Supporting information for:

Catching the First Oligomerization event in the Catalytic Formation of Polyaminoboranes: H₃B·NMeHBH₂·NMeH₂ Bound to Iridium.

Heather C. Johnson^a, Alasdair P. M. Robertson^b, Adrian B. Chaplin^a, Laura J. Sewell^a, Amber L. Thompson^a, Mairi F. Haddow^b, Ian Manners^b and Andrew S. Weller^{*a}

^aDepartment of Chemistry, Inorganic Chemistry Laboratories, University of Oxford, Oxford, UK. OX1 3Q; ^bSchool of Chemistry, University of Bristol, Cantocks Close, Bristol, UK. BS8 1TS

General Experimental Procedures	S-2
Synthesis of new complexes	S-2
Reaction between 4 and H ₃ B·NMe ₃	S-5
Catalytic reaction between 1and 3 (10 mol%)	S-5
Reaction between 5 and 1 (1eq.)	S-6
Reaction between 4- <i>N</i> -D ₂ and 1	S-6
Reaction between 3 and 2	S-6
Reaction between 4 and D ₂	S-7
Reaction between 5 and MeCN (10 eq.)	S-7
Reaction between 5 and 1 (8 eq.)	S-7
Reaction between 3 and [H ₂ BNMeH] ₃	S-7
NMR spectra and ESI-MS of 5	S-8
References	S-10

General experimental procedures

All manipulations, unless otherwise stated, were performed under an argon atmosphere using standard Schlenk and glove-box techniques. Glassware was oven dried at 130 °C overnight and flamed under vacuum prior to use. Pentane, hexane, toluene, THF, CH₂Cl₂ and MeCN were dried using a Grubbs type solvent purification system (MBraun SPS-800) and degassed by successive freeze-pump-thaw cycles.¹ C₆H₅F and 1,2-C₆H₄F₂ were dried over CaH₂, vacuum distilled and stored over 3 Å molecular sieves. CD₂Cl₂ was dried over CaH₂, distilled and stored in a glovebox. H₃B·NMe₃ was purchased from Aldrich and sublimed prior to use (5 x 10⁻² Torr, 298 K). BH₃·THF was purchased from Aldrich and vacuum distilled prior to use. MeNH₂ was purchased from SIP Analytical Limited as the 'standard' grade and used as received. Na[BArF₄]², Na[BArCl₄]³, [IrHPCy₂(η²- C_6H_9)PCy₂(η^3 - C_6H_8)][BAr^F₄]⁴ and H₃B·NMeH₂⁵ were prepared by literature methods. NMR spectra were recorded on a Unity Plus 500 MHz spectrometer at room temperature, unless otherwise stated. In the case of free 2 in CD₂Cl₂, NMR spectra were recorded using a JEOL JNM-LA300. In C₆H₅F and 1,2-C₆H₄F₂, ¹H NMR spectra were referenced to the centre of the downfield solvent multiplet, δ = 7.11 and 7.07 respectively. ³¹P and ¹¹B NMR spectra were referenced against 85% H₃PO₄ (external) and BF₃OEt₂ (external) respectively. The spectrometer was pre-locked to CD₂Cl₂. Chemical shifts (δ) are quoted in ppm and coupling constants (J) in Hz. ESI-MS were recorded on a Bruker MicrOTOF-Q instrument interfaced with a glove-box.⁶ Microanalyses were performed by Elemental Microanalysis Ltd for all compounds, except 2 for which elemental analysis was performed with a Eurovector EA 3000 Elemental Analyser by Des Davis of the University of Bristol Microanalysis Laboratory.

Synthesis of new complexes

$[IrHPCy_{2}(\eta^{2}\text{-}C_{6}H_{9})PCy_{2}(\eta^{3}\text{-}C_{6}H_{8})][BAr^{Cl}_{4}]$

 $[IrHPCy_2(\eta^2-C_6H_9)PCy_2(\eta^3-C_6H_8)][BArC_4]$ was prepared using the literature method for $[IrHPCy_2(\eta^2-C_6H_9)PCy_2(\eta^3-C_6H_8)][BArC_4]$ with Na[BArC_4]. Yield: 65 %.

