrm{mg}, 5.5 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(1967 \mathrm{mg}, 7.5 \mathrm{mmol})$ in mixed toluene/THF ($15 \mathrm{~mL} / 5 \mathrm{~mL}$) was added dropwise of DEAD ($1.18 \mathrm{~mL}, 7.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction system was warmed to room temperature and further stirred for 24 h . Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 10/1) to give 52a as a white solid in 95% yield. It is a known compound. ${ }^{[4 \mathrm{~b}]}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.05(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.99$ (d, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=15.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.23-7.33(\mathrm{~m}, 7 \mathrm{H}), 7.76$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$) (Scheme S12).

(2) 1,6-enyne 52b

Scheme S13

1-Bromo-3-methyl-2-butene ($2.33 \mathrm{~mL}, 20 \mathrm{mmol}$) was added to the suspension of TsNH_{2} ($3767 \mathrm{mg}, 22 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(3041 \mathrm{mg}, 22 \mathrm{mmol})$ in acetone $(20 \mathrm{~mL})$. Then the reaction system was refluxed at $60^{\circ} \mathrm{C}$ for 30 h followed by cooling to room temperature, quenching by

30 mL of water and extraction with EtOAc for 3 times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered through Celite. The filtrate was concentrated under reduced pressure and purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 15/1) to give $\mathbf{S} 2$ as a white solid in 71% yield. It is a known compound. ${ }^{[4 c] ~}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, TMS) $\delta 1.53(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.48-4.50(\mathrm{~m}, 1 \mathrm{H}), 5.03-5.07(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.

To the mixture of compound $\mathbf{S} \mathbf{2}$ ($3415 \mathrm{mg}, 14.27 \mathrm{mmol}$) obtained above and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2960 \mathrm{mg}, 21.4 \mathrm{mmol})$ in acetone (40 mL) was added propargyl bromide ($1.85 \mathrm{~mL}, 21.4$ $\mathrm{mmol})$. Then the suspension was refluxed at $60^{\circ} \mathrm{C}$ for 36 h followed by cooling to room temperature, quenching by 40 mL of water and extraction with EtOAc for 3 times. The combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 20/1) to give 52b as a white solid in 96% yield. It is a known compound. ${ }^{[4 d]}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl ${ }_{3}$, TMS) $\delta 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 3.81(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.12(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 2H), 7.74 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$) (Scheme S13).

(3) 1,6-enynes 52c-h

The preparation procedures of 1,6-enynes $\mathbf{5 2 c}$,d were similar to that of 1,6-enyne 52a
from compound S1 by using corresponding substituted allyl alcohol instead during the Mitsunobu reaction step.

The preparations of 1,6-enynes 52e-g were also similar to 52a by allowing the reaction of corresponding sulfonamide with propargylamine before a Mitsunobu reaction step with cinnamyl alcohol.

The preparation of 1,6-enyne $\mathbf{5 2} \mathbf{h}$ was according to a reported procedure by allowing the reaction of cinnamyl alcohol and propargyl bromide (1.2 equiv) with NaH (1.2 equiv) as the base in dry THF for $5 \mathrm{~h} .{ }^{[4 e]}$

Compound 52c

White solid; m.p. $93.4-94.6^{\circ} \mathrm{C}$. IR (direct irradiation) v 3264, 2918, 2851, 2112, 1598, 1444, 1347, 1332, 1305, 1168, 1137, 1091, 997, $921,893,853,811,741,688,654 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.05(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}$, $3 \mathrm{H}), 4.03$ (dd, $J=0.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.56(\mathrm{dt}, J=16.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.58(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 20.8,20.9,21.5,35.8,49.0,73.9,76.4,127.4,127.8,128.6$, 129.5, 132.8, 133.4, 135.8, 135.9, 136.6, 143.6. LRMS (EI) m/e 367.2 (3.41\%), 352.1 (10.16\%), 196.1 (100%), 91.1 (18.03%); HRMS (EI) calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}\right]$ requires 367.1606 , found $367.1609\left[\mathrm{M}^{+}\right]$.

Compound 52d

White solid; m.p. $100.7-101.7^{\circ} \mathrm{C}$. IR (direct irradiation) v 3272, 2919, 2117, 1598, 1341, 1327, 1306, 1152, 1096, 1065, 969, 900, 798, 780, $750,731,700,656 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.12(\mathrm{t}, J$ $=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 4.12(\mathrm{dd}, J=1.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{dt}, J$ $=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.53(\mathrm{~m}, 4 \mathrm{H})$, 7.78-7.85 (m, 4H), 8.01-8.04 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 21.5,36.0,48.8$, $74.0,76.6,123.5,124.1,125.5,125.8,125.9,126.2,127.8,128.4,128.5,129.5,131.0,132.4$, 133.5, 133.8, 136.0, 143.6. LRMS (EI) m/e 375.1 (9.12\%), 218.1 (100\%), 191.1 (49.13\%), 91.1 (19.72\%); HRMS (EI) calcd for [$\left.\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}\right]$ requires 375.1293, found $375.1295\left[\mathrm{M}^{+}\right]$.

Compound 52e

White solid; m.p. 113.9-115.0 ${ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 3274 , 2922, 2852, 2118, 1577, 1434, 1388, 1347, 1329, 1275, 1160, 1131, 1093, 1067, 1009, 971, 900, 839, 817, 759, 746, 728, 694, $666,614 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.07(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=0.8$, $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.08(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.24-7.36 (m, 5H), 7.63-7.67 (m, 2H), 7.73-7.76 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 35.9,48.6,74.2,76.2,122.4,126.5,127.8,128.2,128.6,129.3,132.1,135.2,135.9,138.0$.

LRMS (EI) $m / e 389.0$ (0.22%), 168.1 (100%), 142.1 (54.00%), 91.1 (12.52%); HRMS (EI)
calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{SBr}\right]$ requires 389.0085 , found $389.0079\left[\mathrm{M}^{+}\right]$.

$\mathrm{Br}-\sqrt{11}$

Compound 52f

White solid; m.p. $127.9-128.9{ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 3280, 1521, 1351, 1312, 1163, 1089, 972, 897, 856, 765, 752, $742,722,698,681,664,626 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 2.07(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=0.8,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.09$ $(\mathrm{dt}, J=16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}), 8.06-8.09(\mathrm{~m}, 2 \mathrm{H})$, 8.34-8.37 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, TMS) $\delta 36.0,48.9,74.4,75.9,121.9,124.1$, 126.6, 128.4, 128.7, 129.0, 135.7, 144.9, 150.1. LRMS (EI) $m / e ~ 356.1,168.1$ (100\%), 142.1
(55.91\%), 91.1 (15.57\%); HRMS (EI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}\right]$ requires 356.0831, found $356.0842\left[\mathrm{M}^{+}\right]$.

$\left.\right|^{\text {O. }}$

Compound 52g

White solid; m.p. 104.7-105.7 ${ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 3271, 2954, 2865, 1600, 1459, 1424, 1360, 1316, 1291, 1151, 1068, 1040, 973, 890, 847, 759, 735, 697, $670 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 1.25-1.28(\mathrm{~m}, 18 \mathrm{H}), 2.30(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{hep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.07(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{hep}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{dt}, J=$ $16.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.22-7.36(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100
$\mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 23.5,24.8,29.3,34.2,34.5,47.5,73.3,77.6,123.0,124.0,126.5,128.0$, 128.6, 130.5, 135.2, 136.1, 151.7, 153.4. LRMS (EI) m/e 437.2, 267.1 (100\%), 170.1 (37.76\%), 91.1 (23.02\%); HRMS (EI) calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{2} \mathrm{~S}\right]$ requires 437.2389, found $437.2385\left[\mathrm{M}^{+}\right]$.

Compound 52h

It is a known compound. ${ }^{[4 \mathrm{e}]}$ Colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ $2.45(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=1.2,6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.27(\mathrm{dt}, J=16.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 1 \mathrm{H})$, 7.30-7.33 (m, 2H), 7.38-7.40 (m, 2H).

(4) Aryl Sulfoxides 57b and 57c

Aryl sulfoxides 57b, \mathbf{c} were prepared according to a modified procedure similar with that in the previous literature. In the presence of a small iodine crystal, the corresponding aryl bromide (20 mmol) and magnesium ($486 \mathrm{mg}, 20 \mathrm{mmol}$) in dry THF (15 mL) were carefully allowed to start a Grignard reaction at room temperature and then refluxed for further 30 minutes. To the obtained solution of arylmagnesium bromide (20 mmol) in THF was added dropwise thionyl chloride ($0.73 \mathrm{~mL}, 10 \mathrm{mmol}$) in dry THF (10 mL) for $0.5 \sim 1 \mathrm{~h}$ at $0{ }^{\circ} \mathrm{C}$. Then the mixture was quenched by careful addition of water at $0{ }^{\circ} \mathrm{C}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 times. The combined organic phases were washed with saturated NaHCO_{3}, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated under reduced pressure and purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 10/1) to give 57b (or 57c) as a white solid in 31% (or 40\%) yield (Scheme S14).

Scheme S14

It is commercially available. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) δ 7.41-7.48 (m, 6H), 7.63-7.66 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 124.7,129.3,131.0,145.5$.

Compound 57b

White solid; m.p. 157.2-158.2 ${ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 3052, 2962, 2923, 2855, 1965, 1934, 1504, 1448, 1422, 1350, 1147, 1042, 1016, 977, 817, 773, 747, $641 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.50(\mathrm{~s}$, $6 \mathrm{H}), 7.19$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.81(\mathrm{~m}, 4 \mathrm{H})$,
7.19-7.22 (m, 2H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, TMS) $\delta 20.4,123.4,125.7,127.2,128.7$,
$129.9,131.5,132.1,132.8,135.7,137.3$. LRMS (EI) m/e 330.1 (61.02\%), 188.0 (100\%), 128.1 (48.77%), 115.1 (35.40%); HRMS (EI) calcd for [$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{OS}$] requires 330.1078, found $330.1081\left[\mathrm{M}^{+}\right]$.

Compound 57c

White solid; m.p. 128.3-129.3 ${ }^{\circ} \mathrm{C}$. IR (direct irradiation) v 2916, 2858, $1605,1575,1454,1096,1049,992,859,847,835,692,680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.33$ ($\mathrm{s}, 12 \mathrm{H}$), $7.04(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 21.3,122.3,132.7,139.2$, 145.3. LRMS (EI) m/e 258.1 (100%), 210.1 (64.72%), 137.0 (28.70%), 77.0 (20.01%); HRMS (EI) calcd for $\left[\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{OS}\right]$
requires 258.1078 , found $258.1081\left[\mathrm{M}^{+}\right]$.

(D) General Procedure for NHC-Au(I) Complexes-Catalyzed Asymmetric

Acetoxycyclization of 1,6-Enynes and Analytical Data for Products.

A mixture of NHC-Au(I) complex ($5 \mathrm{~mol} \%$), 1,6-enyne 52 (0.1 mmol) and $\mathrm{AgSbF}_{6}(2 \mathrm{mg}$, 0.005 mmol) in acetic acid (1 mL , commercially available) was stirred at room temperature until completely consuming of $\mathbf{5 2}$ by TLC mintoring. Then the reaction was quenched by filtering through a Celite with a thin pad of silica gel and volatiles were removed under reduced pressure. The residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 8/1) to give the corresponding product $\mathbf{5 3}$ as a white solid
(Scheme S15).

Scheme S15
Alternatively, to a solution of NHC-Au(I) complex ($5 \mathrm{~mol} \%$), 1,6-enyne 52a ($33 \mathrm{mg}, 0.1$ $\mathrm{mmol})$ and $\mathrm{AgX}(0.005 \mathrm{mmol})$ in dry $\mathrm{DCE}(1 \mathrm{~mL})$ was added dry acetic acid ($115 \mu \mathrm{~L}, 2 \mathrm{mmol}$) as the nucleophile under argon atmosphere. The mixture was stirred at proper temperature until completely consuming of 52a by TLC monitoring. Then the reaction was quenched by filtering through a Celite with a thin pad of silica gel and volatiles were removed under reduced pressure. The residue was purified by a silica gel flash column chromatography to give 53a (eluent: petroleum ether/EtOAc, 8/1) as a white solid (Scheme S16).

Scheme S16

Racemic products for chiral HPLC analysis were prepared by using $\mathrm{Ph}_{3} \mathrm{PAuCl}(3 \mathrm{mg}, 5$ $\mathrm{mol} \%$) and $\mathrm{AgSbF}_{6}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$ as the catalyst instead according to a similar procedure mentioned above.

Compound 53a

White solid, > 99% yield; m.p. 73.5-74. $7^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound $\mathbf{5 4},[\alpha]^{20}{ }_{\mathrm{D}}=-18\left(c 0.5, \mathrm{CHCl}_{3}\right),-59 \% e e$. IR (direct irradiation) $v 3477,2955,2924,2853,1740,1662,1597,1494$, $1455,1371,1343,1227,1160,1091,1016,965,907,814,753,701,663 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.74$ $(\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 5.70(\mathrm{~d}$,
$J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.35(\mathrm{~m}, 5 \mathrm{H}), 7.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}, TMS) $\delta 20.9,21.5,48.1,49.8,52.5,75.3,110.1,126.7,127.8,128.2$, 128.4, 129.7, 132.7, 138.3, 142.8, 143.8, 169.7. LRMS (ESI) m/e $408.1\left[\mathrm{M}^{+}+\mathrm{Na}\right] ;$ HRMS (ESI) calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}+\mathrm{Na}\right]$ requires 408.1245 , found $408.1244\left[\mathrm{M}^{+}+\mathrm{Na}\right]$.

