Supporting Information for

Visualising diastereomeric interactions of chiral amine-chiral copper Salen adducts by EPR spectroscopy and DFT.
Damien M. Murphy, ${ }^{1}$ Ignacio Caretti, ${ }^{2}$ Emma Carter, ${ }^{1}$ Ian A. Fallis, ${ }^{1}$
Marcus C. Göbel, ${ }^{1}$ James Landon, ${ }^{1}$ Sabine Van Doorslaer, ${ }^{2}$ David J. Willock, ${ }^{1}$
${ }^{1}$ School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK and ${ }^{2}$ SIBAC laboratory - Department of Physics, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.

TABLE OF CONTENTS

PAGE
(1) Further Experimental Details. S2
(2) X-band EPR spectra of $[\mathrm{Cu}(2)]$ in MBA. S4
(3) Determination coordination number of MBA molecules S5
(4) Supporting ${ }^{1} \mathrm{H}$ and ${ }^{14} \mathrm{~N} \mathrm{CW}$ and Davies ENDOR spectra S8
(5) HYSCORE spectra S17
(6) Additional DFT details S18

(1) Further Experimental Details:

Preparation of samples for the EPR measurements

X-/Q-band CW-EPR/ENDOR: For CW-EPR/ENDOR measurements, a 1 ml volumetric stock solution of $[\mathrm{Cu}(\mathbf{1 , 2})](0.100 \mathrm{~g}, 0.16 \mathrm{mmol})$ in dichloromethane was prepared and $200 \mu \mathrm{l}$ (Hamilton glass microsyringes) aliquots of this solution were placed in 2 ml vials. The vials were placed in a heating block at $50^{\circ} \mathrm{C}$ and evaporated to dryness under a slow stream of nitrogen to afford $[\mathrm{Cu}(\mathbf{1 , 2})]$ as a purple glass. The vials were allowed to cool and to each $115 \mu \mathrm{l}$ of dichloromethane and $115 \mu \mathrm{l}$ of toluene was added to afford a high quality frozen solution. A number of additional EPR experiments were also performed (under similar conditions) using racemic (or enantiomeric R-, S-) methylbenzylamine (MBA). In the presence of amine, the parent complex was dissolved in $100 \mu \mathrm{l}$ of dichloromethane and $100 \mu \mathrm{l}$ of amine, with a small amount $(30 \mu \mathrm{~L})$ of toluene added to aid glass formation. The sample volume used in X-band EPR measurements was $150 \mu \mathrm{~L}$, whereas $20 \mu \mathrm{~L}$ sample volume was used in Q-band ENDOR measurements.

W-band CW and pulsed EPR: First, a 32 mM stock solution was prepared by dissolving the R, R or S, S form of the copper complex under study $(\mathrm{Cu}[\mathbf{1}]$ or $\mathrm{Cu}[2])$ in 1 ml of dichloromethane. Then, $100 \mu \mathrm{l}$ aliquots of this solution were placed in 4 ml vials and evaporated to dryness at $50^{\circ} \mathrm{C}$ under nitrogen atmosphere inside a glovebox. Finally, $230 \mu \mathrm{l}$ of toluene (in case of $\mathrm{Cu}[1]$) or dichloromethane (in case of $\mathrm{Cu}[2]$) was added to the vials. To study amine coordination, $200 \mu \mathrm{l}$ of either $R-, S$ - or racmethylbenzylamine (MBA) was added together with $30 \mu \mathrm{l}$ of toluene.

Scheme S1: Summary of the configurational stereoisomers examined: $\mathbf{R R}=$ $R, R-[\mathrm{Cu}(\mathbf{1 , 2)}], \mathbf{S S}=S, S-[\mathrm{Cu}(\mathbf{1}, \mathbf{2})], \mathbf{R}=R-\mathrm{MBA}, \mathbf{S}=S$-MBA. $[\mathbf{R R}-\mathbf{R}]$ therefore represents the specific complex-amine adduct of $R, R-[\mathrm{Cu}(\mathbf{1 , 2})]+R$-MBA.