¹**H NMR (500 MHz, 1,2-C**₆**H**₄**F**₂**):** δ 7.56 (m, 8H, [BAr^{CI}₄]⁻), 5.00 (br, 1H, alkenyl), 4.90 (br, 1H, alkenyl), 4.82 (br, 1H, alkenyl), 4.75 (br, 1H, alkenyl), 3.93 (br, 1H, alkenyl), 3.15 to 1.05 (m, 56H, Cy), -12.99 (dd, ²J_{PH} = 10, ²J_{PH} = 17, 1H, IrH). Other [BAr^{CI}₄]⁻ peak is obscured by the solvent.

³¹**P** {¹**H**} **NMR (202 MHz, 1,2-C₆H₄F₂):** δ 57.87 (d, ²J_{PP} = 287, 1P), 8.13 (d, ²J_{PP} = 287, 1P)

¹¹**B NMR (160 MHz, 1,2-C₆H₄F₂):** δ -6.4 (s, [BAr^{Cl}₄]⁻)

H₃B·NMeHBH₂·NH₂Me (2)

A 1 M solution of $BH_3 \cdot THF$ (50 mL, 50 mmol) was added to solid **1** (1.48 g, 32.8 mmol) and the mixture heated to 60 °C for 70 hours. The resulting solution was vacuum transferred to remove a small amount of unreacted **1**, producing a ~1 M solution of B_2H_5MeNH in THF (¹¹B {¹H} NMR: -23.2, becoming a broad poorly resolved multiplet on proton coupling). A 2 M THF solution of MeNH₂ (16.4 mL, 32.8 mmol) was added at -78 °C, and the mixture immediately warmed to RT before stirring overnight. The solvent was removed *in vacuo* to yield a crystalline white solid. Crystals suitable for X-ray diffraction were obtained by recrystallisation from CH₂Cl₂/hexane at -40 °C. Yield: 2.075 g (72 %)

¹**H NMR (301 MHz, CD₂Cl₂)**: δ 4.27 (br s, 2H, N<u>H</u>₂), 2.49 (t, ³J_{HH} = 6.2, 3H, NH₂<u>Me</u>), 2.26 (br s, 3H, NH<u>Me</u>), 1.31 (br q, ¹J_{BH} = 92.8, 3H, BH₃),

¹H {¹¹B} NMR (301 MHz, CD₂Cl₂): δ 4.27 (br s, 2H, NH₂), 2.49 (t, ³J_{HH} = 6.2, 3H, NH₂Me), 2.26 (br s, 3H, NH<u>Me</u>), 2.05 (s, 1H, BH₂), 1.76 (s, 1H, BH₂), 1.31 (s, 3H, BH₃),

¹H NMR (500 MHz, 1,2-C₆H₄F₂): δ 4.35 (br s, 1H, NH₂), 4.25 (br s,1H, NH₂), 2.47 (br s, 3H, NH<u>Me</u>), 2.45 (t, ³J_{HH} = 6.2, 3H, NH₂Me), 1.99 (br q, ¹J_{BH} = 92.8, 3H, BH₃)

The NHMe peak is not seen in either solvent, presumably as too broad.

¹¹B NMR (96 MHz, CD₂Cl₂): δ -6.2 (t, ¹J_{BH} = 106.1, 1B, BH₂), -19.3 (q, ¹J_{BH} = 91.9, 1B, BH₃)

¹¹B NMR (160 MHz, 1,2-C₆H₄F₂): δ -4.8 (t, ¹J_{BH} = 112.0 Hz, 1B, BH₂), -17.7 (q, ¹J_{BH} = 93.5, 1B, BH₃)

¹³C NMR (76 MHz, CD₂Cl₂): δ 40.9 (1C, NHMe), 31.6 (1C, NH₂Me).

Elemental Microanalysis: Calc. C₂H₁₄B₂N₂ (88.13 gmol⁻¹): C, 27.23; H, 16.01; N, 31.78. Found: C, 27.66; H, 15.96; N, 31.54.