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=80: 20$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=12.6 \mathrm{~min}($ minor $), t_{\mathrm{R}}=14.5 \mathrm{~min}($ major $\left.)\right]$.

Compound 53b

White solid, 66% yield; m.p. $88.5-89.2^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound $\mathbf{5 4},[\alpha]^{20}{ }_{\mathrm{D}}=+1.3\left(c 0.5, \mathrm{CHCl}_{3}\right), 20 \% e e$. IR (direct irradiation) v 2959, 2925, 2854, 1733, 1663, 1595, 1455, 1384, 1366, 1338, 1309, 1256, 1239,1224, 1182, 1162, 1134, 1121, 1093, 1028, 1016, 933, 834, 818, $800,712,659 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=12 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 21.5,22.4,23.3$, 23.6, 49.6, 50.7, 53.0, 83.2, 111.5, 127.8, 129.7, 132.6, 143.7, 143.8, 170.3. LRMS (ESI) m / e $338.1\left[\mathrm{M}^{+}+\mathrm{H}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}+\mathrm{H}\right]$ requires 338.1426, found 338.1432 $\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

WH－500 Chiral HPLC Analysis Report：

ID；Content；Retention time；Peak height；Peak area；Concentration；Tailing effect；Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=90: 10$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=17.4 \mathrm{~min}($ major $), t_{\mathrm{R}}=22.9 \mathrm{~min}($ minor $\left.)\right]$.

Compound $\mathbf{5 4}{ }^{[5]}$

White solid；m．p．43．9－45．2 ${ }^{\circ} \mathrm{C}$ ．Absolute stereochemistry was assigned by the sign of optical rotation with that in the literature：$[\alpha]^{20}{ }_{\mathrm{D}}=+31.3(c 0.5$ ， CHCl_{3} ）（lit．，${ }^{[5]}+51.2$ ）， $45 \% \mathrm{ee}$. IR（direct irradiation）$v 3502,2956,2923$ ， 2853，1712，1666，1597，1494，1454，1338，1306，1156，1093，1041，1016，901，813，765，702， $661 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$ ）$\delta 2.14(\mathrm{br}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.98(\mathrm{~m}, 1 \mathrm{H})$ ， $3.22(\mathrm{dd}, J=7.6,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=5.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=1.6 \mathrm{~Hz}$ ， $1 \mathrm{H}), 4.67$（d，$J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$（d，$J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 7 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}$ ， 2 H ）；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ，TMS）$\delta 21.5,49.5,50.5,52.6,73.8,109.4,126.3,127.92$ ， 127．93，128．4，129．7，132．5，141．8，143．7，144．2．LRMS（ESI）m／e $344.1\left[\mathrm{M}^{+}+\mathrm{H}\right]$ ；HRMS （ESI）calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{H}\right]$ requires 344.1320 ，found $344.1329\left[\mathrm{M}^{+}+\mathrm{H}\right]$ ．

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=80: 20$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=37.6 \mathrm{~min}($ minor $), t_{\mathrm{R}}=48.3 \mathrm{~min}$（major）$]$ ．

Compound 55

$7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 21.5,45.9,49.8,124.1,126.1$, 127.07, 127.14, 127.8, 128.2, 128.9, 129.1, 129.5, 134.3, 135.9, 143.5.

Ts $-\overbrace{-}^{\text {Ph }}$

(E) General Procedure for NHC-Au(I) Complexes-Catalyzed Enantioselective Oxidative Rearrangement of 1,6-Enynes and Analytical Data for Products.

Under argon atmosphere, to a flame-dried Schlenk tube equipped with a septum and stirring bar were added activated $4 \AA$ MS (50 mg), NHC-Au(I) complex ($5 \mathrm{~mol} \%$), 1,6-enyne 52 (0.1 mmol), $\mathrm{Ph}_{2} \mathrm{SO}(30 \mathrm{mg}, 0.15 \mathrm{mmol})$ and $\mathrm{AgSbF}_{6}(2 \mathrm{mg}, 0.005 \mathrm{mmol})$ followed by the injection of corresponding dry solvent $(1 \mathrm{~mL})$. The mixture was stirred at proper temperature until completely consuming of $\mathbf{5 2}$ by TLC monitoring before quenching by filtering with a thin pad of silica gel. Then volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography to give the oxidative product 56 (Scheme S17).

52

Scheme S17

56

Racemic products for chiral HPLC analysis were prepared by using $\mathrm{Ph}_{3} \mathrm{PAuCl}(5 \mathrm{mg}, 10$ $\mathrm{mol} \%$) and $\mathrm{AgSbF}_{6}(4 \mathrm{mg}, 0.01 \mathrm{mmol})$ as the catalyst with the solvent of DCE instead according to a similar procedure mentioned above.

Due to the insolubility of aldehyde $\mathbf{5 6 f}$ in the mixture of hexane/isopropanol, the ee value of product 56 was determined by a chiral HPLC analysis of its alcohol derivative $\mathbf{5 6 f}$ '. To the suspension of $\mathbf{5 6 f}(37 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{MeOH}(5 \mathrm{~mL})$ was slowly added $\mathrm{NaBH}_{4}(13 \mathrm{mg}, 0.35$ $\mathrm{mmol})$ at room temperature. After stirring for further 15 minutes, the reaction was quenched by evaporating of MeOH and addition of water. Then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 times and the combined organic phases were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Volatiles were removed under reduced pressure and the residue was purified by a silica gel flash column chromatography (eluent: petroleum ether/EtOAc, 3/1) to give $\mathbf{5 6 f}^{\prime}$ ' in quantitative yield (Scheme S18).

Scheme S18

Compound 56a

It is a known compound. ${ }^{[7]}$ White solid; m.p. 119.8-120.9 ${ }^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound $\mathbf{5 4},[\alpha]^{20}{ }_{D}=-44.6$ (c 0.5, CHCl_{3}), $65 \% e e$. IR (direct irradiation) v 3059, 3028, 2959, 2925, 2870, 2853, 2739, 1687, 1598, 1497, 1344, 1253, 1162, 1099, 1084, 1047, 1017, 990, 956, 808, 783, 730, 697, 666, $644 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.84$ (dd, $J=4.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=4.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.37(\mathrm{~m}, 7 \mathrm{H}), 7.72(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 21.5,29.7,34.1,44.8,48.0$, 49.1, 127.6, 128.81, 128.85, 129.8, 132.4, 133.2, 144.0, 197.3. LRMS (ESI) m/e 359.1 $\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right]$; HRMS (ESI) calcd for $\left[\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}+\mathrm{NH}_{4}\right]$ requires 359.1429, found 359.1417 $\left[\mathrm{M}^{+}+\mathrm{NH}_{4}\right]$.

WH－500 Chiral HPLC Analysis Report：

ID；Content；Retention time；Peak height；Peak area；Concentration；Tailing effect；Theoretic tower plates

WH－500 色 谱 分 析 报 告

ID	组分名	保留时间	峰高	峰面积	浓度	拖尾因子	理论塔板
1		21.855	256760	8069651.3	50.0400	1.10	9638
2		33.745	125654	8056744.6	49.9600	1.73	5520
	$\Sigma:$		382414	16126395.9	100.0000		

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=70: 30$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=22.7 \mathrm{~min}($ major $), t_{\mathrm{R}}=33.5 \mathrm{~min}($ minor $\left.)\right]$.

Compound 56c

White solid；m．p． $132.5-133.5{ }^{\circ} \mathrm{C}$ ．Absolute stereochemistry was assigned by analogy to compound 56a，$[\alpha]^{20}{ }_{\mathrm{D}}=+4.6\left(c 0.5, \mathrm{CHCl}_{3}\right)$ ， $58 \% e e$. IR（direct irradiation）v 2956，2924，2854，2741，1709， $1597,1465,1443,1342,1159,1092,1053,1012,953,850,813,786,710,666,648 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$ ）δ 2．17－2．39（m，6H， $2 \mathrm{CH}_{3}$ ）， $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.57$ $(\mathrm{dd}, J=4.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=4.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.52(\mathrm{~s}, 1 \mathrm{H})(\delta 7.41-7.48$ and $7.63-7.66 \mathrm{ppm}$ were the signals attributed to minor containing $\mathrm{Ph}_{2} \mathrm{SO}$ ）；${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$ ）δ 20．7， $21.5,31.4,33.3,44.9,47.7,49.1,127.6,127.8,129.8,132.5,137.2,144.0,197.3$（ $\delta 124.8$ ， 129．3，131．0， 145.6 were signals attributed to minor containing Ph_{2} SO）．LRMS（EI）m／e 383 （1．93\％）， 200 （38．48\％）， 185 （64．35\％）， 171 （ 91.89% ）， 157 （100\％）， 91 （84．53\％）；HRMS（EI）
calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}\right]$ requires 383.1555 , found $383.1553\left[\mathrm{M}^{+}\right]$.

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=70: 30$ ，flow rate $=0.7$
$\mathrm{mL} \cdot \mathrm{min}^{-1}$, wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=10.4 \mathrm{~min}($ minor $), t_{\mathrm{R}}=14.9 \mathrm{~min}($ major $\left.)\right]$.

Compound 56d

White solid; m.p. $173.3-174.3{ }^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound 56a, $[\alpha]^{20}{ }_{\mathrm{D}}=+66.8\left(c 0.5, \mathrm{CHCl}_{3}\right)$, $64 \% e e$. IR (direct irradiation) v 3069, 2925, 2854, 1693, 1597, 1347, 1308, 1240, 1162, 1099, 1064, 1043, 1012, 954, 822, 809, 778, 711, $666,633 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.96(\mathrm{dd}, J=4.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dd}, J=4.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}$, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.50-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.91(\mathrm{~m}, 2 \mathrm{H}), 8.34$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 21.5,30.1,32.0,45.0,47.8,49.2,123.4,125.1$, 126.2, 126.4, 127.1, 127.7, 128.7, 128.8, 129.8, 129.9, 132.46, 132.53, 133.5, 144.1, 196.7. LRMS (EI) m/e 391 (2.18\%), 208 (29.86\%), 179 (100\%), 165 (27.35\%), 141 (20.54\%), 91 (48.00\%); HRMS (EI) calcd for [$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$] requires 391.1242, found $391.1244\left[\mathrm{M}^{+}\right]$.

WH－500 Chiral HPLC Analysis Report：

ID；Content；Retention time；Peak height；Peak area；Concentration；Tailing effect；Theoretic tower plates

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=70: 30$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=21.9 \mathrm{~min}($ minor $), t_{\mathrm{R}}=38.2 \mathrm{~min}($ major $\left.)\right]$.

Compound 56e

White solid；m．p． $117.1-118.2{ }^{\circ} \mathrm{C}$ ．Absolute stereochemistry was assigned by analogy to compound 56a，$[\alpha]^{20}{ }_{\mathrm{D}}=-31.6(c$ $0.5, \mathrm{CHCl}_{3}$ ）， $70 \% e e$ ．IR（direct irradiation）v3057，2924，2852， $1691,1576,1470,1442,1388,1345,1163,1099,1068,1047,1023,1010,948,809,783,740$ ， $694,646,627 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$ ）$\delta 2.86(\mathrm{dd}, J=4.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ （d，$J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=4.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 5 \mathrm{H}), 7.70(\mathrm{~s}, 4 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H})(\delta 7.41-7.48$ and 7．63－7．66 ppm were the signals attributed to minor containing $\mathrm{Ph}_{2} \mathrm{SO}$ ）；${ }^{13} \mathrm{C}$ NMR（ 100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 29.6,34.1,44.7,48.1,49.1,127.7,128.3,128.8,128.9,129.0,132.6$ ， 133．0，134．7， 197.0 （ $\delta 124.7,129.3,131.0,145.6$ were signals attributed to minor containing $\mathrm{Ph}_{2} \mathrm{SO}$ ）．LRMS（EI）$m / e 405,202$（100\％）， 154 （80．9\％）， 109 （92．18\％）， 77 （89．78\％）， 51 （86．70\％）；HRMS（EI）calcd for［ $\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{BrS}\right]$ requires 405．0034，found $405.0036\left[\mathrm{M}^{+}\right]$．

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

ID	组分名	保留时间	峰高	峰面积	浓度	拖尾因子	理论塔板
1		26.660	76074	2998909.7	84.8514	1.20	9116
2	59.225	3789	535399.7	15.1486	1.67	3501	
			79863	3534309.4	100.0000		

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=70: 30$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=26.7 \mathrm{~min}$（major），$t_{\mathrm{R}}=59.2 \mathrm{~min}($ minor $\left.)\right]$.

Compound 56f

White solid; m.p. $180.0-181.2^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound 56a, $[\alpha]^{20}{ }_{\mathrm{D}}=-35.0(c$ $0.5, \mathrm{CHCl}_{3}$), 66\% ee. IR (direct irradiation) v 2925, 2855, 1694, 1607, 1543, 1350, 1306, 1237, 1165, 1097, 1049, 1020, 956, 855, 809, 783, 736, 686, $629 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 2.89(\mathrm{dd}, J=4.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.11(\mathrm{~d}, J=5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=4.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.93(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.36(\mathrm{~m}, 5 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 29.5,34.2,44.6,48.2,49.3,124.6,127.9$, 128.7, 128.8, 129.0, 132.7, 141.6, 150.4, 196.8. LRMS (EI) m/e 372.1 (3.0\%), 186.1 (19.5\%), 157.0 (42.52%), 129.1 (100%), 115.1 (18.20%), 91.1 (29.20\%); HRMS (EI) calcd for [$\left.\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]$ requires 372.0780 , found $372.0776\left[\mathrm{M}^{+}\right]$.

