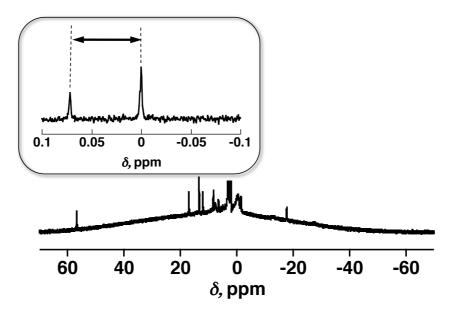
Formation of a Ruthenium(IV)-Oxo Complex by Electron-Transfer Oxidation of a Coordinatively Saturated Ruthenium(II) Complex and Detection of an Oxygen-Rebound Intermediates in C-H Bond Oxygenation

Takahiko Kojima,^{*,†} Kazuya Nakayama,[§] Kenichiro Ikemura,[‡] Takashi Ogura,[‡] and Shunichi Fukuzumi^{*,§,J,Δ}

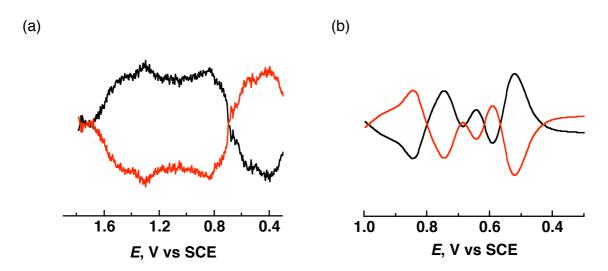
Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8571, Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA, Japan Science and Technology Agency (JST), 2-1 Yamada-oka, Suita, Osaka 565-0871, Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan, and Department of Bioinspired Science, Ewha Womans University, Seoul, South Korea

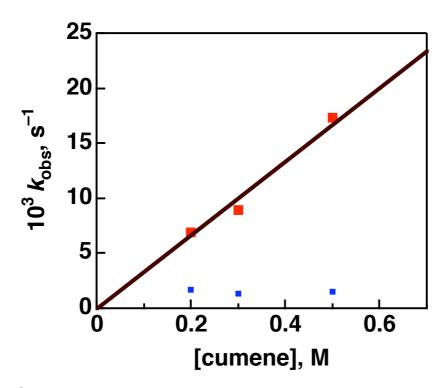
kojima@chem.tsukuba.ac.jp (T. K.) and fukuzumi@chem.eng.osaka-u.ac.jp