$[Ir(H)_2(PCy_3)_2(H_3B\cdot NMeH_2)][BAr_4]$ (4)

3 was formed *in situ* by the hydrogenation of [IrHPCy₂(η^2 -C₆H₉)PCy₂(η^3 -C₆H₈)][BAr^F₄] (50 mg, 0.031 mmol) at 4 atm in 1,2-C₆H₄F₂. After 30 minutes, the colourless solution was opened under argon and rapidly transferred to a Young's flask containing solid **1** (1.4 mg, 0.031 mmol) and stirred for 1 hour. The solution was then transferred into a Schlenk and pentane (50 mL) was added, and the colourless mixture was cooled to -18 °C for 10 days, after which an off-white solid had formed. The solid was washed with pentane (2 x 5 mL) and dried *in vacuo*. Yield: 25 mg (48 %). Crystals suitable for X-ray diffraction were obtained by recrystallisation from C₆H₅F/pentane at 5 °C.

¹**H NMR (500 MHz, C**₆**H**₅**F**): δ 8.36 (br, 8H, [BAr^F₄]⁻), 7.66 (s, 4H, [BAr^F₄]⁻), 3.65 (br, 2H, NH₂), 2.39 (t, ³J_{HH} = 6, 3H, NMe), 2.20 to 1.10 (m, 66H, Cy), -6.01 (br, 2H, σ-bound BH₂), -20.29 (overlapping dd, ²J_{HP} ~ 15, ²J_{HP} ~ 17, 2H, IrH₂). The remaining BH signal is not observed, presumably as too broad.

¹**H NMR (500 MHz, C**₆**H**₅**F**, **250 K)**: δ 8.36 (br, 8H, [BAr^F₄]⁻), 7.66 (s, 4H, [BAr^F₄]⁻), 6.09 (br, 1H, BH not σ-bound), 3.64 (br, 2H, NH₂), 2.40 (t, ${}^{3}J_{HH}$ = 6, 3H, NMe), 2.20 to 1.10 (m, 66H, Cy), -6.01 (br, 2H, σ-bound BH₂), -20.11 (m, 2H, IrH₂)

³¹P {¹H} NMR (202 MHz, C₆H₅F): δ 39.67 (br d, 1P), 32.82 (br d, 1P)

³¹**P** {¹**H**} **NMR (202 MHz, C₆H₅F, 250 K):** δ 39.35 (d, ²J_{PP} = 283, 1P), 32.66 (d, ²J_{PP} = 283, 1P)

¹¹B NMR (160 MHz, C₆H₅F): δ 13 (br, bound BH₃), -6.0 (s, [BAr^F₄]⁻)

ESI-MS (1,2-C₆H₄F₂, 60 °C, 4.5 kV): m/z 800.5285 [Ir(H)₂(PCy₃)₂(H₃B·NMeH₂)]⁺ (calc. 800.5178)

Elemental Microanalysis: Calc. C₆₉H₈₈B₂F₂₄IrNP₂ (1663.19 gmol⁻¹): C, 49.83; H, 5.33; N, 0.84. Found: C, 50.06; H, 5.46; N, 0.81.

$[Ir(H)_2(PCy_3)_2(H_3B\cdot NMeHBH_2\cdot NMeH_2)][BAr^{Cl}_4]$ (5)

3 was formed *in situ* by the hydrogenation of $[IrHPCy_2(\eta^2-C_6H_9)PCy_2(\eta^3-C_6H_8)][BAr^{Cl}_4]$ (50 mg, 0.037 mmol) at 4 atm in 1,2-C₆H₄F₂. After 30 minutes, the colourless solution was opened under argon and rapidly transferred to a

Young's flask containing solid **1** (4 mg, 0.09 mmol) and stirred for 4 hours. The solution was then filtered into a Schlenk and pentane (30 mL) was added, and the colourless mixture was cooled to -18 °C overnight, yielding colourless crystals, which were washed with pentane (2 x 5 mL) and dried *in vacuo*. Yield: 23 mg (43 %). Crystals suitable for X-ray diffraction were obtained by recrystallisation from $1,2-C_6H_4F_2$ /pentane at 5 °C. The preparation of **5** with the BAr^{F₄-} anion was conducted *in situ* and gave similar NMR spectra to the BAr^{CI₄-} salt, although crystalline material was could not be isolated.