Compound 56f'

White solid; m.p. 148.9-150.1 ${ }^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound 56a, $66 \% e e .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.11(\mathrm{~s}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=4.0,4.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=2.1,9.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 3 \mathrm{H}), 8.03(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 8.41(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 24.4 .29 .4,36.7,50.5$, 53.1, 60.9, 124.4, 126.9, 128.4, 128.60, 128.64, 135.5, 142.5, 150.2. LRMS (EI) m/e 374.1 (1.11%), 268.1 (13.79%), 188.1 (24.94%), 129.1 (100%), 117.1 (44.57%), 91.1 (70.36%); HRMS (EI) calcd for $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\right]$ requires 374.0936, found 374.0932 [$\left.\mathrm{M}^{+}\right]$.

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

ID	组分名	保留时间	峰高	峰面积	浓度	拖尾因子	理论塔板
1		24.282	50144	3110940.0	49.8031	2.31	3053
2		32.307	13462	3135538.7	50.1969	3.85	383
	$\Sigma:$		63606	6246478.7	100.0000		

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=50: 50$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=214 \mathrm{~nm}, t_{\mathrm{R}}=24.3 \mathrm{~min}$（major），$t_{\mathrm{R}}=33.7 \mathrm{~min}($ minor $\left.)\right]$.

White solid; m.p. 55.9-56.9 ${ }^{\circ} \mathrm{C}$. Absolute stereochemistry was assigned by analogy to compound 56a, $[\alpha]^{20}{ }_{D}=-11.5$ (c 0.5, CHCl_{3}), $10.3 \% e e . \mathrm{IR}$ (direct irradiation) $v 2958,2929,2870$, 1696, 1601, 1462, 1425, 1364, 1316, 1239, 1152, 1079, 1044, 1006, 953, 883, 844, 782, 732, $698,675,652 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}$) $\delta 1.25-1.29(\mathrm{~m}, 18 \mathrm{H}), 2.91$ (hep, $J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=4.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=4.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.61(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (hep, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 2 \mathrm{H}), 7.24-7.34(\mathrm{~m}, 5 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, TMS) $\delta 23.5,24.88,24.92,29.5,29.8,34.0,34.1,45.0,47.1,47.8,124.0,127.6,128.9,130.8$, 133.4, 151.3, 153.4, 197.4. LRMS (EI) $m / e 453.2$ (1.1%), 187 (97.97%), 158 (51.46%), 129 (100\%), 96 (90.57%), 91 (76.79%); HRMS (EI) calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{NO}_{3} \mathrm{~S}\right]$ requires 453.2338, found $453.2335\left[\mathrm{M}^{+}\right]$.

WH－500 Chiral HPLC Analysis Report：

ID；Content；Retention time；Peak height；Peak area；Concentration；Tailing effect；Theoretic tower plates

WH－500 色 谱 分 析 报 告

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=90: 10$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=8.1 \mathrm{~min}($ minor $), t_{\mathrm{R}}=9.2 \mathrm{~min}($ major $\left.)\right]$.

Compound 56h

It is a known compound．${ }^{[7]}$ Colorless oil．Absolute stereochemistry was assigned by analogy to compound 56a，$[\alpha]^{20}{ }_{\mathrm{D}}=+3.6\left(c 0.5, \mathrm{CHCl}_{3}\right), 3.1 \% e e$ ．

IR（direct irradiation）v2956，2925，2855，2742，1948，1892，1691，1605，1499， $1455,1371,1237,1199,1072,1059,1026,909,795,779,732,696,634 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR（400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 2.92(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=3.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ $2.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$ ， 7．25－7．36（m，5H）， $8.95(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR（100 MHz， $\left.\mathrm{CDCl}_{3}, \mathrm{TMS}\right) \delta 31.9,33.4,46.8,68.0$ ， 68．8，127．4，128．8，128．9，133．9，198．2．LRMS（EI）m／e 188 （3．28\％）， 158 （39．63\％）， 129 （100\％）， 115 （32．57\％）， 91 （44．54\％）；HRMS（EI）calcd for［ $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ ］requires 188．0837， found $188.0836\left[\mathrm{M}^{+}\right]$．

WH-500 Chiral HPLC Analysis Report:
ID; Content; Retention time; Peak height; Peak area; Concentration; Tailing effect; Theoretic tower plates

WH－500 色 谱 分 析 报 告

ID	组分名	保留时间	峰高	峰面积	浓度	拖尾因子	理论塔板
1		14.360	307155	5681617.7	49.7747	1.47	12012
2		19.307	255421	5733044.1	50.2253	1.41	14746
	$\Sigma:$		562576	11414661.8	100.0000		

WH－500 色 谱 分 析 报 告

［HPLC conditions：Chiracel AD－H column，hexane／2－propanol $=95: 5$ ，flow rate $=0.7$ $\mathrm{mL} \cdot \mathrm{min}^{-1}$ ，wavelength $=230 \mathrm{~nm}, t_{\mathrm{R}}=15.2 \mathrm{~min}($ minor $), t_{\mathrm{R}}=20.2 \mathrm{~min}($ major $\left.)\right]$.

(F) References.

1. Wang, W. F.; Zhang, T.; Shi, M. Organometallics 2009, 28, 2640-2642.
2. (a) Zhang, T.; Liu, S. J.; Shi, M.; Zhao, M. X. Synthesis 2008, (17), 2819-2824. (b) Wang, W. F.; Zhang, T.; Wang, F. J.; Shi, M. Tetrahedron 2011, 67, 1523-1529.
3. Song, H. B.; Gu, L. N.; Zi, G. F. J. Organomet. Chem. 2009, 694, 1493-1502.
4. (a) Brummond, K. M.; Chen, H. F.; Sill, P.; You, L. F. J. Am. Chem. Soc. 2002, 124, 15186-15187. (b) Chao, C. M.; Genin, E.; Toullec, P. Y.; Genet, J. P.; Michelet, V. J. Organomet. Chem. 2009, 694, 538-545. (c) Xing, D.; Yang, D. Org. Lett. 2010, 12, 1068-1071. (d) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 2002, 124, 5025-5036. (e) Miura, K.; Saito, H.; Fujisawa, N.; Hosomi, A. J. Org. Chem. 2000, 65, 8119-8122.
5. Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J. P. Chem. Commun. 2004, 850-851.
6. Nieto-Oberhuber, C.; Munoz, M. P.; Lopez, S.; Jimenez-Nunez, E.; Nevado, C.; Herrero-Gomez, E.; Raducan, M.; Echavarren, A. M. Chem. Eur. J. 2006, 12, 1677-1693.
7. Witham, C. A.; Mauleon, P.; Shapiro, N. D.; Sherry, B. D.; Toste, F. D. J. Am. Chem. Soc. 2007, 129, 5838-5839.
(G) X-ray Crystal Data of Complex 1.

The crystal data of $\mathbf{1}$ have been deposited in CCDC with number 759948. Empirical Formula: $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{Au}_{2} \mathrm{I}_{2} \mathrm{~N}_{6}$; Formula Weight: 1244.45; Crystal Color, Habit: colorless, prismatic; Crystal Dimensions: $0.301 \times 0.217 \times 0.24 \mathrm{~mm}$; Crystal System: Triclinic; Lattice Type: Primitive; Lattice Parameters: $\mathrm{a}=9.3794(9) \AA, \mathrm{b}=10.4523(10) \AA, \mathrm{c}=20.784(2) \AA, \alpha=85.843(2)^{\circ}, \beta=$ $77.783(2)^{\circ}, \gamma=80.838(2)^{\circ}, V=1964.5(3) \AA^{3} ;$ Space group: $\mathrm{P}-1 ; \mathrm{Z}=2 ; \mathrm{D}_{\text {calc }}=2.104 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}$ = 1156; Diffractometer: Bruker Smart CCD; Residuals: R; Rw: 0.0448, 0.1129.

Table 1. Crystal data and structure refinement for cd29663.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=26.00$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
cd29663
C40 H32 Au2 I2 N6
1244.45

293(2) K
0.71073 A

Triclinic, P-1
$a=9.3794(9) \mathrm{A} \quad$ alpha $=85.843(2) \mathrm{deg}$.
$\mathrm{b}=10.4522(10) \mathrm{A} \quad$ beta $=77.783(2) \operatorname{deg}$
$c=20.784(2) \mathrm{A}$ gamma $=80.838(2) \mathrm{deg}$.
$1964.5(3) \mathrm{A}^{\wedge} 3$
2, $2.104 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$9.067 \mathrm{~mm}^{\wedge}-1$
1156
$0.301 \times 0.217 \times 0.24 \mathrm{~mm}$
1.98 to 26.00 deg .
$-11<=\mathrm{h}<=11, \quad-12<=\mathrm{k}<=7, \quad-25<=1<=25$
$10847 / 7587$ [R(int) $=0.0389]$
98.3%
Empirical
1.00000 and 0.41456

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
$7587 / 0 / 455$
1.005
$R 1=0.0448, \omega R 2=0.1129$
$\mathrm{R} 1=0.0554, \mathrm{wR} 2=0.1176$
1.539 and -1.266 e. $A^{\wedge}-3$

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd29663.
$U(e q)$ is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
Au (1)	6090(1)	5025 (1)	2242 (1)	$42(1)$
$\mathrm{Au}(2)$	6215 (1)	1120 (1)	1516(1)	46 (1)
I (1)	3959(1)	6879 (1)	2351 (1)	66 (1)
I (2)	7666 (1)	191 (1)	447 (1)	$100(1)$
N(1)	8621 (8)	3171 (6)	1555 (3)	44 (2)
N(2)	8330 (6)	2836(5)	2601 (3)	$32(1)$
N(3)	3811 (7)	2779 (6)	2387(3)	39 (1)
N(4)	5174 (6)	1529 (5)	2967(3)	$31(1)$
N(5)	7530 (30)	5780 (30)	-286(11)	246(15)
N(6)	-16(11)	5623 (10)	2066 (5)	84(3)
C(1)	7768 (8)	3555 (7)	2128(4)	37 (2)
C (2)	9713(9)	2202 (8)	1651 (4)	45 (2)
C(3)	10861(11)	1489(9)	1216(5)	60 (2)
C(4)	11853(11)	642 (9)	1482 (5)	61 (3)
C(5)	11750(10)	458 (8)	2152(5)	59 (2)
C(6)	10607 (8)	1143 (7)	2595(4)	43(2)
C(7)	9586(8)	1977 (7)	2330(4)	$37(2)$
C(8)	8451(12)	3747 (10)	913(4)	67 (3)
$\mathrm{C}(9)$	$7792(7)$	3025 (6)	3286(3)	28 (1)
C(10)	7819 (8)	4291 (6)	3501(4)	35 (2)
C(11)	7321 (8)	4579 (7)	4135(4)	42 (2)
C(12)	6831 (8)	3625 (7)	4609(4)	36 (2)
C(13)	6313(9)	3892 (9)	5283(4)	49(2)
C(14)	5819 (10)	2983(9)	5733(4)	55 (2)
C(15)	5813(9)	1714 (8)	5525 (4)	50(2)
C(16)	6298(8)	1428(8)	4886(4)	41 (2)
C(17)	6798(7)	2366 (7)	4414(3)	33 (2)
C(18)	$7288(7)$	2076(6)	3721 (3)	29(1)
C(19)	7240 (7)	$762(6)$	3498(3)	$28(1)$
C(20)	8296 (7)	-319(6)	3677 (3)	$29(1)$
$\mathrm{C}(21)$	9307 (8)	-186(7)	4068(3)	38 (2)
C(22)	10323(9)	-1185 (8)	4184(4)	45 (2)
C(23)	10398(10)	-2413(8)	3922 (4)	$52(2)$
C(24)	9449(9)	-2563 (7)	3540 (4)	47 (2)
C (25)	8354(8)	-1564(7)	3410(4)	37 (2)
C(26)	7368 (8)	-1708(7)	3022 (4)	39 (2)
$\mathrm{C}(27)$	6300 (8)	-693(7)	2890 (4)	$38(2)$
C (28)	$6269(7)$	532 (6)	3128(3)	29(1)
C (29)	5008 (8)	1880 (7)	2350(4)	$35(2)$
C (30)	3141 (8)	2977 (7)	3037 (4)	$38(2)$
C(31)	1837 (9)	3759 (8)	3321 (5)	54(2)
C (32)	1427 (9)	3657 (9)	3987 (5)	60 (2)
C (33)	2225 (10)	$2788(9)$	4386 (5)	60 (2)
C(34)	3544 (8)	2052 (8)	4086(4)	45 (2)
C(35)	3965 (8)	2174(6)	3415 (3)	33 (2)
C(36)	3244 (10)	3464 (9)	1817 (4)	$54(2)$
C(37)	6580(30)	6290(30)	-44 (12)	174 (10)
$\mathrm{C}(38)$	5250 (30)	7041 (18)	322 (10)	180(9)
C(39)	166 (13)	6408(11)	1709(6)	75 (3)
C(40)	510 (30)	$7412(17)$	1217(10)	194(10)

Table 3. Bond lengths [A] and angles [deg] for cd29663.