(2) X-band EPR spectra of $[\mathrm{Cu}(2)]$ in MBA

Figure S1: X-band CW-EPR spectra recorded at 140 K of (a) the non-coordinated $[\mathrm{Cu}(\mathbf{2})]$ complex in toluene:dichloromethane together with the different $[\mathrm{Cu}(2)]-\mathrm{MBA}$ combinations of (b) rac-rac, (c) $R R-S$, (d) $S S-R$, (e) $R R-R$ and (f) $S S-S$.

The equivalent series of spectra for $[\mathrm{Cu}(\mathbf{1})]$ were given in Fig. 1 of main paper.
(3) Determination of the number of coordinated MBA molecules (n) to $[\mathbf{C u}(1)]$

A series of rac-rac samples, i.e., $[\mathrm{Cu}(\mathbf{1})]+\mathrm{MBA}$, were prepared using a constant concentration of $[\mathrm{Cu}(\mathbf{1})]\left(\mathrm{c}=3.3205 \mathrm{mmol} \mathrm{dm}{ }^{-3}\right)$ and the ratio of MBA was varied from 1 to 20. The solvent used throughout was toluene. The resulting EPR spectra are shown in Fig.S2 below. For comparison, the EPR spectra of $[\mathrm{Cu}(\mathbf{1})]$ recorded in neat toluene (no amine; blue trace) and in an excess of amine (1:1200; red trace) are also shown.

Figure S2: X-band CW-EPR spectra recorded at 130K of rac- $[\mathrm{Cu}(\mathbf{1})]$ dissolved in toluene with increasing concentrations of $r a c$-MBA.

The spectra in Fig.S2 can be seen to progressively shift from the extreme cases of no-amine present, a typical noncoordinated spectrum (blue trace), to the excess amine case giving a coordinated spectrum (red trace). These shifts are most notable in the overshoot region of the spectra. The intervening EPR spectra (with $\mathrm{Cu}: \mathrm{MBA}$ ratios ranging from $1: 1$ to $1: 20$) can then be treated as a linear combination of the blue and red base spectra. These intervening spectra were thus fitted using an algorithm based on combinations of red and blue spectra giving the coefficient x (the ratio of bound

Figure S3: Effect of increasing MBA concentrations on the ratios r and x. to unbound MBA): as expected x increases as the amount of MBA increases (Fig.S3). The data can then be analysed as follows to find n (the number of coordinated MBA's):

The equilibrium for MBA binding can be written as:

$$
\begin{equation*}
R R-[\mathrm{Cu}(\text { ligand })]+n R-\mathrm{MBA} \leftrightarrow\left[R R-\mathrm{Cu}(\text { ligand })(R-\mathrm{MBA})_{\mathrm{n}}\right] \tag{eq.S1}
\end{equation*}
$$

$$
\begin{equation*}
K=\frac{c\left(\left[C u(\text { ligand })(M B A)_{n}\right]\right)}{c([C u(\text { ligand })]) \cdot c(M B A)^{n}} \tag{eq.S2}
\end{equation*}
$$

Where Cu (ligand) represents either $\mathrm{Cu}(\mathbf{1})$ or $\mathrm{Cu}(\mathbf{2})$. If r represents the Cu :MBA ratio and c_{0} the initial concentration, then:

$$
\begin{equation*}
c_{0}(M B A)=r \cdot c_{0}([C u(\text { ligand })]) \tag{eq.S3}
\end{equation*}
$$

and

$$
\begin{equation*}
c\left(\left[C u(\text { ligand })(M B A)_{n}\right]\right)=x \cdot c_{0}([C u(\text { ligand })]) \tag{eq.S4}
\end{equation*}
$$