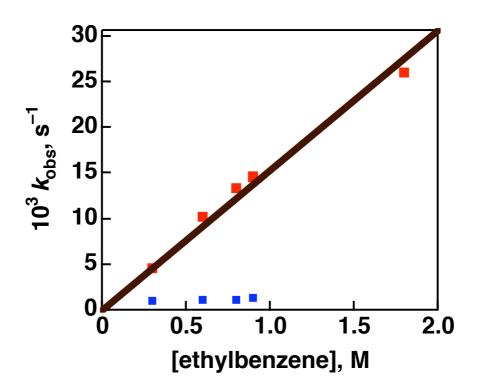
[†] University of Tsukuba

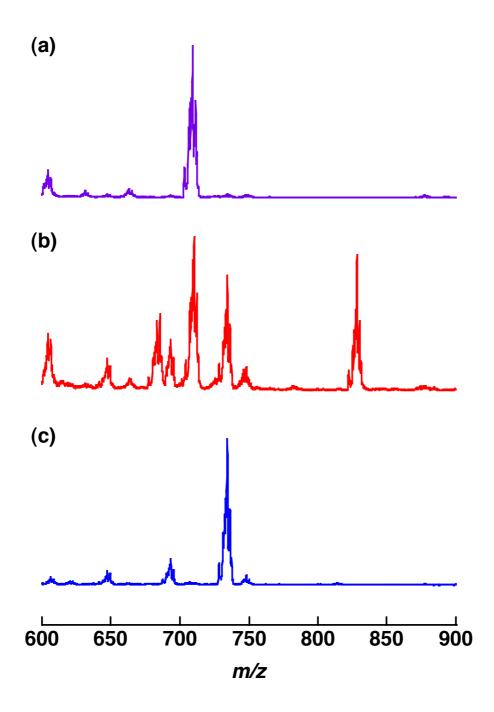

[§] Osaka University

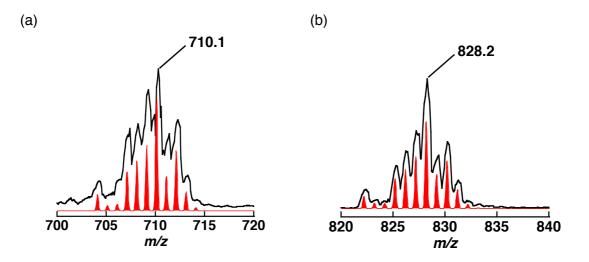
- [‡] University of Hyogo
- ⁹ Ewha Womans University

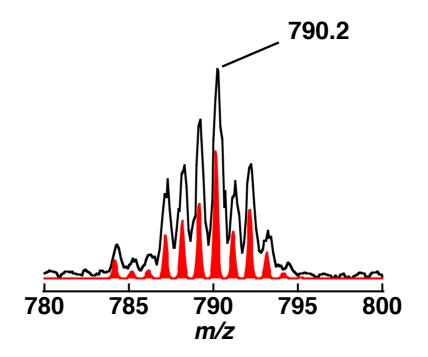

 $^{\Delta}$ ALCA, JST.

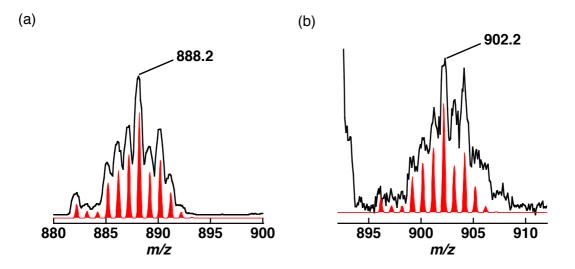

Figure S1. UV–vis spectral change upon addition of CAN (10 μ mol) to an aqueous solution of **1** (0.9 μ mol) in 3 mL of H₂O at pH 2.0. The solid line and dotted line are spectra before and after addition of CAN, respectively.

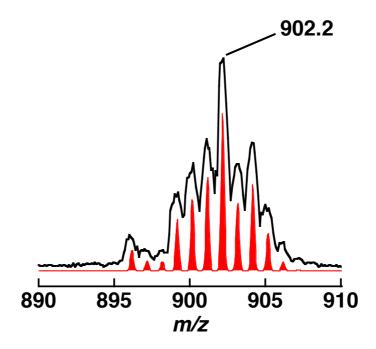

Figure S2. ¹H NMR spectrum of 2 in $(CD_3)_2CO$. Inset: Signals due to TMS for the Evans' method.

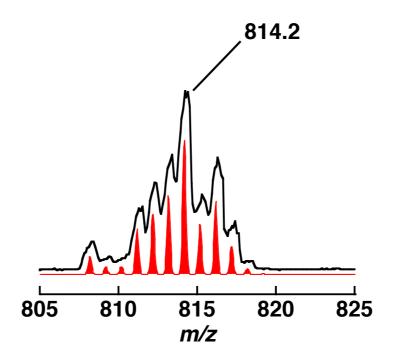

Figure S3. Second harmonic ac voltammograms of 2: (a) in CH_3CN (b) in aqueous Na_2SO_4 (0.1 M) at pH 1 (adjusted by portions of H_2SO_4).

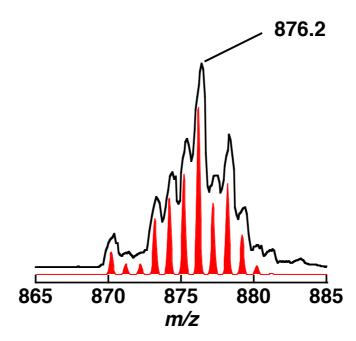

Figure S4. Plots of pseudo-first-order rate constants of reaction of 2 with cumene in CH_3CN at 298 K under O_2 atmosphere vs concentration of cumene: red, the first step; blue, the second step.