$\mathrm{Au}(1)-\mathrm{C}(1)$	2.005 (7)
Au(1)-I (1)	$2.5376(7)$
$\mathrm{Au}(2)-\mathrm{C}(29)$	$2.000(7)$
$\mathrm{Au}(2)-\mathrm{I}(2)$	2.5189 (8)
$\mathrm{N}(1)-\mathrm{C}(1)$	$1.335(10)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.357(10)$
$\mathrm{N}(1)-\mathrm{C}(8)$	$1.453(10)$
$\mathrm{N}(2)-\mathrm{C}(1)$	1.340 (9)
$\mathrm{N}(2)-\mathrm{C}(7)$	1.404 (9)
$\mathrm{N}(2)-\mathrm{C}(9)$	1.422 (8)
$\mathrm{N}(3)-\mathrm{C}(29)$	$1.336(9)$
$N(3)-C(30)$	$1.380(10)$
$N(3)-C(36)$	$1.491(10)$
$\mathrm{N}(4)-\mathrm{C}(29)$	1.342 (9)
$\mathrm{N}(4)-\mathrm{C}(35)$	1.416 (9)
N(4)-C(28)	1.417 (8)
$N(5)-C(37)$	1.01 (3)
$N(6)-C(39)$	$1.074(12)$
$\mathrm{C}(2)-\mathrm{C}(7)$	1.395 (11)
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.401(12)$
C(3)-C (4)	$1.356(14)$
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	1.376(13)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
$C(5)-C(6)$	1.395 (11)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$\mathrm{C}(6)-\mathrm{C}(7)$	1.367 (11)
C (6)-H (6)	0.9300
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9600
$\mathrm{C}(9)-\mathrm{C}(18)$	1.365 (9)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.434 (9)
$\mathrm{C}(10)-\mathrm{C}(11)$	$1.340(10)$
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9300
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.409(11)$
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{C}(17)$	$1.412(10)$
$C(12)-C(13)$	$1.415(10)$
$\mathrm{C}(13)-\mathrm{C}(14)$	1.349(12)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
C(14)-C(15)	1.425 (12)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9300
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.348(11)$
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300
$\mathrm{C}(16)-\mathrm{C}(17)$	1.399 (10)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(18)$	1.453(9)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.491 (9)
C(19)-C (28)	1.369 (9)
C(19)-C (20)	1.461 (9)
C(20)-C(21)	$1.400(10)$
C(20)-C(25)	1.440 (10)
C(21)-C(22)	$1.342(10)$
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9300
$\mathrm{C}(22)-\mathrm{C}(23)$	1.416 (11)
C(22)-H(22)	0.9300
$\mathrm{C}(23)-\mathrm{C}(24)$	1.344(12)
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9300
$\mathrm{C}(24)-\mathrm{C}(25)$	1.397 (10)
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9300
$\mathrm{C}(25)-\mathrm{C}(26)$	1.381 (10)
C (26)-C (27)	1.393 (10)
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9300
$\mathrm{C}(27)-\mathrm{C}(28)$	1.400 (9)
$\mathrm{C}(27)-\mathrm{H}(27)$	0.9300
$C(30)-C(35)$	1.368 (10)
$\mathrm{C}(30)-\mathrm{C}(31)$	1.399(11)

$\mathrm{C}(31)-\mathrm{C}(32)$	1. 357 (13)
$\mathrm{C}(31)-\mathrm{H}(31)$	0.9300
C (32)-C (33)	$1.418(13)$
C (32)-H (32)	0.9300
C(33)-C(34)	1.397 (11)
C (33)-H(33)	0.9300
C (34)-C (35)	$1.369(11)$
$\mathrm{C}(34)-\mathrm{H}(34)$	0.9300
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	0.9600
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	0.9600
$\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	0.9600
C (37)-C (38)	1.46 (2)
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	0.9600
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	0.9600
$\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	0.9600
C (39)-C (40)	$1.436(18)$
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	0.9600
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	0.9600
$\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	0.9600
$\mathrm{C}(1)-\mathrm{Au}(1)-\mathrm{I}(1)$	178.3(2)
$\mathrm{C}(29)-\mathrm{Au}(2)-\mathrm{I}(2)$	178.1(2)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$111.0(6)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	124.8(7)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8)$	124.1(7)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	111.0(6)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)$	123.5 (6)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)$	125.2(6)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(30)$	110.2(6)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(36)$	125.9(7)
$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(36)$	124.0(6)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(35)$	108.8(6)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(28)$	124.2(6)
$\mathrm{C}(35)-\mathrm{N}(4)-\mathrm{C}(28)$	126.4(6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	106.5 (6)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	125.7(5)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	127.6(6)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	107.6(7)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	132.6(8)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	119.7 (8)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	117.5 (8)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	121.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	121.3
$C(3)-C(4)-C(5)$	122.4(8)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	118.8
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	118.8
$C(4)-C(5)-C(6)$	121.3(9)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.4
$C(7)-C(6)-C(5)$	116.5(8)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	121.7
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	121.7
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	122.5 (7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	133.5(7)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	103.8(7)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{N}(2)$	123.3(6)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)$	121.0(6)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	115.7 (6)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	120.6 (7)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.7
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.7(7)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.6
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.6
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	120.0(7)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	122.2(7)

$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	$117.7(7)$
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	122.0(8)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.0
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	119.2 (8)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.4
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	120.3(8)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	121.1(8)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	119.4
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	119.4
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	119.7 (7)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121.5(6)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	118.8(6)
C (9) - C (18)-C (17)	118.7(6)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	$121.2(6)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	120.0(6)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)$	118.9(6)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(18)$	122.9(6)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	118.2(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)$	118.4(6)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	123.1(6)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(19)$	118.4(6)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	121.1(7)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.4
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.4
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	121.1(7)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	119.5
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	119.5
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	119.0 (7)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	120.5
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	120.5
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	122.5 (7)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	118.8
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	118.8
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	$123.0(7)$
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(20)$	119.0(6)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	117.9(7)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	122.1(7)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.0
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.0
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$119.2(7)$
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	120.4
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	120.4
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(27)$	122.1(6)
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{N}(4)$	121.4(6)
$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{N}(4)$	116.5 (6)
$\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{N}(4)$	107.8(6)
$\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{Au}(2)$	124.9(5)
$\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{Au}(2)$	127.1(5)
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{N}(3)$	107.1(6)
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(31)$	121.5(8)
$\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(31)$	$131.3(7)$
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{C}(30)$	116.3(8)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{H}(31)$	121.9
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31)$	121.9
C(31)-C (32)-C (33)	123.3(8)
$\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{H}(32)$	118.4
$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{H}(32)$	118.4
C (34)-C (33)-C (32)	118.6(9)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{H}(33)$	120.7
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{H}(33)$	120.7
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{C}(33)$	117.8(8)
$\mathrm{C}(35)-\mathrm{C}(34)-\mathrm{H}(34)$	121.1
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{H}(34)$	121.1
$\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{C}(34)$	122.4 (7)
$\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{N}(4)$	105.9(6)
$\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(4)$	$131.6(7)$
$\mathrm{N}(3)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~A})$	109.5
$\mathrm{N}(3)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5

$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{~B})$	109.5
$\mathrm{~N}(3)-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~A})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{H}(36 \mathrm{~B})-\mathrm{C}(36)-\mathrm{H}(36 \mathrm{C})$	109.5
$\mathrm{~N}(5)-\mathrm{C}(37)-\mathrm{C}(38)$	$178(4)$
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~A})$	109.5
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{~B})$	109.5
$\mathrm{C}(37)-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.4
$\mathrm{H}(38 \mathrm{~A})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{H}(38 \mathrm{~B})-\mathrm{C}(38)-\mathrm{H}(38 \mathrm{C})$	109.5
$\mathrm{~N}(6)-\mathrm{C}(39)-\mathrm{C}(40)$	$176.2(16)$
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~A})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{~B})$	109.5
$\mathrm{C}(39)-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~A})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5
$\mathrm{H}(40 \mathrm{~B})-\mathrm{C}(40)-\mathrm{H}(40 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for $\operatorname{cd} 29663$. The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi} \wedge 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{\star \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{~h} k \mathrm{a}^{\star} \mathrm{b}^{\star} \mathrm{U} 12\right.$]

	U11	U22	U33	U23	U13	U12
Au (1)	46 (1)	$38(1)$	43 (1)	3(1)	-14(1)	-3(1)
Au (2)	50 (1)	57 (1)	30 (1)	-9(1)	-6(1)	-2(1)
I (1)	$69(1)$	49(1)	84 (1)	-16(1)	-35(1)	10(1)
I (2)	116 (1)	120 (1)	50 (1)	-34(1)	3(1)	12 (1)
N(1)	56 (4)	50 (4)	25 (3)	O(3)	-6(3)	-7 (3)
N(2)	34 (3)	29 (3)	29 (3)	0 (2)	$0(2)$	-4 (2)
N (3)	36 (3)	41 (3)	42 (4)	$1(3)$	-14(3)	-5 (3)
N(4)	31 (3)	$32(3)$	$29(3)$	-5 (2)	-5 (2)	-4 (2)
N(5)	180 (20)	350 (30)	126 (17)	89(19)	-6(14)	110 (20)
N(6)	82 (7)	76 (6)	92 (8)	8(6)	-11(6)	-18(5)
C(1)	40(4)	36 (4)	35 (4)	$5(3)$	-12 (3)	-7(3)
C (2)	57 (5)	42 (4)	35 (4)	-8(3)	-4 (4)	-8(4)
C (3)	73 (6)	65 (6)	37 (5)	-14(4)	15 (4)	-22(5)
C(4)	57 (6)	53 (5)	62 (6)	-25(5)	12 (5)	0 (5)
C(5)	48 (5)	44 (5)	74 (7)	-12(4)	7 (5)	0 (4)
$\mathrm{C}(6)$	43(4)	34 (4)	48 (5)	-2 (3)	-2 (4)	O(3)
C(7)	$39(4)$	29 (4)	37 (4)	-10(3)	$6(3)$	-3(3)
C (8)	90 (7)	77 (7)	31 (5)	8(4)	-8(5)	-9(6)
C (9)	26 (3)	$28(3)$	26 (3)	-4(3)	-5 (3)	4(3)
C(10)	33 (4)	$30(4)$	42(4)	-4(3)	-6(3)	-4(3)
C(11)	39 (4)	31 (4)	55 (5)	-14(3)	-9(4)	3 (3)
C(12)	30 (4)	40 (4)	$34(4)$	-9(3)	-5 (3)	7 (3)
C(13)	48 (5)	60 (5)	37 (5)	-23(4)	-10(4)	5 (4)
C(14)	53 (5)	$77(6)$	33 (5)	-15(4)	-6(4)	-1(5)
C(15)	52 (5)	60 (5)	30 (4)	3(4)	-1 (4)	3(4)
$\mathrm{C}(16)$	42 (4)	42 (4)	34 (4)	-3(3)	-3(3)	2 (3)
C(17)	31 (3)	40 (4)	24 (4)	-5 (3)	-5 (3)	4(3)
C (18)	29 (3)	$28(3)$	$28(4)$	-5 (3)	-3(3)	-3(3)
C(19)	30 (3)	25 (3)	25 (3)	-2(3)	-1(3)	$1(3)$
C (20)	34 (3)	31 (3)	$21(3)$	-1 (3)	-2 (3)	-2(3)
C (21)	43 (4)	41 (4)	26 (4)	-1(3)	-5 (3)	-1(3)
C (22)	43 (4)	54 (5)	$38(4)$	5 (4)	-14 (4)	-1 (4)
C (23)	56 (5)	$39(4)$	$56(5)$	-3(4)	-15(4)	15(4)
C (24)	50(5)	24 (4)	60 (5)	-6(3)	-4 (4)	4(3)
C (25)	$36(4)$	34 (4)	37 (4)	-2(3)	1(3)	-4(3)
C (26)	45 (4)	26 (4)	45 (5)	-9(3)	O(4)	-10(3)
C (27)	43 (4)	37 (4)	35 (4)	-11(3)	-1(3)	-15(3)
C (28)	$31(3)$	29 (3)	24 (3)	3(3)	-1(3)	-7(3)
C (29)	42 (4)	$33(4)$	33 (4)	-5 (3)	-11(3)	-9(3)
C (30)	$32(4)$	$37(4)$	49 (5)	-3(3)	-12(3)	-6(3)
C (31)	43 (5)	53 (5)	64 (6)	-18(4)	-16(4)	11 (4)
C (32)	34 (4)	61 (6)	78 (7)	-25 (5)	-3(4)	12 (4)
C (33)	47(5)	74 (6)	$54(6)$	-22(5)	1(4)	2 (5)
C(34)	33 (4)	45 (4)	55 (5)	-11(4)	-6(4)	$1(3)$
C(35)	39 (4)	29(3)	32 (4)	-8(3)	-7(3)	-9(3)
C(36)	59(5)	67 (6)	40 (5)	3(4)	-22(4)	-6 (5)
C (37)	190(30)	190(20)	107 (18)	$52(16)$	-24(17)	52(19)
C (38)	240(30)	160 (20)	140 (20)	-13(16)	-70 (20)	4 (19)
$\mathrm{C}(39)$	$79(8)$	65 (7)	$77(8)$	$-1(6)$	-17(6)	-1(6)
C(40)	250(30)	141(16)	210(20)	97(16)	-90(20)	-75(17)

Table 5. Hydrogen coordinates ($\mathrm{x} 10^{\wedge} 4$) and isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd29663.

	x	Y	z	U (eq)
H (3)	10940	1593	763	73
H (4)	12632	169	1201	73
H(5)	12457	-134	2311	70
H(6)	10542	1037	3048	52
H (8A)	7488	4248	949	101
H (8B)	8564	3073	608	101
H (8C)	9187	4300	758	101
H (10)	8186	4919	3199	42
H (11)	7299	5417	4264	51
H (13)	6313	4720	5420	58
H (14)	5487	3181	6173	66
H (15)	5473	1081	5831	60
H (16)	6301	594	4758	49
H (21)	9274	608	4249	45
H (22)	10990	-1069	4441	54
H (23)	11092	-3105	4012	63
H (24)	9524	-3362	3356	56
H (26)	7419	-2508	2842	47
H (27)	5615	-827	2646	45
H (31)	1281	4317	3067	65
H (32)	581	4183	4191	72
H (33)	1877	2709	4838	72
H (34)	4118	1498	4333	54
H (36A)	4059	3626	1471	82
H (36B)	2652	4272	1953	82
H (36C)	2655	2933	1658	82
H (38A)	4944	7783	56	269
H (38B)	5448	7324	719	269
$\mathrm{H}(38 \mathrm{C})$	4478	6511	432	269
H (40A)	1555	7338	1068	291
H (40B)	134	8244	1403	291
H (40C)	54	7324	852	291

Table 6. Torsion angles [deg] for cd29663.