Therefore, the amount of non-coordinated MBA in the solution is given as:

$$
\begin{align*}
& c(M B A)=c_{0}(M B A)-n \cdot c\left(\left[C u(\text { ligand })(M B A)_{n}\right]\right) \\
& c(M B A)=r \cdot c_{0}([C u(\text { ligand })])-n \cdot x \cdot c_{0}([C u(\text { ligand })]) \tag{eq.S5}\\
& c(M B A)=(r-n \cdot x) \cdot c_{0}([C u(\text { ligand })])
\end{align*}
$$

while the amount of non-coordinated Cu (ligand) is given as:

$$
\begin{align*}
& c([\operatorname{Cu}(\text { ligand })])=c_{0}([\operatorname{Cu}(\text { ligand })])-c\left(\left[\operatorname{Cu}(\text { ligand })(M B A)_{n}\right]\right) \tag{eq.S6}\\
& c([\operatorname{Cu}(\text { ligand })])=(1-x) \cdot c_{0}([\operatorname{Cu}(\text { ligand })])
\end{align*}
$$

Inserting eq.S5 and S6 into S2 gives:

$$
\begin{gather*}
K=\frac{x \cdot c_{0}([\mathrm{Cu}(\text { ligand })])}{(1-x) \cdot c_{0}([\mathrm{Cu}(\text { ligand })]) \cdot\left((r-n \cdot x) \cdot c_{0}([\mathrm{Cu}(\text { ligand })])\right)^{n}} \tag{eq.S7}\\
K=\frac{x}{1-x} \cdot\left((r-n \cdot x) \cdot c_{0}([\mathrm{Cu}(\text { ligand })])\right)^{-n} \tag{eq.S8}\\
\frac{x}{1-x}=K \cdot\left((r-n \cdot x) \cdot c_{0}([C u(\text { ligand })])\right)^{n} \tag{eq.S9}\\
\ln \left(\frac{x}{1-x}\right)=\ln (K)+n \cdot \ln (r-n \cdot x)+n \cdot \ln \left(c_{0}([C u(\text { ligand })])\right) \\
A=\ln (K)+n \cdot \ln \left(c_{0}([C u(\text { ligand })])\right) \\
\ln \left(\frac{x}{1-x}\right)=n \cdot \ln (r-n \cdot x)+A \tag{eq.S10}
\end{gather*}
$$

Since r ranges from 1 to 20 and is much larger than x (ranges from 0 to 1), the following simplification may be implemented:

$$
r \gg x
$$

$$
\begin{equation*}
n \in\{1 ; 2\} \tag{eq.S11}
\end{equation*}
$$

Hence:

$$
\begin{equation*}
\ln \left(\frac{x}{1-x}\right) \approx \min (x-x)+A \tag{eq.S11}
\end{equation*}
$$

Thus a plot of $\ln (x / 1-x)$ against $\ln (r-x)$ should give a straight line of slope n. The resulting graph is shown in Fig. S4 with $n=1.04 \pm 0.15$.

Figure S4: Plot of $\ln (x / 1-x)$ against $\ln (r-x)$ for the determination of n, the number of coordinated MBA molecules in the $[\mathrm{Cu}(1)]$ complex.

Thus we can conclude that only 1 MBA molecule coordinates to $[\mathrm{Cu}(\mathbf{1})]$. A similar treatment was also performed for $[\mathrm{Cu}(2)]$, where $n=1$ was also found. These results are expected for such as bulky square planar Cu -salen complex interacting with a bulky MBA substrate.

(4) Supporting ${ }^{1} \mathrm{H}$ and ${ }^{14} \mathrm{~N}$ ENDOR spectra

Figure S5; Q-band ${ }^{1} \mathrm{H}$ CW-ENDOR spectra (recorded at 10 K) showing the $\mathrm{H}^{\text {imine }}$ couplings of (a) $\mathrm{rac}-[\mathrm{Cu}(\mathbf{1})]$ dissolved in d^{8}-toluene $/ \mathrm{d}^{6}$-dichloromethane, and (b) $S S-R$, (c) $R R-S$, (d) $S S-S$ and (e) $R R-R$. Spectra recorded at $g=g_{\|}=g_{3}$ and $g=g_{\perp}=\left(g_{1}+g_{2}\right) / 2$. For clarity, the central part of the spectra, containing proton couplings from the remaining ligand nuclei and coordinated MBA, have been removed.
(A)

(B)

$\sim \sqrt{e)}$

The equivalent series of spectra for the $[\mathrm{Cu}(\mathbf{2})]$ complex were given in Fig. 4 of the main paper.