¹**H NMR (500 MHz, 1,2-C₆H₄F₂):** δ 7.56 (m, 8H, [BAr^{Cl}₄]), 6.42 (br, 1H, BH not σ-bound), 4.13 (br, 1H, NMe<u>H</u>₂), 4.02 (br, 1H, NMe<u>H</u>₂), 2.99 (br, 1H, NMe<u>H</u>), 2.76 (overlapping dd, ${}^{3}J_{HH}$ = 6.3 and 6.0, 3H, N<u>Me</u>H₂), 2.67 (d, ${}^{3}J_{HH}$ = 5.8, 3H, N<u>Me</u>H), 2.43 (br, 2H, BH₂), 2.2 to 1.1 (m, 66H, Cy), -6.15 (br, 1H, σ-bound BH₂), -6.32 (br, 1H, σ-bound BH₂), -19.78 (m, 2H, IrH₂). Other [BAr^{Cl}₄]⁻ peak is obscured by the solvent.

¹H {¹¹B} NMR (500 MHz, 1,2-C₆H₄F₂): δ 7.57 (m, 6H, [BAr^{Cl}₄]-), 6.45 (br, 1H, BH not σ -bound), 4.13 (br, 1H, NMe<u>H</u>₂), 4.02 (br, 1H, NMe<u>H</u>₂), 2.99 (br, 1H, NMe<u>H</u>), 2.76 (overlapping dd, ³J_{HH} = 6.3 and 6.0, 3H, N<u>Me</u>H₂), 2.69 (d, ³J_{HH} = 5.8, 3H, N<u>Me</u>H), 2.48 (s, 1H, BH₂), 2.37 (s, 1H, BH₂), 2.2 to 1.1 (m, 66H, Cy), -6.11 (s, 1H, σ -bound BH₂), -6.32 (s, 1H, σ -bound BH₂), -19.78 (m, 2H, IrH₂)

³¹**P** {¹**H**} **NMR (202 MHz, 1,2-C₆H₄F₂):** δ 37.91 (d, ²J_{PP} = 285, 1P), 33.01 (d, ²J_{PP} = 285, 1P)

¹¹**B NMR (160 MHz, 1,2-C₆H₄F₂):** δ 17.1 (br, bound BH₃), -5.8 (br, BH₂), -6.5 (s, [BAr^{Cl}₄]⁻)

ESI-MS (1,2-C₆H₄F₂, 60 °C, 4.5 kV): m/z 843.5789 [Ir(H)₂(PCy₃)₂(H₃B·NMeHBH₂·NMeH₂)]⁺ (calc. 843.5777)

Elemental Microanalysis: Calc. C₆₂H₉₄B₃Cl₈IrN₂P₂ (1437.64 gmol⁻¹): C, 51.80; H, 6.59; N, 1.95. Found: C, 52.39; H, 6.67; N, 1.91.

H₃B·NMeD₂

 H_3B ·NMeH₂ (100 mg, 2.22 mmol) was dissolved in degassed D₂O (0.8 mL, 44.4 mmol) and stirred at 40 °C for 24 h. The solution was then extracted with CH₂Cl₂ (3 x 1 mL), the organic layer was dried with MgSO₄ and filtered, and the volatiles were removed under vacuum. The resulting white solid was recrystallised twice with Et₂O. Yield: 56 mg (54 %).

¹H NMR (500 MHz, 1,2-C₆H₄F₂): δ 2.54 (br s, 3H, NMe), 2.19 (q, ¹J_{BH} = 97, 3H, BH₃)

¹¹B NMR (160 MHz, 1,2-C₆H₄F₂): δ -17.0 (q, ¹J_{BH} = 97, BH₃)

²H NMR (77 MHz, 1,2-C₆H₄F₂): δ 3.31 (s, ND₂)

$[Ir(H)_2(PCy_3)_2(H_3B\cdot NMeD_2)][BAr_4]$

3 was formed *in situ* by the hydrogenation of $[IrHPCy_2(\eta^2-C_6H_9)PCy_2(\eta^3-C_6H_8)][BArF_4]$ (24 mg, 0.015 mmol) at 4 atm in 1,2-C₆H₄F₂ in a high pressure NMR tube. After 30 minutes, the colourless solution was opened under argon and rapidly transferred to a second high pressure tube containing solid H₃B·NMeD₂ (0.7 mg, 0.015 mmol). *In situ* NMR spectroscopy indicated that $[Ir(H)_2(PCy_3)_2(H_3B\cdotNMeD_2)][BArF_4]$ had been formed quantitatively.