$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	0.9 (8)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-176.6(8)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	176.2(5)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	-1.3(11)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	0.7 (8)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	175.0 (6)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	-174.5(5)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	-0.2(10)
$\mathrm{I}(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	24 (8)
$\mathrm{I}(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-162(7)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	-2.1(9)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	175.5 (8)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	179.8(9)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-2.6(15)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$174.7(9)$
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-3.2(13)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$0.9(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$0.0(15)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	1.4 (13)
$C(5)-C(6)-C(7)-C(2)$	-3.8(12)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	-178.3(7)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	-173.6(7)
$C(3)-C(2)-C(7)-C(6)$	4.8 (12)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	$2.3(8)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	-179.3(7)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	173.3 (8)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	-0.9(13)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(2)$	-1.9(8)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(2)$	-176.1(6)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)$	122.6 (7)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)$	-63.9(9)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	-57.9(9)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	115.6 (7)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-1.3(10)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	179.2(6)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	3.3(11)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	-2.9(10)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	179.3(7)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	178.8 (7)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$0.9(11)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	-0.2(12)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$0.1(13)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-0.8(12)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	1.6(11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-178.4(7)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	-179.5(6)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	-1.6(10)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	0.5 (10)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	178.4(6)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(17)$	178.5(6)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(17)$	-1.0(9)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	-1.3(10)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	179.3(6)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(9)$	$-178.6(6)$
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(9)$	1.3(9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$1.1(10)$
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-178.9(6)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)$	-70.4 (9)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)$	109.8(8)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	108.7(7)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-71.1(8)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-178.4 (6)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$2.5(10)$
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	5.1 (9)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	-174.0(6)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$1.0(11)$
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-175.5(7)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-0.7(12)

$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	1.3(13)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	-2.3(13)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-179.7(8)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(20)$	$2.6(12)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(26)$	-179.7(7)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(26)$	-3.0(10)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	-1.9(10)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	174.8 (6)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-179.0(7)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-1.2(11)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)$	$3.5(11)$
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(27)$	-3.0(10)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(27)$	176.0(6)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{N}(4)$	176.9(6)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{N}(4)$	-4.1(10)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(19)$	-1.2(10)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{N}(4)$	178.9(6)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(28)-\mathrm{C}(19)$	124.2(7)
$\mathrm{C}(35)-\mathrm{N}(4)-\mathrm{C}(28)-\mathrm{C}(19)$	-65.8(9)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(28)-\mathrm{C}(27)$	-55.9(9)
$\mathrm{C}(35)-\mathrm{N}(4)-\mathrm{C}(28)-\mathrm{C}(27)$	114.1 (7)
$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{N}(4)$	-2.9(8)
$\mathrm{C}(36)-\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{N}(4)$	$178.2(7)$
$\mathrm{C}(30)-\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{Au}(2)$	172.8(5)
$\mathrm{C}(36)-\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{Au}(2)$	-6.1(10)
$\mathrm{C}(35)-\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{N}(3)$	4.2 (8)
$\mathrm{C}(28)-\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{N}(3)$	175.7(6)
$\mathrm{C}(35)-\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{Au}(2)$	-171.4(5)
$\mathrm{C}(28)-\mathrm{N}(4)-\mathrm{C}(29)-\mathrm{Au}(2)$	$0.1(10)$
$\mathrm{I}(2)-\mathrm{Au}(2)-\mathrm{C}(29)-\mathrm{N}(3)$	-16(7)
$\mathrm{I}(2)-\mathrm{Au}(2)-\mathrm{C}(29)-\mathrm{N}(4)$	159(6)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(35)$	0.4 (8)
$\mathrm{C}(36)-\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(35)$	179.4(7)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(31)$	-176.3(8)
$\mathrm{C}(36)-\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(31)$	$2.6(13)$
$\mathrm{C}(35)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	-1.1(12)
$\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	175.2(8)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)-\mathrm{C}(33)$	-1.9(14)
C (31)-C (32)-C (33)-C (34)	3.8 (15)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)$	-2.6(13)
$\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{C}(34)$	-174.9(7)
C $(31)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{C}(34)$	2.3 (12)
$\mathrm{N}(3)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{N}(4)$	2.1 (8)
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{C}(35)-\mathrm{N}(4)$	179.2(7)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{C}(30)$	-0.3(11)
$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(35)-\mathrm{N}(4)$	-176.3(7)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(35)-\mathrm{C}(30)$	-3.9(8)
$\mathrm{C}(28)-\mathrm{N}(4)-\mathrm{C}(35)-\mathrm{C}(30)$	-175.1(6)
$\mathrm{C}(29)-\mathrm{N}(4)-\mathrm{C}(35)-\mathrm{C}(34)$	172.6(8)
$\mathrm{C}(28)-\mathrm{N}(4)-\mathrm{C}(35)-\mathrm{C}(34)$	1.4 (12)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for Cd29663 [A and deg.].

D-H. .A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(38)-H(38 A) \ldots I(2) \# 1$	0.96	3.27	$4.13(2)$	150.3
$C(3)-H(3) \ldots I(2) \# 2$	0.93	3.17	$3.877(9)$	134.8
$C(14)-H(14) \ldots I(1) \# 3$	0.93	3.21	$4.046(8)$	150.3
$C(5)-H(5) \ldots I(1) \# 4$	0.93	3.22	$4.017(9)$	145.2

Symmetry transformations used to generate equivalent atoms:
$\begin{array}{ll}\# 1 & -x+1,-y+1,-z \quad \# 2-x+2,-y,-z \quad \# 3-x+1,-y+1,-z+1 \\ \# 4 & x+1, y-1, z\end{array}$

(H) X-ray Crystal Data of Complex 2a.

The crystal data of 2a have been deposited in CCDC with number 757529. Empirical Formula: $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{AuCl}_{4} \mathrm{IN}_{3} \mathrm{O}$; Formula Weight: 935.23; Crystal Color, Habit: colorless, prismatic; Crystal Dimensions: $0.303 \times 0.122 \times 0.105 \mathrm{~mm}$; Crystal System: Orthorhombic; Lattice Type: Primitive; Lattice Parameters: $\mathrm{a}=7.6150(13) \AA, \mathrm{b}=14.252(2) \AA, \mathrm{c}=30.775(5) \AA, \alpha=90^{\circ}, \beta=$ $90^{\circ}, \gamma=90^{\circ}, V=3340.1(10) \AA^{3} ;$ Space group: P2(1)2(1)2(1); Z $=4 ; D_{\text {calc }}=1.860 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=$ 1792; Diffractometer: Bruker Smart CCD; Residuals: R; Rw: 0.0635, 0.1464.

Table 1. Crystal data and structure refinement for cd29609.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system, space group
Unit cell dimensions

Volume
Z, Calculated density
Absorption coefficient
E(000)
Crystal size
Theta range for data collection
Limiting indices
Reflections collected / unique
Completeness to theta $=25.50$
Absorption correction
Max. and min. transmission Refinement method

Data / restraints / parameters Goodness-of-fit on $\mathrm{F}^{\wedge} 2$

Einal R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Largest diff. peak and hole
cd29609
C32 H27 Au Cl4 I N3 O
935.23

293(2) K
0.71073 A

Orthorhombic, \quad P2(1)2(1)2(1)

| $\mathrm{a}=7.6150(13) \mathrm{A}$ | alpha $=90 \mathrm{deg}$. |
| :--- | :--- | :--- |
| $\mathrm{b}=14.252(2) \mathrm{A}$ | beta $=90 \mathrm{deg}$. |
| $\mathrm{c}=30.775(5) \mathrm{A}$ | gamma $=90 \mathrm{deg}$. |

$3340.1(10) \mathrm{A}^{\wedge} 3$
4, $1.860 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
$5.679 \mathrm{~mm}^{\wedge}-1$
1792
$0.303 \times 0.122 \times 0.105 \mathrm{~mm}$
1.57 to 25.50 deg .
$-9<=\mathrm{h}<=9, \quad-17<=\mathrm{k}<=15, \quad-33<=1<=37$
$17758 / 6198[R($ int $)=0.0969]$
99.8%
Empirical
1.00000 and 0.54235

Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
6198 / 2 / 366
0.919
$R 1=0.0635, \mathrm{wR} 2=0.1464$
$\mathrm{R} 1=0.1010, \mathrm{wR} 2=0.1600$
$0.044(13)$
1.144 and -1.043 e.A^-3

Table 2. Atomic coordinates ($x 10^{\wedge} 4$) and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd29609. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	y	z	U (eq)
$\mathrm{Au}(1)$	8761 (1)	3685 (1)	1624(1)	60 (1)
I (1)	9053(2)	3333(1)	2416(1)	103(1)
N(1)	8800 (20)	3291 (8)	662 (4)	59 (3)
$\mathrm{N}(2)$	8330 (17)	4748(8)	785 (4)	50 (3)
N(3)	4233(15)	4369(9)	1192(4)	55 (3)
O(1)	4000 (40)	2899(9)	1045(5)	160(9)
Cl(1)	6095 (12)	5527(6)	2354 (3)	183(4)
Cl (2)	2439(11)	5613(6)	2160(3)	151 (3)
CI (3)	2148(19)	5573(10)	3379(4)	255 (6)
Cl (4)	-1450(30)	5521(12)	3507(5)	223(8)
C(1)	8520(19)	3951 (9)	976(5)	46 (4)
C(2)	$8600(20)$	3727 (11)	274(6)	64(4)
C(3)	8730 (20)	3391 (12)	-171(6)	76 (5)
C(4)	8700 (30)	3988(14)	-486(5)	77 (5)
C(5)	8560 (30)	4954 (13)	-410(5)	77 (5)
C(6)	8386(18)	5297 (12)	1(5)	59(4)
C (7)	8358(17)	4636(10)	344(5)	51 (4)
C (8)	8920(30)	2277(10)	760 (6)	94(6)
C (9)	7888 (19)	5620(10)	1026 (4)	45 (3)
C(10)	9227(18)	5991 (10)	1313(4)	49(4)
C (11)	8850 (20)	6758(11)	1547(4)	60(4)
C (12)	7130 (20)	7197 (11)	1515 (5)	63(5)
C(13)	6570(40)	7992(13)	1780 (5)	94(8)
C(14)	5110 (30)	8398(14)	1755 (6)	80(6)
C(15)	$3880(30)$	8054(11)	1463 (5)	$81(5)$
C(16)	4200 (20)	7287 (11)	1219(5)	62 (4)
C(17)	5860 (20)	6816(10)	1249(5)	52 (4)
C(18)	6270 (20)	6033(9)	987 (4)	45 (3)
C(19)	4931 (19)	5613(9)	690(4)	41 (3)
C(20)	4650(18)	6027 (10)	276(5)	47 (4)
C(21)	5405 (19)	6897(11)	159(5)	61 (5)
C(22)	5250(30)	7258(13)	-289(6)	80 (6)
C(23)	4220(30)	6750(20)	-598(7)	130 (11)
C(24)	3400 (30)	5990(13)	-485 (6)	68 (5)
C (25)	3700 (30)	5588(11)	-31(6)	70 (5)
C(26)	2770 (20)	4737(14)	$88(6)$	74 (6)
C (27)	2960 (20)	4379(13)	474(6)	67 (5)
C(28)	4083(17)	4789(11)	791 (4)	45 (4)
C (29)	4100 (30)	$3458(12)$	1329(6)	75 (5)
C (30)	4150 (20)	3240(12)	1775 (5)	78 (6)
C(31)	4200 (30)	6199(18)	2357 (7)	123(9)
C (32)	130(30)	5810 (30)	3115 (9)	223 (17)

Table 3. Bond lengths [A] and angles [deg] for cd29609.