Table 1; ${ }^{1} \mathrm{H}$ principal hyperfine values for $R, R-[\mathrm{Cu}(\mathbf{1})]$ and $R, R-[\mathrm{Cu}(\mathbf{2})]$ dissolved in toluene/dichloromethane or MBA. For comparison the ENDOR data for the structurally related $[\mathrm{Cu}($ Salen $)]$ complex ${ }^{(42)}$ is also shown.

${ }^{(a)}$ Two crystallographically distinct sites identified in the single crystal ENDOR spectrum of $[\mathrm{Cu}(\mathrm{Salen})]$. ${ }^{(b)}$ The frozen solution ENDOR spectra of $[\mathrm{Cu}(\mathbf{1 , 2})]$ were recorded either using toluene/dicholomethane or neat MBA. ${ }^{(\mathrm{c})} \boldsymbol{\theta}_{\mathrm{H}}$ is defined as the angle between $\boldsymbol{g}_{\mathrm{z}}$ and $\boldsymbol{A}_{\mathbf{3}}$.

Figure S6; Q-band ${ }^{1} \mathrm{H}$ CW-ENDOR spectra (10K) of rac-[Cu(1)] dissolved in d ${ }^{8}$-toluene/d ${ }^{6}$ dichloromethane, recorded at (a) 1204.6, (b) 1197.7, (c) 1186.2, (d) 1165.7, (e) 1140.5, (f) 1117.7 and $(\mathrm{g}) 1086.8 \mathrm{mT}$. (experimental $=$ solid, simulated $=$ dashed line). Only the strongly coupled protons from the methine and tert-butyl groups are shown in the simulations (the remaining weak/remote ligand protons responsible for the inner intense peaks were not simulated, as the error in their assignment is significant). * = tert-butyl peak, $\square=$ methine peak.

Figure S7; X-band ${ }^{1} \mathrm{H}$ CW-ENDOR spectra (10K) of (a) rac-[Cu(1)] and (b) rac-[Cu(2)] dissolved in d^{8}-toluene/ d^{6}-dichloromethane, recorded at the field position corresponding to g $=\mathrm{g}_{\|}$. The absence of the tert-butyl peak $\left(^{*}\right)$ in $[\mathrm{Cu}(\mathbf{2})]$ is very obvious compared to $[\mathrm{Cu}(\mathbf{1})]$. The methine protons are present in both samples ($\mathbf{\square}$).

These spectra were used in the identification and assignment of the tert-butyl groups in [$\mathrm{Cu}(\mathbf{1})$].

Figure S8: X-band Davies ENDOR spectra (recorded at 10 K) of $\mathrm{rac}-[\mathrm{Cu}(\mathbf{1})]$ dissolved in d^{8} toluene $/ \mathrm{d}^{6}$-dichloromethane, recorded at the field positions (a) 340.0, (b) 333.0, (c) 327.0 , (d) 320.6 , (e) 310.0 , (f) 300.0 and (g) 290.0 mT (experimental $=$ solid, simulated $=$ dashed line). Only the peaks for the methine and tert-butyl protons are included in the simulations.

Figure S9: Q-band $\mathrm{CW}{ }^{1} \mathrm{H}$ ENDOR spectra of $\mathrm{rac}-[\mathrm{Cu}(\mathbf{1})]$ dissolved in rac -MBA recorded at the field positions of (a) 1191.0 (b) 1188.8 (c) 1171.7 (d) 1125.0 and (e) 1069.0 mT (experimental $=$ solid, simulated $=$ dashed line). The peaks labelled ${ }^{*}$ are due to the ligand methine protons. Only the peaks for the amine protons are included in the simulations.

