Precise Isomerization Polymerization of

Alkenylcyclohexanes. Stereoregular Polymers
 Containing Six-Membered Rings Along the

Polymer Chain

Daisuke Takeuchi*

Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta,
Yokohama, 226-8503, Japan

Experimental Section (S2-S5)
Figures (S6-S8)

Experimental Section

General Method

Dry solvents were purchased and used as received. Diimine ligands, ${ }^{1}$ $\operatorname{PdCl}(\mathrm{Me})(\text { diimine })^{2}, \mathrm{NiBr}_{2}$ (diimine) ${ }^{2}$ and NaBARF^{3} were prepared according to the reported procedure. Vinylcyclohexane, allylcyclohexane, and MMAO were purchased and used as received. NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$) spectra were recorded on a Varian Mercury 300 or JEOL JNM-500 spectrometer. The peaks were referenced to $\mathrm{CHCl}_{3}(\delta 7.26)$ in the CDCl_{3} solvent or $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{4}$ ($\delta 5.91$) in the $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ solvent for ${ }^{1} \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ ($\delta 74.2$) for ${ }^{13} \mathrm{C}$. Gel permeation chromatography (GPC) measurement was performed at $152^{\circ} \mathrm{C}$ on a TOSOH HPLC-8121GPC/HT equipped with a FT-IR detector, using orthodichlorobenzene as eluent.

1. Monomer Synthesis

1) 4-Butenylcyclohexane (I-2)

To a $100-\mathrm{mL}$ two-necked round-bottomed flask containing allyl bromide (6.1 mL , $70.6 \mathrm{mmol})$ and dry ether $(11.3 \mathrm{~mL})$ was added ether solution $(22.5 \mathrm{~mL})$ of cyclohexylmagnesium bromide (70.6 mmol), prepared from cyclohexylmethyl bromide ($12.5 \mathrm{~g}, 70.6 \mathrm{mmol}$) and magnesium (1.76 g), dropwise over a period of 40 min at $0^{\circ} \mathrm{C}$. After the reaction mixture was refluxed for $2 \mathrm{~h}, 1 \mathrm{M} \mathrm{HCl}(1.7 \mathrm{~mL})$ and water (20 mL) was slowly added. The organic phase was extracted with ether, washed with water and brine, and was dried over MgSO_{4}. Volatile fraction was evaporated and the residue was distilled to afford butenylcyclohexane as colorless liquid (4.06 g, 41.6\%, b.p. 176.5 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Hg}_{\mathrm{g}}\right), 4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 2.06(\mathrm{~m}, 2 \mathrm{H}$, H_{f}), $1.69\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\left(\right.\right.$ equatrial), H_{b} (equatrial), H_{C} (equatrial)), $1.26\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ (axial), $\mathrm{H}_{\mathrm{b}}($ axial $\left.), \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}\right), 0.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{C}}(\right.$ axial $)$).

5-Pentenylcyclohexane (I-3) and 11-undecenylcyclohexane (I-9) were synthesized similarly by the reaction of cyclohexylmagnesium bromide and 5-
bromopentene and 11-bromoundecene, respectively.
5-Pentenylcyclohexane (I-3): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{h}}\right), 4.95$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{i}}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{g}}\right), 1.68$ and 1.5-0.8 (m, 17H, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{f}}\right)$.

11-Undecenylcyclohexane (I-9): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{o}}\right)$, $4.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{n}}\right), 2.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{m}}\right), 1.67$ and 1.5-0.8(m, 27H, $\left.\mathrm{H}_{\mathrm{a}}-\mathrm{H}_{\mathrm{l}}\right)$.

2) Polymerization of alkenylcyclohexanes

Typically, to a $25-\mathrm{mL}$ Schlenk flask containing a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (1.5 mL) of Pd complex 1 ($0.010 \mathrm{mmol}, 6.6 \mathrm{mg}$) was added NaBARF ($0.012 \mathrm{mmol}, 10.6 \mathrm{mg}$) under Ar. After stirring for several minutes, allylcyclohexane ($\mathbf{I}-\mathbf{1}, 0.37 \mathrm{~g}, 3.0 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature. The polymer precipitates in a few minutes. After $20-\mathrm{min}$ reaction, the reaction mixture was poured into large amount of dichloromethane (ca. 50 mL). A solid formed was collected and dried in vacuo at $25{ }^{\circ} \mathrm{C}$ to give poly-I-1. ($0.32 \mathrm{~g}, 86 \%$ yield, $M_{\mathrm{n}}=18000, M_{\mathrm{W}} / M_{\mathrm{n}}=2.48$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$): $\delta 1.71\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right), 1.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{b}}\right), 1.15\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{a}}\right.$ and $\left.\mathrm{H}_{\mathrm{d}}\right)$, $0.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta 38.3\left(\mathrm{C}_{\mathrm{b}}\right), 38.1\left(\mathrm{C}_{\mathrm{a}}\right), 33.8$ $\left(C_{C}\right), 24.4\left(C_{d}\right)$.