Au (1)-C(1)	$2.038(14)$
$\mathrm{Au}(1)-\mathrm{I}(1)$	$2.5005(14)$
$\mathrm{N}(1)-\mathrm{C}(2)$	$1.354(19)$
$\mathrm{N}(1)-\mathrm{C}(1)$	1.365 (17)
$\mathrm{N}(1)-\mathrm{C}(8)$	1.481(18)
$\mathrm{N}(2)-\mathrm{C}(1)$	1.286(16)
$\mathrm{N}(2)-\mathrm{C}(7)$	1.369(19)
$\mathrm{N}(2)-\mathrm{C}(9)$	1.487(18)
N(3)-C(29)	$1.369(19)$
N(3)-C(28)	1.377 (17)
N(3)-H(3A)	0.8600
O(1)-C(29)	1.186(19)
Cl(1)-C(31)	1.73 (2)
$\mathrm{Cl}(2)-\mathrm{C}(31)$	1.69 (3)
$\mathrm{Cl}(3)-\mathrm{C}(32)$	1.772(18)
$\mathrm{Cl}(4)-\mathrm{C}(32)$	1.750 (18)
$\mathrm{C}(2)-\mathrm{C}(7)$	1.33 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.45 (2)
C(3)-C(4)	1.29 (2)
$\mathrm{C}(3)-\mathrm{H}(3)$	0.9300
$\mathrm{C}(4)-\mathrm{C}(5)$	1.40 (2)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9300
C $(5)-C(6)$	1.36(2)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9300
$C(6)-C(7)$	1.41 (2)
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9300
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	0.9600
$\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	0.9600
$\mathrm{C}(9)-\mathrm{C}(18)$	1.37 (2)
C (9)-C(10)	1.448(18)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.339(19)
C(10)-H(10)	0.9300
$\mathrm{C}(11)-\mathrm{C}(12)$	1.45 (2)
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9300
$\mathrm{C}(12)-\mathrm{C}(17)$	1.38 (2)
C(12)-C(13)	1.46 (2)
C(13)-C (14)	1.25 (3)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9300
C(14)-C(15)	1.39 (2)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9300
C(15)-C(16)	1.35 (2)
$\mathrm{C}(15)-\mathrm{H}(15)$	0.9300
$\mathrm{C}(16)-\mathrm{C}(17)$	1.44 (2)
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9300
$\mathrm{C}(17)-\mathrm{C}(18)$	1.411(19)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.496(19)
C (19)-C (28)	1.377 (19)
$\mathrm{C}(19)-\mathrm{C}(20)$	1.419(19)
C (20)-C (25)	1.34 (2)
$\mathrm{C}(20)-\mathrm{C}(21)$	1.41 (2)
$\mathrm{C}(21)-\mathrm{C}(22)$	1.48 (2)
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9300
$\mathrm{C}(22)-\mathrm{C}(23)$	1.43 (3)
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9300
$\mathrm{C}(23)-\mathrm{C}(24)$	1.29 (3)
$\mathrm{C}(23)-\mathrm{H}(23)$	0.9300
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.53(2)$
$\mathrm{C}(24)-\mathrm{H}(24)$	0.9300
$\mathrm{C}(25)-\mathrm{C}(26)$	1.45 (3)
$\mathrm{C}(26)-\mathrm{C}(27)$	1.30 (2)
$\mathrm{C}(26)-\mathrm{H}(26)$	0.9300
C (27)-C (28)	1.42 (2)
$\mathrm{C}(27)-\mathrm{H}(27)$	0.9300
C (29)-C (30)	1.41 (2)
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	0.9600
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9600
C (30)-H (30C)	0.9600

$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9700
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9700
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9700
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9700
$\mathrm{C}(1)-\mathrm{Au}(1)-\mathrm{I}(1)$	179.1(4)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	106.9(12)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(8)$	129.5(14)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	122.4(13)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)$	$110.4(13)$
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)$	$122.5(12)$
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)$	126.6(12)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{C}(28)$	133.1(14)
$\mathrm{C}(29)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})$	113.5
$\mathrm{C}(28)-\mathrm{N}(3)-\mathrm{H}(3 \mathrm{~A})$	113.5
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	107.6(12)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	128.3(10)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	123.5(10)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(1)$	108.7(14)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	118.9(17)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$132.2(15)$
$C(4)-C(3)-C(2)$	119.4(16)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$	120.3
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$	120.3
$C(3)-C(4)-C(5)$	121.6(15)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	119.2
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	119.2
$C(6)-C(5)-C(4)$	121.0(15)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.5
$C(5)-C(6)-C(7)$	$117.0(16)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	121.5
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	121.5
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	106.0(14)
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	121.9(16)
$\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	131.6(14)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~A})$	109.5
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~A})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
$\mathrm{H}(8 \mathrm{~B})-\mathrm{C}(8)-\mathrm{H}(8 \mathrm{C})$	109.5
C (18) - C (9)-C (10)	122.0(13)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{N}(2)$	121.3(12)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(2)$	$116.7(13)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	118.3(14)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.8
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.8
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	120.6(14)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.7
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.7
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(11)$	120.1(15)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)$	115.4(18)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	124.3(17)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	126(2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	117.0
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	117.0
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$118.3(18)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.9
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.9
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(14)$	121.7 (18)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.2
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	120.1(17)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.0
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	119.8(15)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	118.3(15)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	121.7(15)
C (9)-C(18)-C (17)	119.1(13)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	$119.6(12)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	121.1(14)

$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)$	119.1(13)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(18)$	121.5(12)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	119.1(13)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)$	$116.7(15)$
C (25) - C (20)-C (19)	121.2(15)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	122.1(14)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	120.6(16)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.7
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119(2)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.4
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.4
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{C}(22)$	121(2)
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.7
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.7
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	119(2)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{H}(24)$	120.4
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{H}(24)$	120.4
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(26)$	118.2(16)
$\mathrm{C}(20)-\mathrm{C}(25)-\mathrm{C}(24)$	123.2(16)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	118.2(18)
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(25)$	$120.3(17)$
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	119.8
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	119.8
C (26)-C (27)-C (28)	122.1(18)
$\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{H}(27)$	118.9
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{H}(27)$	118.9
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{N}(3)$	122.4(12)
$\mathrm{C}(19)-\mathrm{C}(28)-\mathrm{C}(27)$	118.5(14)
$\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{C}(27)$	119.1 (15)
$\mathrm{O}(1)-\mathrm{C}(29)-\mathrm{N}(3)$	114.4(17)
O(1)-C(29)-C (30)	$125.0(17)$
$\mathrm{N}(3)-\mathrm{C}(29)-\mathrm{C}(30)$	120.5(16)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	109.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.5
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{H}(30 \mathrm{~B})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{C})$	109.5
$\mathrm{Cl}(2)-\mathrm{C}(31)-\mathrm{Cl}(1)$	112.7(15)
$\mathrm{Cl}(2)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.0
$\mathrm{Cl}(1)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	109.0
$\mathrm{Cl}(2)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.0
$\mathrm{Cl}(1)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.0
H (31A) - C (31)-H(31B)	107.8
$\mathrm{Cl}(4)-\mathrm{C}(32)-\mathrm{Cl}(3)$	103.7(16)
$\mathrm{Cl}(4)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	111.0
$\mathrm{Cl}(3)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	111.0
$\mathrm{Cl}(4)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	111.0
$\mathrm{Cl}(3)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	111.0
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.0

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd 29609. The anisotropic displacement factor exponent takes the form:
$-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{\star \wedge} 2 \mathrm{U} 11+\ldots+2 \mathrm{~h} k \mathrm{a}^{\star} \mathrm{b}^{\star} \mathrm{U} 12\right]$

	U11	U22	U33	U23	U13	U12
$\mathrm{Au}(1)$	$53(1)$	59(1)	69 (1)	$10(1)$	-4(1)	2(1)
I (1)	103(1)	125(1)	81(1)	29(1)	-12(1)	-2(1)
N(1)	62 (8)	$40(7)$	74 (8)	10(7)	9(9)	$9(8)$
N(2)	69 (10)	$39(7)$	41 (7)	-2 (6)	-5 (6)	$3(6)$
N(3)	42 (8)	56 (8)	66 (8)	-9(7)	-13(6)	-12 (6)
O(1)	320 (30)	45 (8)	117(12)	-15(8)	-26(17)	6 (15)
$\mathrm{Cl}(1)$	123(6)	157 (7)	270(10)	71 (7)	-16(7)	-5 (7)
$\mathrm{Cl}(2)$	143 (7)	158(8)	153 (7)	-50(5)	-15(5)	18 (5)
C(1)	$39(8)$	39 (8)	59 (8)	-14 (7)	0 (7)	13 (7)
C(2)	43 (8)	46 (9)	103(13)	-25(10)	4 (10)	-8(10)
C (3)	56(10)	75 (12)	98(13)	-34(11)	-16(12)	-10(11)
C (4)	$85(12)$	108(16)	$38(8)$	-2(9)	-21(10)	-1 (14)
C(5)	106 (15)	86 (13)	$38(9)$	3(8)	5 (10)	23 (14)
C (6)	$38(10)$	73 (11)	67 (11)	-2 (9)	-11(8)	3(8)
C(7)	27 (8)	44 (9)	83(12)	-12(8)	-5 (7)	4(6)
C (8)	115 (17)	40 (10)	129(16)	-13(10)	6(16)	-5 (12)
C (9)	51 (9)	44 (9)	$39(8)$	-1(7)	2(7)	-4(7)
C (10)	44 (9)	59 (9)	45 (8)	10 (7)	-18(7)	-13(7)
C(11)	57 (9)	79(10)	$42(8)$	-13 (8)	-8(9)	2 (10)
C(12)	$74(11)$	$43(10)$	72 (12)	9(8)	-16(9)	-15 (8)
C(13)	161 (3)	58(12)	60 (11)	-25 (9)	$0(13)$	-25 (14)
C (14)	67 (12)	70 (14)	105(16)	-32 (11)	-15 (11)	14(10)
C (15)	$86(13)$	60 (11)	$97(13)$	-15 (9)	-3(13)	$40(11)$
C(16)	$54(11)$	64 (11)	67 (10)	-15 (8)	$5(8)$	-1 (8)
C(17)	49(11)	46 (9)	62 (9)	$5(8)$	11 (8)	-2 (7)
C(18)	$29(6)$	53(9)	55 (8)	-11(6)	$3(8)$	-7(8)
C(19)	50 (8)	$36(8)$	37 (8)	-9(7)	-9(7)	10(7)
C(20)	33 (8)	45 (9)	61 (10)	-9(7)	-3(7)	8(6)
C(21)	43(9)	58 (11)	82 (12)	-26(9)	-2 (8)	16(8)
C (22)	85(13)	77 (13)	77 (12)	47 (10)	2 (11)	$43(11)$
C (23)	85 (19)	230(30)	73 (15)	-10(19)	-18(13)	70 (20)
C (24)	65 (14)	75 (13)	65 (12)	3(9)	-4 (9)	4(10)
C (25)	62 (11)	46 (9)	101(13)	-14(9)	2 (12)	15(11)
C (26)	49(10)	$76(14)$	99(15)	-47(12)	-21(10)	22 (9)
C (27)	43 (9)	73 (13)	86 (13)	6(11)	7 (9)	11 (8)
C (28)	22 (8)	70 (10)	44 (8)	-21(8)	-1 (6)	$5(7)$
C(29)	89(14)	$53(12)$	84(12)	$0(10)$	-13(11)	$-17(10)$
C(30)	84(14)	61 (11)	87(12)	16(9)	-38(10)	-4 (10)
C(31)	110(20)	170(20)	90 (14)	11 (16)	29(13)	$50(20)$

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd29609.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
H (3A)	4455	4758	1399	66
H (3)	8824	2753	-228	91
H (4)	8785	3772	-771	92
H (5)	8581	5367	-644	92
H (6)	8291	5938	54	71
H (8A)	7762	2023	795	142
H (8B)	9576	2189	1024	142
H (8C)	9505	1960	526	142
H (10)	10321	5705	1334	59
H (11)	9695	7012	1731	72
H (13)	7356	8216	1986	112
H (14)	4866	8916	1928	96
H (15)	2809	8361	1435	97
H (16)	3341	7062	1031	74
H(21)	6006	7246	367	73
H (22)	5812	7810	-370	96
H (23)	4132	6963	-882	156
H (24)	2643	5694	-678	82
H (26)	2040	4446	-112	89
H (27)	2344	3837	545	80
H (30A)	3087	2920	1855	117
H (30B)	4249	3809	1940	117
H (30C)	5139	2844	1833	117
H (31A)	3957	6397	2652	148
H (31B)	4392	6757	2183	148
H (32A)	42	6461	3032	267
H (32B)	-6	5419	2858	267

Table 6. Torsion angles [deg] for cd29609.