Figure S10; Q-band CW- ${ }^{1} \mathrm{H}$ ENDOR spectra of $\mathrm{rac}-[\mathrm{Cu}(\mathbf{2})]$ dissolved in rac-MBA recorded at (a) 1201.1 , (b) 1191.9 , (c) 1186.2 , (d) 1142.8 , (e) 1101.6 and (f) 1073.1 mT . (experimental $=$ solid, simulated $=$ dashed line $)$.

Figure S11; Q-band ${ }^{1} \mathrm{H}$ CW-ENDOR spectra (recorded at 10 K) of $\mathrm{rac}-[\mathrm{Cu}(1)]$ dissolved in d^{8}-toluene $/ \mathrm{d}^{6}$-dichloromethane, (b) rac- $[\mathrm{Cu}(\mathbf{1})]$ in racemic $\mathrm{d}^{2}-\mathrm{MBA}$, and (c) $\mathrm{rac}-[\mathrm{Cu}(\mathbf{1})]$ in rac-MBA (protic). Spectra recorded at $g=g_{\|}=g_{3}$ and $g=g_{\perp}=\left(g_{1}+g_{2}\right) / 2$.

The $-\mathrm{NH}_{2}$ protons from the coordinated MBA are labelled * in the Figure. These are clearly visible in (c), obtained using protic MBA, but largely absent in (b), recorded using d^{2} deuterated-MBA. (Note; deuteration of MBA by $\mathrm{D}_{2} \mathrm{O}$ does not give 100% exchange, hence the presence of residual MBA- NH_{2} proton peaks in (b).

Figure S12; Q-band ${ }^{14} \mathrm{~N}$ CW-ENDOR spectra of $[\mathrm{Cu}(\mathbf{1})]$ dissolved in (a, b) toluene and (c, d) MBA respectively. The spectra were recorded at the field positions (a,c) $g=g_{\perp}$ and (b,d) $g=$ $g_{\|}$. Solid lines $=$experimental, dashed lines $=$simulated.

Figure S13: Q-band ${ }^{14} \mathrm{~N}$ CW ENDOR spectra of $[\mathrm{Cu}(\mathbf{2})]$ dissolved in (a, b) toluene and (c,d) MBA respectively. The spectra were recorded at the field positions (a,c) $g=$ g_{\perp} and $(\mathrm{b}, \mathrm{d}) g=g_{\|}$. Solid lines $=$experimental, dashed lines $=$simulated.

NOTE: simulations assuming the contributions of both nitrogen nuclei (with the hyperfine tensor in-plane rotated over 90°) are identical to those assuming only one nitrogen, because of the near axiality of the \boldsymbol{g} tensor.

(5) HYSCORE spectra

Figure S14: X-band HYSCORE spectra of $S, S-[\mathrm{Cu}(1)]$ dissolved in (a) toluene, (b) R MBA and (c) pyridine, recorded at 15 K around the $g=g_{\perp}$ field position (340 mT) with $\tau=96 \mathrm{~ns}$ and $\tau=176 \mathrm{~ns}$. (d) Simulation of spectrum (b) showing the weak interaction of the amine ${ }^{14} \mathrm{~N}$ with $[\mathrm{Cu}(\mathbf{1})]$ (see text for parameters).