¹**H NMR (500 MHz, 1,2-C₆H₄F₂):** δ 8.32 (br, 8H, [BAr^F₄]⁻), 7.68 (s, 4H, [BAr^F₄]⁻), 2.94 (br s, 3H, NMe), 2.20 to 1.10 (m, 66H, Cy), -5.76 (br, 2H, σ-bound BH₂), -20.14 (overlapping dd, ${}^{2}J_{HP} \sim 15$, ${}^{2}J_{HP} \sim 17$, 2H, IrH₂). The remaining BH signal is not observed, presumably as too broad.

³¹P {¹H} NMR (202 MHz, 1,2-C₆H₄F₂): δ 39.76 (br d, 1P), 32.89 (br d, 1P)
¹¹B NMR (160 MHz, 1,2-C₆H₄F₂): δ 13 (br, bound BH₃), -6.0 (s, [BAr^F₄]⁻)
²H NMR (77 MHz, 1,2-C₆H₄F₂): δ 4.32 (br s, ND₂Me)

Reaction between 4 and H₃B·NMe₃

3 was formed in situ by the hydrogenation of [IrHPCy₂(n^2 -C₆H₉)PCy₂(n^3 -C₆H₈)][BArF₄] (16 mg, 0.01 mmol) at 4 atm in C₆H₅F in a high pressure NMR tube. After 30 minutes, the tube was opened under argon and the solution transferred to another high pressure NMR tube containing solid H₃B·NMeH₂ (0.4 mg, 0.01 mmol). In situ NMR spectroscopy indicated that 4 had been formed quantitatively. The solution was transferred to a high pressure NMR tube containing solid H₃B·NMe₃ (0.7 mg, 0.01 mmol). After 24 hours, NMR spectra (¹¹B NMR spectrum shown in Figure S-1) revealed the known complex [Ir(H)₂(PCy₃)₂(H₃B NMe₃)][BArF₄] and [HBNMe]₃ as the major products. An excess of H₃B·NMe₃ was also apparent. ESI-MS was consistent with $[Ir(H)_2(PCy_3)_2(H_3B NMe_3)][BAr^{F_4}]$ being only charged product after 48 hours.

Figure S-1 ¹¹B NMR spectrum of 4 and H₃B NMe₃ after 24 hours.

Catalytic reaction between 1 and 3 (10 mol%)

3 was formed *in situ* by the hydrogenation of [IrHPCy₂(η^2 -C₆H₉)PCy₂(η^3 -C₆H₈)][BArF₄] (16 mg, 0.01 mmol) at 4 atm in C₆H₅F (0.4 mL) in a high pressure NMR tube. After 30 minutes, the solution was opened under argon and transferred to another high pressure NMR tube containing solid H₃B·NMeH₂ (4.5 mg, 0.1 mmol). Catalysis was followed by a combination of ¹H, ³¹P{¹H} and ¹¹B NMR spectroscopy. The ¹¹B NMR spectrum upon completion of catalysis is shown in Figure S-2.

Figure S-2¹¹B NMR spectrum of the reaction between 1 and 3 (10 mol%) on completion of catalysis.

Reaction between 5 and 1 (1eq.)

Solid **5** (16.2 mg, 0.01 mmol) was dissolved in $1,2-C_6H_4F_2$ in a high pressure NMR tube. The solution was then transferred to another tube containing solid H_3BNMeH_2 (0.5 mg, 0.01 mmol) and the solution heated to 40 °C. The reaction was followed by a combination of NMR spectroscopy and ESI-MS. No evidence for further oligomeric species was seen by NMR and ESI-MS.

Reaction between 4-N-D₂ and 1

[Ir(H)₂(PCy₃)₂(H₃B·NMeD₂)][BAr^F₄] (0.015 mmol), formed *in situ* in a high pressure NMR tube in 1,2-C₆H₄F₂, was degassed and transferred to another high pressure tube containing solid **1** (0.7 mg, 0.015 mmol). The reaction was followed by a combination of ¹H, ³¹P, ¹¹B and ²H NMR spectroscopy, which indicated that bound oligomer had been formed in quantitative yield. Deuterium was partially incorporated in all NH positions, the BH₂ signal at \sim -6ppm, IrH₂ and the cyclohexyl signals (potentially including the BH₂ signal that is found under the cyclohexyl peaks). In addition, both HD (δ 4.56, t, ¹J_{HD} = 43) and H₂ (δ 4.59, s) were observed.