Figure S5. Plots of the observed first-order rate constant of the first step (red squares) and the second step (blue squares) in the oxidation of ethylbenzene in CH₃CN at 298 K vs concentration of ethylbenzene.


Figure S6. Time-course of ESI-MS spectra of the reaction mixture of 2 (0.10 mM) and cumene (200 mM) in CH₃CN: (a) 0 min, (b) 15 min, (c) 300 min.


Figure S7. Positive-ion ESI-MS spectra of the mixture of cumene (200 mM) and 2 (0.10 mM) (see also Figure 12): (a) A peak cluster at m/z = 710.1 ascribed to $\{3(^{16}O) - H^+ - 2(PF_6^-)\}^+$; (b) a peak cluster at m/z = 828.2 assigned to $\{4(^{16}O) - H^+ - 2(PF_6^-)\}^+$.


Figure S8. Positive-ion ESI-MS spectrum of the mixture of cyclohexene (120 mM) and **2** (0.10 mM) in CH₃CN: A peak cluster at m/z = 790.2 assigned to $\{[Ru^{III}(OC_6H_9)(TPA)(bpy)](PF_6^-)\}^+$.


Figure S9. Positive-ion ESI-MS spectra of the mixture of DHA (50 mM) and **2** (5.0 mM) in CD₃CN: (a) A peak cluster at m/z 888.2 assigned to $\{[Ru^{III}(OC_{14}H_{11})(TPA)(bpy)](PF_6^-)\}^+;$ (b) a peak cluster at m/z 902.2 ascribed to $\{[Ru^{III}(OC_{14}H_9O)(TPA)(bpy)](PF_6^-)\}^+.$

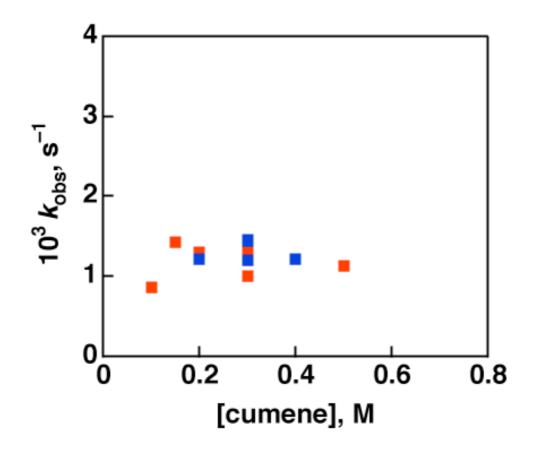

Figure S10. Positive-ion ESI-MS spectrum of the mixture of anthrone (50 mM) and **2** (5.0 mM) in CD₃CN: A peak cluster at m/z = 902.2 assigned to $\{[Ru^{III}(OC_{14}H_9O)(TPA)(bpy)](PF_6^-)\}^+$.

Figure S11. Positive-ion ESI-MS spectrum of the mixture of ethylbenzene (100 mM) and **2** (5.0 mM) in CD₃CN: A peak cluster at m/z = 814.2 assigned to $\{[Ru^{III}(OCCH(CH_3)(C_6H_5))(TPA)(bpy)](PF_6^-)\}^+$.

Figure S12. Positive-ion ESI-MS spectrum of the mixture of diphenylmethane (15 mM) and 2 (5.0 mM) in CD₃CN: A peak cluster at m/z = 876.2 ascribed to $\{[Ru^{III}(OCCH(C_6H_5)_2)(TPA)(bpy)](PF_6^-)\}^+$.

Figure S13. Concentration dependence of first-order rate constants for the second step in the cumene oxygenation by 2 in CH₃CN at 298 K (red, in the absence of D_2O ; blue, in the presence of excess amount of D_2O (2M)).