$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	4.1 (17)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	176.0(13)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	175.1(10)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	-13(2)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$.	-5.9(18)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-174.6(17)
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	-177.4(11)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	14 (2)
$\mathrm{I}(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	172 (25)
$\mathrm{I}(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	-18(27)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	5.5 (19)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)$	173.1(18)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-179.8(17)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-12 (3)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	4 (3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-170.5(19)
$C(2)-C(3)-C(4)-C(5)$	0 (3)
$C(3)-C(4)-C(5)-C(6)$	-2(3)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	0 (3)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	-3.0(18)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{N}(2)$	-178.5(14)
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	169.7(13)
$C(3)-C(2)-C(7)-C(6)$	-6(2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(2)$	-0.7(17)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(2)$	-172.2(14)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	-172.4(14)
$\mathrm{C}(9)-\mathrm{N}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	16(2)
$C(5)-C(6)-C(7)-C(2)$	4 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(2)$	174.6(15)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)$	-109.6(17)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)$	61 (2)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	68.6(18)
$\mathrm{C}(7)-\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	-120.9(15)
$\mathrm{C}(18)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	0 (2)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-177.7(12)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	1(2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	1 (2)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	175.4(15)
$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	-7 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	178 (2)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	3 (3)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$2(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	-2 (3)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	-4(2)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)$	-178.7(14)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	-178.4(14)
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(16)$	$7(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12)$	-3(2)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-177.5(15)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(17)$	-3(2)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(17)$	174.8(12)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	-179.3(12)
$\mathrm{N}(2)-\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)$	-1 (2)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(9)$	5 (2)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(9)$	179.2(14)
$\mathrm{C}(12)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-179.0(14)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	-5 (2)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)$	72.4(19)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(28)$	-103.6(16)
$\mathrm{C}(9)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-101.6(15)
C (17)-C (18)-C(19)-C (20)	82.4(16)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(25)$	-6(2)
C (18)-C (19)-C (20)-C (25)	168.2(15)
$\mathrm{C}(28)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	176.6(13)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-9.3(19)
$\mathrm{C}(25)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	-4(2)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	173.2(13)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	4(2)

$C(21)-C(22)-C(23)-C(24)$	$1(3)$
$C(22)-C(23)-C(24)-C(25)$	$-6(3)$
$C(21)-C(20)-C(25)-C(26)$	$-174.5(13)$
$C(19)-C(20)-C(25)-C(26)$	$-1(2)$
$C(21)-C(20)-C(25)-C(24)$	$-178.3(14)$
$C(19)-C(20)-C(25)-C(24)$	$6(3)$
$C(23)-C(24)-C(25)-C(20)$	$-179.9(18)$
$C(23)-C(24)-C(25)-C(26)$	$-5(2)$
$C(20)-C(25)-C(26)-C(27)$	$-178.7(16)$
$C(24)-C(25)-C(26)-C(27)$	$-1(2)$
$C(25)-C(26)-C(27)-C(28)$	$-177.1(12)$
$C(20)-C(19)-C(28)-N(3)$	$9(2)$
$C(18)-C(19)-C(28)-N(3)$	$0(2)$
$C(20)-C(19)-C(28)-C(27)$	$-173.6(13)$
$C(18)-C(19)-C(28)-C(27)$	$-152.7(18)$
$C(29)-N(3)-C(28)-C(19)$	$30(2)$
$C(29)-N(3)-C(28)-C(27)$	$3(2)$
$C(26)-C(27)-C(28)-C(199)$	$-179.5(15)$
$C(26)-C(27)-C(28)-N(3)$	$9(3)$
$C(28)-N(3)-C(29)-O(1)$	$-173.7(16)$
$C(28)-N(3)-C(29)-C(30)$	

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cd29609 [A and deg.].
$D-H \ldots A \quad d(D-H) \quad d(H \ldots A) d(D \ldots A)<(D H A)$

(I) X-ray Crystal Data of Complex 6.

The crystal data of $\mathbf{6}$ have been deposited in CCDC with number 790740. Empirical Formula: $\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{AuIN}_{3}$; Formula Weight: 777.43; Crystal Color, Habit: colorless; Crystal Dimensions: 0.350 x 0.280 x 0.221 mm ; Crystal System: Monoclinic; Lattice Parameters: a = $12.8532(14) \AA, b=7.4498(8) \AA, c=14.7707(17) \AA, \alpha=90^{\circ}, \beta=90.459(2)^{\circ}, \gamma=90^{\circ}, V=$ 1414.3(3) \AA^{3}; Space group: $\mathrm{P} 2(1) ; \mathrm{Z}=2 ; \mathrm{D}_{\text {calc }}=1.826 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=744$; Diffractometer: Bruker Smart CCD; Residuals: R; Rw: 0.0406, 0.0790.

Table 1. Crystal data and structure refinement for cd201441.

Identification code	cd201441
Empirical formula	C32 H27 Au I N3
Formula weight	777.43
Temperature	293 (2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, P2(1)
Unit cell dimensions	$\begin{aligned} & \mathrm{a}=12.8532(14) \mathrm{A} \quad \text { alpha }=90 \mathrm{deg} . \\ & \mathrm{b}=7.4498(8) \mathrm{A} \quad \text { beta }=90.459(2) \mathrm{deg} . \\ & \mathrm{c}=14.7707(17) \mathrm{A} \quad \text { gamma }=90 \mathrm{deg} . \end{aligned}$
Volume	1414.3(3) $\mathrm{A}^{\wedge} 3$
Z, Calculated density	2, $1.826 \mathrm{Mg} / \mathrm{m}^{\wedge} 3$
Absorption coefficient	$6.317 \mathrm{~mm}^{\wedge}-1$
F(000)	744
Crystal size	$0.350 \times 0.280 \times 0.221 \mathrm{~mm}$
Theta range for data collection	2.09 to 27.00 deg .
Limiting indices	$-8<=\mathrm{h}<=16,-9<=\mathrm{k}<=9,-17<=1<=18$
Reflections collected / unique	$8321 / 5923[\mathrm{R}($ int $)=0.0359]$
Completeness to theta $=27.00$	99.5%
Absorption correction	Empirical
Max. and min. transmission	1.0000 and 0.4093
Refinement method	Full-matrix least-squares on $\mathrm{F}^{\wedge} 2$
Data / restraints / parameters	5923 / 1 / 336
Goodness-of-fit on $\mathrm{F}^{\wedge} 2$	0.904
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0406, \mathrm{wR2}=0.0790$
R indices (all data)	$\mathrm{R} 1=0.0499, \mathrm{wR2}=0.0824$
Absolute structure parameter	0.021 (7)
Extinction coefficient	$0.00158(18)$
Largest diff. peak and hole	1.099 and -0.947 e. A ${ }^{\wedge}-3$

Table 2. Atomic coordinates $\left(x 10^{\wedge} 4\right)$ and equivalent isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd201441. $U($ eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	Y	z	U (eq)
$\mathrm{Au}(1)$	5717(1)	7235 (1)	8588 (1)	42 (1)
I (1)	3741 (1)	7336 (2)	8466 (1)	64 (1)
N(1)	7884 (4)	6891 (10)	7903 (4)	38 (2)
N(2)	7896 (4)	7229 (18)	9352 (3)	43 (1)
N(3)	6820 (5)	2909 (9)	8048 (4)	47 (2)
C(1)	7261 (5)	7069 (19)	8633 (4)	37 (2)
C(2)	8935 (5)	7110 (20)	9103 (5)	45 (2)
C(3)	8937 (5)	6905 (13)	8170 (5)	41 (2)
C(4)	9840 (6)	6811 (11)	7680 (6)	49 (3)
C(5)	10744 (6)	6886 (18)	8162 (7)	67 (4)
C(6)	10752 (6)	7110 (30)	9100 (7)	69 (3)
C(7)	9851 (6)	7230 (30)	9593 (5)	61 (2)
C (8)	7465 (5)	6721 (10)	6996 (5)	37 (2)
C(9)	6946 (7)	8190 (13)	6618 (6)	51 (2)
C(10)	6480 (7)	8033 (14)	5790 (6)	51 (2)
C(11)	6518 (7)	6427 (15)	5313 (6)	52 (3)
C(12)	6019 (7)	6226 (17)	4451 (7)	71 (3)
C(13)	6093 (9)	4660 (20)	4000 (7)	89 (4)
C(14)	6642 (9)	3205 (16)	4351 (7)	76 (3)
C(15)	7118 (7)	3335 (14)	5178 (6)	63 (3)
C(16)	7077 (6)	4939 (12)	5663 (5)	44 (2)
C(17)	7568 (6)	5119 (11)	6538 (5)	42 (2)
C(18)	8194 (6)	3607 (10)	6960 (5)	38 (2)
C(19)	9195 (6)	3265 (12)	6620 (6)	47 (2)
C(20)	9566 (8)	4078 (14)	5801 (7)	66 (3)
C(21)	10550 (10)	3755 (18)	5519 (8)	90 (4)
C(22)	11229 (9)	2540 (40)	6029 (11)	124 (7)
C (23)	10890 (8)	1783 (18)	6794 (9)	87 (5)
C (24)	9881 (6)	2090 (20)	7104 (6)	61 (3)
C (25)	9515 (8)	1370 (12)	7914 (8)	65 (3)
C (26)	8545 (7)	1629 (11)	8222 (6)	54 (2)
C (27)	7838 (6)	2714 (9)	7727 (5)	39 (2)
C(28)	6525 (6)	2250 (20)	8931 (5)	58 (2)
C(29)	5367 (6)	2488 (18)	8950 (5)	55 (3)
C(30)	5040 (6)	2230 (30)	7976 (5)	64 (2)
C(31)	5909 (7)	3089 (12)	7441 (5)	49 (2)
C(32)	7560 (6)	7470 (20)	10288 (5)	63 (3)

Table 3. Bond lengths [A] and angles [deg] for cd201441.
$\mathrm{Au}(1)-\mathrm{C}(1)$
$\mathrm{Au}(1)-\mathrm{I}$ (1)
$\mathrm{N}(1)-\mathrm{C}(1)$ $\mathrm{N}(1)-\mathrm{C}(3)$ $N(1)-C(8)$ $\mathrm{N}(2)-\mathrm{C}(1)$ $\mathrm{N}(2)-\mathrm{C}(2)$ $\mathrm{N}(2)-\mathrm{C}(32)$ $\mathrm{N}(3)-\mathrm{C}(27)$ $\mathrm{N}(3)-\mathrm{C}(28)$ $N(3)-C(31)$ $C(2)-C(7)$ $C(2)-C(7)$
$C(2)-C(3)$ $C(2)-C(3)$
$C(3)-C(4)$ $C(4)-C(5)$ C (4) $-\mathrm{H}(4)$ $C(5)-C(6)$ $\mathrm{C}(5)-\mathrm{H}(5)$ $C(6)-C(7)$ $\mathrm{C}(6)-\mathrm{H}(6)$ $\mathrm{C}(7)-\mathrm{H}(7)$ $\mathrm{C}(8)-\mathrm{C}(17)$ $C(8)-C(17$
$C(8)-C(9)$ C (9) - C (10) $\mathrm{C}(9)-\mathrm{H}(9)$ C(10)-C(11) $\mathrm{C}(10)-\mathrm{H}(10)$ $C(11)-C(16)$ $\mathrm{C}(11)-\mathrm{C}(12)$ $\mathrm{C}(11)-\mathrm{C}(12$
$\mathrm{C}(12)-\mathrm{C}(13$ $\mathrm{C}(12)-\mathrm{C}(13)$ C(12) $-\mathrm{H}(12$ C(13) -C(14) $\mathrm{C}(13)-\mathrm{H}(13)$ $\mathrm{C}(14)-\mathrm{C}(15)$ $\mathrm{C}(14)-\mathrm{H}(14)$ C(15)-C(16) C(15) -H(15) C(16) -C (17) C(16) -C (17 $C(17)-C(18)$ $\mathrm{C}(18)-\mathrm{C}(27)$ C (18) -C (19)
C(19)-C(24) C(19) -C (20) $\mathrm{C}(20)-\mathrm{C}(21$ C (20) $-\mathrm{H}(20)$
C (21) - C (22)
$\mathrm{C}(21)-\mathrm{H}(21$
$\mathrm{C}(21)-\mathrm{H}(21)$
$\mathrm{C}(22)-\mathrm{C}(23)$
$\mathrm{C}(22)-\mathrm{H}(22$
$C(23)-C(24)$
C (23) $-\mathrm{H}(23)$
$\mathrm{C}(24)-\mathrm{C}(25)$ C (25) -C (26) C (25) $-\mathrm{H}(25)$ $\mathrm{C}(26)-\mathrm{C}(27)$ C(26)-C(27) $\mathrm{C}(26)-\mathrm{H}(26)$ $\mathrm{C}(28)-\mathrm{C}(29)$ $\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$ $\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$ $C(29)-C(30)$ C (29) - H (29A) C (29) $-\mathrm{H}(29 \mathrm{~B})$ C (30) - C (31)
1.988 (6)
2.5462 (6)
1.355 (8) 1.407 (8) 1.445 (9)
1.339 (8)
$1.390(8)$
1.462 (8)
1.402 (9)
1.447 (9)
$1.476(10)$
$1.379(10)$
$1.387(10)$
$1.375(10)$
1.360 (11)
0.9300
1.395 (13)
0.9300
1.375 (11)
0.9300
0.9300
1.379 (11)

1. 396 (10)
2. 363 (13)
0.9300
3. 390 (12)
0.9300
1.417 (13)
1.429 (13)
4. 350 (16)
0.9300
1.388(16)
0.9300
1.366 (13)
0.9300
5. 395 (12)
0.9300
1.439 (11)
1.515 (11)
$1.395(10)$
$1.408(10)$
1.430 (15)
$1.438(13)$
1.356 (13)
0.9300
$1.46(2)$
6. 9300
0.9300
$1.34(2)$
$1.34(2$
0.9300
1.9300
$1.397(12)$
0.9300
$1.395(14)$
$1.345(12)$
7. 345 (12)
0.9300
1.415 (10)
0.9300
1.499 (11)
0.9700
0.9700
1.509 (11)
0.9700
0.9700
1.515 (11)

C(30) -H (30A)	0.9700
$\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	0.9700
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	0.9700
$\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	0.9700
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	0.9600
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	0.9600
$\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	0.9600
$\mathrm{C}(1)-\mathrm{Au}(1)-\mathrm{I}(1)$	177.1(3)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)$	110.5(6)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)$	121.9 (6)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)$	127.6 (6)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)$	111.4 (5)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(32)$	125.3(6)
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(32)$	123.3 (6)
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{C}(28)$	121.4(7)
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{C}(31)$	122.8 (6)
$\mathrm{C}(28)-\mathrm{N}(3)-\mathrm{C}(31)$	111.5 (6)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	106.2 (5)
$\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	128.5 (5)
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	125.1 (5)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)$	121.3 (7)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{N}(2)$	132.5 (8)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{N}(2)$	106.2 (6)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.5 (7)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{N}(1)$	131.8(7)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	105.6 (6)
C(5)-C(4)-C(3)	116.3 (9)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	121.8
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	121.8
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121.6(8)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$C(7)-C(6)-C(5)$	122.3 (8)
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	118.9
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	118.9
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	115.9 (8)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	122.0
$\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{H}(7)$	122.0
$\mathrm{C}(17)-\mathrm{C}(8)-\mathrm{C}(9)$	122.0 (8)
$\mathrm{C}(17)-\mathrm{C}(8)-\mathrm{N}(1)$	119.6 (7)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{N}(1)$	118.4(7)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$	119.8(9)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	120.1
C (9)-C(10)-C(11)	120.8(9)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	119.6
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	119.6
C(10)-C(11)-C(16)	120.6 (8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	121.6 (9)
C(16) - C (11)-C(12)	$117.8(10)$
C (13) - C (12)-C(11)	$119.8(10)$
$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12)$	120.1
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12)$	120.1
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	121.9 (10)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.1
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.1
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	120.1(11)
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{H}(14)$	120.0
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.0
C (14) - C (15)-C(16)	120.1 (10)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{H}(15)$	119.9
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	120.2 (9)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	121.5 (9)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	118.2 (8)
$\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(16)$	118.5 (8)