Reaction between 3 and 2

3 was formed *in situ* by the hydrogenation of [IrHPCy₂(η^2 -C₆H₉)PCy₂(η^3 -C₆H₈)][BAr^F₄] (16 mg, 0.01 mmol) at 4 atm in C₆H₅F (0.4 mL) in a high pressure NMR tube. After 30 minutes, the solution was opened under argon and transferred to another high pressure NMR tube containing solid H₃B·NMeHBH₂.NMeH₂ (0.9 mg, 0.1 mmol). ¹H, ³¹P and ¹¹B NMR indicated that **5** was formed quantitatively.

Reaction between 4 and D₂

4 (0.01 mmol) was formed *in situ* in a high pressure NMR tube and immediately frozen in liquid N₂ and degassed. The sample was thawed and the headspace was rapidly refilled with D₂ (4 psi). The sample was again frozen before following with ¹H, ¹¹B, ³¹P and ²H NMR spectroscopy for 2 hours. Deuterium was observed in the IrH, BH and PCy₃ CH signals, but no ND signals were observed.

Reaction between 5 and MeCN (10 eq.)

5 (0.01 mmol) was formed *in situ* in a high pressure NMR tube in C₆H₅F. 5 μ L (0.1 mmol) of MeCN was added and the solution was immediately frozen. The reaction was monitored by ¹H, ¹¹B and ³¹P NMR, which initially showed free **2** and the complex [Ir(PCy₃)₂H₂(NCMe)₂][BAr^F₄]. However, after 30 minutes, **2** was almost completely converted to [H₂BNMeH]₃ and [HBNMe]₃. After 24 hours, all **2** had been consumed.

Reaction between 5 and 1 (8 eq.)

5 (0.01 mmol) was formed *in situ* in a high pressure NMR tube in C_6H_5F and checked by NMR spectroscopy. The sample was added to another high pressure NMR tube containing **1** (3.6 mg, 0.08 mmol) and the reaction was monitored by ¹H, ¹¹B and ³¹P{¹H} NMR spectroscopy, which showed 5 to be a competent catalyst for the formation of **2**.

Reaction between 3 and [H₂BNMeH]₃

3 was formed *in situ* by the hydrogenation of [IrHPCy₂(η^2 -C₆H₉)PCy₂(η^3 -C₆H₈)][BArF₄] (16 mg, 0.01 mmol) at 4 atm in C₆H₅F (0.4 mL) in a high pressure NMR tube. After 30 minutes, the solution was opened under argon and transferred to another high pressure NMR tube containing solid [H₂BNMeH]₃ (1.2 mg, 0.01 mmol). After 1 hour, ¹¹B NMR spectroscopy indicated complete conversion to [HBNMe]₃ (Figure S-3). ¹H and ³¹P{¹H} NMR spectroscopy showed that **3** remained intact.

Figure S-3 ¹¹B NMR spectrum of 3 and [H₂BNMeH]₃ after 1 hour.

ESI-MS and NMR spectra of 5

Figure S-4 ESI-MS of 5 (top) and simulated spectrum (bottom).

Figure S-7 ¹H NMR spectrum of 5

References

- (1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518.
- (2) Buschmann, W. E.; Miller, J. S. *Inorganic Syntheses* **2002**, 33, 83.
- (3) Weller, A. S.; Chaplin, A. B. European Journal of Inorganic Chemistry 2010, 5124.
- (4) Alcaraz, G.; Chaplin, A. B.; Stevens, C. J.; Clot, E.; Vendier, L.; Weller, A. S.; Sabo-Etienne, S. Organometallics **2010**, 29, 5591.
- (5) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. *Journal of the American Chemical Society* **2003**, *125*, 9424.
- (6) Lubben, A. T.; McIndoe, J. S.; Weller, A. S. Organometallics **2008**, 27, 3303.