This Figure (a) shows the low-frequency region of the HYSCORE spectrum of $[\mathrm{Cu}(\mathbf{1})]$ in toluene, recorded at $g=g_{\perp}$. In the low-field area of the spectrum, a ridge due to interactions with the ${ }^{13} \mathrm{C}$ nuclei of ligand (1) is observed $\left({ }^{13} \mathrm{C}\right.$ in natural abundance). The corresponding HYSCORE spectrum of $[\mathrm{Cu}(\mathbf{1})]$ in MBA is shown in (b). Two distinct peaks at $\sim(3.4,4.2) \mathrm{MHz}$ are observed, centred around the ${ }^{13} \mathrm{C}$ Larmor frequency and could thus stem from nearby ${ }^{13} \mathrm{C}$ nuclei in altered arrangement. However, in principle, an appropriate combination of ${ }^{14} \mathrm{~N}$ hyperfine and nuclear quadrupole couplings could also lead to double-quantum cross-peaks at this position. To test this, the HYSCORE spectrum of $[\mathrm{Cu}(\mathbf{1})]$ dissolved in pyridine (Py) was recorded. The sp^{2}-hybridized nitrogen of pyridine is expected to have different nuclear quadrupole values compared to the sp^{3}-hybridized nitrogen of MBA. The resulting HYSCORE spectrum of $[\mathrm{Cu}(\mathbf{1})]$ in pyridine is given in (c). A clear shift of the double-quantum cross peaks, consistent with a larger nuclear quadrupole coupling of the ${ }^{14} \mathrm{~N}$ nucleus, can be seen. The ${ }^{13} \mathrm{C}$ ridge found in (a) is now also visible, where earlier it was masked by the intense cross peaks in (b). The HYSCORE spectrum of $[\mathrm{Cu}(\mathbf{1})]+\mathrm{Py}$ therefore proved that the cross peaks observed for $[\mathrm{Cu}(\mathbf{1})]+\mathrm{MBA}$ are indeed due to the weak interaction with the amine nitrogen. The simulated parameters are given in Table 3.

(6) Additional DFT details

Figure S15: The starting model of $[\mathrm{Cu}(1)]+\mathrm{MBA}$ used in QMMM calculations. a) Space fill atoms at QM level (BHandH), stick atoms at MM level (UFF). b) The torsion angle, φ, used to scan the orientation of MBA relative to the $[\mathrm{Cu}(1)]$ complex; this angle is defined with respect to $\mathbf{O}($ Salen $) \cdots \mathrm{Cu} \cdots \mathbf{N}\left(\mathrm{MBA} \cdots \mathrm{C}^{*}(\mathrm{MBA})\right.$ where the defining atoms are shown as spheres in b).

Thus an angle of $\varphi=0^{\circ}$ is shown in b) where the C^{*} (of MBA) atom is above the O (of Salen) atom. For clarity, the MBA-phenyl ring is shown oriented away from the complex. Clockwise turn is represented as -ve degrees and anticlockwise as +ve degrees.

Figure S16: The relative energy $v s$ torsion angle, φ (see Figure $\mathrm{S} 15 b$ for definition and value of $\varphi=0^{\circ}$) for R-MBA with $R, R-[\mathrm{Cu}(\mathbf{1})]$. For this scan of the torsion angle $\mathrm{Cu} \cdots \mathrm{N}(\mathrm{MBA})$ is constrained to $2.2 \AA$ and each point in the plot represents an optimisation with the additional constraint of torsion angle value. Structures from minima \mathbf{A} and \mathbf{B} were further optimised without constraints to produce the structures given in Figure 5 (main paper).

Full author details for reference (32) are:
[32] Gaussian 03, Revision C.02, Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, Jr. J.A.; Vreven, T.; Kudin, K.N.; Burant, J.C.; Millam, J.M.; Iyengar, S.S.; Tomasi, T.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G.A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, T.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J.E.; Hratchian, H.P.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Ayala, P.Y.; Morokuma, K.; Koth, J.; Salvador, P.; Dannenberg, J.J.; Zakrzewski, V.G.; Dapprich, S.; Daniels, A.D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A.D.; Raghavachari, K.; Foresman, J.B.; Ortiz, J.V.; Cui, Q.; Baboul, A.G.; Clifford, S.; Cioslowski, J.; Stefanov, B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D.J.; Keith, T.; Al-Laham, M.A.; Peng, C.Y.; Nanayakkara, A.; Hallacombe, M.; Gill, P.M.W.; Johnson, B.; Chen, W.; Wong, M.W.; Gonzalez, C. and Pople, J.A.; Gaussian, Inc., Wallingford CT, 2004.