Other alkenylcyclohexanes are polymerized similarly.

Poly-I-0: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta 38.6\left(\mathrm{C}_{b}\right), 35.0\left(\mathrm{C}_{\mathrm{a}}\right), 33.8\left(\mathrm{C}_{\mathrm{C}}\right)$.

Poly-I-2: ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta 38.3\left(\mathrm{C}_{\mathrm{b}}\right), 37.7\left(\mathrm{C}_{\mathrm{a}}\right), 33.8\left(\mathrm{C}_{\mathrm{C}}\right)$, $27.5\left(C_{d}\right)$.

Poly-I-3: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$): $\delta 1.71\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right), 1.27$ and $1.16(\mathrm{~s}, 12 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}\right), 0.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta 38.3\left(\mathrm{C}_{\mathrm{b}}\right)$, $37.7\left(\mathrm{C}_{\mathrm{a}}\right), 33.8\left(\mathrm{C}_{\mathrm{c}}\right), 30.6\left(\mathrm{C}_{\mathrm{e}}\right), 27.1\left(\mathrm{C}_{\mathrm{d}}\right)$.

Poly-I-9: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$): $\delta 1.71\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right), 1.27$ and $1.16(\mathrm{~s}, 20 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{d}}, \mathrm{H}_{\mathrm{e}}, \mathrm{H}_{\mathrm{f}}\right), 0.88\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{C}}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right): \delta 38.3\left(\mathrm{C}_{\mathrm{b}}\right)$, $37.7\left(\mathrm{C}_{\mathrm{a}}\right), 33.9\left(\mathrm{C}_{\mathrm{C}}\right), 30.2\left(\mathrm{C}_{\mathrm{e}}\right), 29.8\left(\mathrm{C}_{\mathrm{f}}\right), 27.0\left(\mathrm{C}_{\mathrm{d}}\right)$.

For kinetic study, the above polymerization was conducted at $0^{\circ} \mathrm{C}$ in the presence of naphthalene as inner standard. The portion of the reaction mixture was periodically taken out from the flask and subjected to ${ }^{1} \mathrm{H}$ NMR to determine conversion of I-1.

References.

1. van Asselt, R.; Elsevier, C. J.; Smeets, W. J. J.; Spek, A. L.; Benedix, R. Recl. Trav. Chim. Pays-Bas. 1994, 113, 88.
2. (a) Johnson, L. K.; Killian, C. M.; Brookhart, M.; J. Am. Chem. Soc. 1995, 117, 6414. (b) Rulke, R. E.; Delis, J. G. P.; Groot, A. M.; Elsevier, C. J.; van Leeuwen, P. W. N. M.; Vrieze, K.; Goubitz, K.; Schenk, H. J. Organomet. Chem. 1996, 508, 109. (c) Johnson, L. K.; Killian, C. M.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 267. (d) Killian, C. M.; Temple, D. J.; Johnson, L. K.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 11664. 3. (a) Buschmann, W. E.; Miller, J. S. Chem. Eur. J. 1998, 4, 1731. (b) Brookhart, M.; Grant, B.; Volpe Jr., A. F. Organometallics 1992, 11, 3920. (c) Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. Bull. Chem. Soc. Jpn. 1984, 57, 2600.

Figure S-1. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right.$ at $130^{\circ} \mathrm{C}$) of (i) poly-I-0, (ii) poly-I-1, (iii) poly-I-3, and (iv) poly-I-9. Ratios in parentheses corresponds to the initial monomer-to-Pd molar ratio of the polymerization reaction.

Figure S-3. Relationship between length of oligomethylene spacers (n) and melting point of poly-I-n.

Figure S-4. Zeroth-order plots of the polymerization of I-0 (triangle), I-1 (cirlce), and $\mathrm{I}-3$ (square) by $\mathbf{1} / \mathrm{NaBARF}$ at $0^{\circ} \mathrm{C}\left([1]_{0}=2.0 \mathrm{mM},[\mathrm{I}-\mathrm{m}]_{0}=0.20 \mathrm{M}\right)$.