$\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(18)$	119.6 (7)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	121.9 (7)
$\mathrm{C}(27)-\mathrm{C}(18)-\mathrm{C}(19)$	120.7 (7)
$\mathrm{C}(27)-\mathrm{C}(18)-\mathrm{C}(17)$	120.8 (6)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$	118.2 (7)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(24)$	119.6 (8)
C(18) - C (19)-C(20)	122.2 (8)
C (24)-C (19)-C(20)	118.1 (8)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	120.0 (11)
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	120.0
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	120.0
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	120.4 (12)
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	119.8
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	119.8
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	119.9(11)
$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{H}(22)$	120.1
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	120.1
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	121.1(14)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{H}(23)$	119.4
$\mathrm{C}(24)-\mathrm{C}(23)-\mathrm{H}(23)$	119.4
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	122.6 (11)
$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(19)$	116.9 (8)
C (23)-C (24)-C(19)	120.4(11)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{C}(24)$	123.7 (9)
$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{H}(25)$	118.1
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{H}(25)$	118.1
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	120.1(9)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{H}(26)$	120.0
$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{H}(26)$	120.0
$\mathrm{C}(18)-\mathrm{C}(27)-\mathrm{N}(3)$	122.6 (7)
C(18) - C (27)-C(26)	118.6 (7)
$\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(26)$	118.8 (7)
$\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{C}(29)$	104.2 (6)
$\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	110.9
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~A})$	110.9
$\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	110.9
$\mathrm{C}(29)-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	110.9
$\mathrm{H}(28 \mathrm{~A})-\mathrm{C}(28)-\mathrm{H}(28 \mathrm{~B})$	108.9
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	103.6 (6)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	111.0
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~A})$	111.0
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	111.0
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	111.0
$\mathrm{H}(29 \mathrm{~A})-\mathrm{C}(29)-\mathrm{H}(29 \mathrm{~B})$	109.0
C (29)-C (30)-C(31)	104.1(7)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.9
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~A})$	110.9
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.9
$\mathrm{C}(31)-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	110.9
$\mathrm{H}(30 \mathrm{~A})-\mathrm{C}(30)-\mathrm{H}(30 \mathrm{~B})$	109.0
$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(30)$	103.3 (7)
$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	111.1
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~A})$	111.1
$\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	111.1
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	111.1
$\mathrm{H}(31 \mathrm{~A})-\mathrm{C}(31)-\mathrm{H}(31 \mathrm{~B})$	109.1
$\mathrm{N}(2)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~A})$	109.5
$\mathrm{N}(2)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{~B})$	109.5
$\mathrm{N}(2)-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5
$\mathrm{H}(32 \mathrm{~A})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5
$\mathrm{H}(32 \mathrm{~B})-\mathrm{C}(32)-\mathrm{H}(32 \mathrm{C})$	109.5

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd201441. The anisotropic displacement factor exponent takes the form: $-2 \mathrm{pi}^{\wedge} 2\left[\mathrm{~h}^{\wedge} 2 \mathrm{a}^{\star \wedge} 2 \mathrm{Ul1}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}\right.$ * U12]

	U11	U22	U33	U23	U13	U12
Au (1)	27 (1)	58 (1)	41 (1)	-4 (1)	6 (1)	-5 (1)
I (1)	29 (1)	108 (1)	57 (1)	14 (1)	4(1)	-8(1)
N(1)	21 (3)	55 (6)	40 (3)	-8(3)	-3(2)	1 (3)
N(2)	39 (3)	52 (3)	36 (3)	-15(7)	2 (2)	-11(6)
N(3)	41 (4)	67 (5)	34 (4)	2 (3)	-3 (3)	-7(3)
C(1)	21 (3)	51 (6)	39 (4)	13 (6)	1 (3)	-11(5)
C(2)	37 (4)	49 (5)	49 (4)	$1(7)$	-5 (3)	-4 (6)
C (3)	18 (3)	52 (7)	53 (4)	-4 (4)	-1 (3)	0 (3)
C (4)	33 (4)	58 (8)	54 (5)	-6 (4)	-4(3)	-2 (4)
C (5)	29 (4)	89 (12)	82 (7)	-7(7)	-3 (4)	13 (5)
C (6)	36 (4)	92 (8)	79 (6)	-1 (11)	-20(4)	19 (9)
C (7)	56 (5)	77 (5)	49 (5)	17 (10)	-19 (4)	-19(10)
C (8)	23 (4)	51 (6)	37 (4)	8 (3)	6 (3)	3 (3)
C (9)	$38(5)$	61 (5)	53 (6)	7 (5)	15 (5)	2 (4)
C (10)	42 (5)	74 (6)	38 (6)	17 (5)	2 (5)	7 (4)
C (11)	30 (5)	97 (7)	28 (5)	10 (5)	2 (4)	0 (4)
C (12)	$38(5)$	120 (9)	55 (6)	25 (6)	-12(5)	-10(5)
C (13)	78 (8)	158 (13)	29 (6)	$8(7)$	-18(5)	-14 (8)
C (14)	90 (8)	99 (8)	40 (6)	-17(6)	-5 (6)	-7 (6)
C (15)	61 (6)	85 (7)	44 (6)	-14(5)	4(5)	-12(5)
C (16)	39 (5)	70 (5)	25 (4)	0 (4)	8(3)	-14 (4)
C (17)	32 (4)	58 (5)	37 (5)	4 (4)	5 (3)	-7 (4)
C (18)	32 (4)	49 (5)	34 (4)	-7 (4)	2 (3)	-2 (3)
C (19)	38 (5)	57 (5)	47 (6)	-14 (4)	0 (4)	1 (4)
C (20)	54 (6)	84 (7)	60 (7)	-10(5)	18 (5)	$11(5)$
C (21)	70 (8)	130 (11)	71 (8)	-11(7)	30 (7)	12 (7)
C (22)	50 (6)	180 (20)	139(12)	-85 (16)	18 (8)	1 (12)
C (23)	60 (7)	103 (13)	100(9)	-22 (8)	6 (6)	25 (7)
C (24)	47 (4)	67 (7)	70 (6)	-15 (9)	-1 (4)	14 (7)
C (25)	59 (7)	59 (5)	77 (8)	-18(5)	-19(5)	21 (5)
C (26)	58 (6)	56 (6)	47 (5)	-3 (4)	-12(4)	2 (4)
C (27)	44 (4)	40 (6)	32 (4)	-4(3)	-9 (3)	-1 (3)
C (28)	66 (5)	68 (5)	40 (4)	26 (8)	-1 (4)	-11(9)
C (29)	72 (5)	48 (7)	45 (4)	6 (5)	19 (4)	-16(5)
C (30)	62 (5)	69 (5)	60 (5)	-6 (10)	3 (4)	-21(9)
C (31)	60 (6)	60 (5)	29 (4)	1 (4)	8 (4)	-4 (4)
C (32)	59 (5)	96 (9)	35 (4)	-11(7)	3 (3)	1 (7)

Table 5. Hydrogen coordinates $\left(x 10^{\wedge} 4\right)$ and isotropic displacement parameters ($A^{\wedge} 2 \times 10^{\wedge} 3$) for cd201441.

	x	Y	z	U (eq)
H (4)	9833	6702	7052	58
H(5)	11373	6783	7860	80
H (6)	11388	7188	9402	83
H (7)	9859	7371	10218	73
H (9)	6919	9273	6930	61
H (10)	6131	9012	5541	61
H(12)	5643	7174	4202	85
H(13)	5768	4543	3438	106
H(14)	6685	2143	4022	92
H (15)	7470	2352	5418	76
H (20)	9132	4826	5464	79
H(21)	10795	4309	4998	109
H(22)	11895	2293	5822	149
H(23)	11334	1042	7125	105
H (25)	9968	673	8260	78
H(26)	8339	1096	8761	65
$\mathrm{H}(28 \mathrm{~A})$	6859	2939	9408	69
$\mathrm{H}(28 \mathrm{~B})$	6712	995	9001	69
H (29A)	5184	3677	9164	66
H (29B)	5045	1599	9337	66
$\mathrm{H}(30 \mathrm{~A})$	4382	2823	7853	76
$\mathrm{H}(30 \mathrm{~B})$	4974	967	7830	76
H (31A)	6019	2461	6874	59
H(31B)	5760	4340	7314	59
$\mathrm{H}(32 \mathrm{~A})$	6833	7763	10295	95
H (32B)	7953	8417	10565	95
H (32C)	7673	6371	10618	95

Table 6. Torsion angles [deg] for cd201441.

$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	-1.5(18)
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$179.5(13)$
$\mathrm{C}(2)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	-177.1(11)
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(1)-\mathrm{Au}(1)$	4 (2)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	$1.2(14)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-178.7(10)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	$177.0(9)$
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{Au}(1)$	-2.9(16)
$\mathrm{I}(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(2)$	-148(6)
$I(1)-\mathrm{Au}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	37 (8)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(7)$	178.9(19)
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(7)$	-2 (3)
$\mathrm{C}(1)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	1.2 (19)
$\mathrm{C}(32)-\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)$	-179.8(14)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	-1(2)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	177.6(10)
$\mathrm{C}(7)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	-178.5(15)
$\mathrm{N}(2)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	-0.4 (15)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	-178.2(11)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$1.7(16)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	-0.5(13)
$\mathrm{C}(8)-\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(2)$	179.4 (10)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$1.7(17)$
$N(1)-C(3)-C(4)-C(5)$	179.1(10)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-2.3(18)
C (4) - C (5) - C (6)-C(7)	2 (3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(2)$	0 (3)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(7)-\mathrm{C}(6)$	0 (3)
$N(2)-C(2)-C(7)-C(6)$	-177.7(16)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(17)$	-111.7(11)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(17)$	68.4 (11)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	66.9(12)
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)$	-113.0(9)
$\mathrm{C}(17)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	3.2 (12)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	-175.4(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	-0.4(13)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	-2.4(14)
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	178.9(8)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$178.5(10)$
$\mathrm{C}(16)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	-0.2(13)
C (11)-C (12)-C(13)-C (14)	0.4 (16)
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	0.6 (17)
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	-1.6(16)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(11)$	$1.7(13)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	179.8(8)
C (10)-C (11)-C(16)-C (15)	-179.6(8)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	-0.8(12)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	2.3 (12)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)$	-179.0(7)
C (9) - C (8) - C (17)-C(16)	-3.3(11)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(16)$	175.4 (6)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(18)$	176.4 (7)
$\mathrm{N}(1)-\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(18)$	-5.0(10)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(8)$	-177.6(7)
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(8)$	0.5 (11)
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$2.7(11)$
$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	-179.1(7)
$\mathrm{C}(8)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(27)$	$68.7(10)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(27)$	-111.7(8)
C (8) - C (17)-C (18)-C (19)	-104.4 (9)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	75.3 (10)
$\mathrm{C}(27)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(24)$	-4.6 (13)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(24)$	168.4 (9)

$\mathrm{C}(27)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	176.2 (8)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	-10.8(12)
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$177.7(10)$
$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	-1.6(16)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$1.8(19)$
$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	-2 (3)
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	2 (3)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)$	-177.8(16)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	-2 (2)
C (18) - C (19)-C (24)-C (25)	-1.5(16)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(24)-\mathrm{C}(25)$	177.7(10)
C (18) - C (19)-C (24)-C(23)	-177.7(11)
C (20) - C (19)-C (24)-C (23)	1.5 (17)
$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	-179.3(11)
C (19) - C (24)-C (25) - C (26)	4.6 (18)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	-1.4(15)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(27)-\mathrm{N}(3)$	-175.0(7)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(27)-\mathrm{N}(3)$	12.2 (11)
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(27)-\mathrm{C}(26)$	7.8 (11)
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(27)-\mathrm{C}(26)$	-165.0(7)
$\mathrm{C}(28)-\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(18)$	-168.1 (9)
$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(18)$	37.1 (11)
$\mathrm{C}(28)-\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(26)$	9.0 (12)
$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(27)-\mathrm{C}(26)$	-145.7(7)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{C}(18)$	-4.9(11)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)-\mathrm{N}(3)$	177.8 (8)
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{C}(29)$	-172.3(8)
$\mathrm{C}(31)-\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{C}(29)$	-15.0(13)
$\mathrm{N}(3)-\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)$	31.7 (15)
$\mathrm{C}(28)-\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	-36.9(15)
$\mathrm{C}(27)-\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(30)$	149.1(9)
$\mathrm{C}(28)-\mathrm{N}(3)-\mathrm{C}(31)-\mathrm{C}(30)$	-7.8(11)
$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{N}(3)$	27.4(13)

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for cd201441 [A and deg.].
D-H..AA $d(D-H) \quad d(H \ldots A) d(D \ldots A)<(D H A)$

