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APPENDIXES 

Appendix A. Derivation of the Master Equation of a Pure-Death Process 

 

Suppose that a system comprising a population of particulate or discrete entities in a given 

space is to be stochastically modeled as a pure-death process. The random variable 

characterizing this process is denoted by N(t) with realization n; moreover, the intensity of death 

is denoted by n (t)μ . Thus, one of the following two events is considered to occur during time 

interval (t, t t)+ Δ . First, the number of entities decreases by one, which is a death event, with a 

conditional probability of n{[ (t)] t o( t)}μ Δ + Δ . Second, the number of entities changes by a 

number other than one with a conditional probability of o(Δt), which is defined such that 

 0
t

)t(oim
0t

=
Δ
Δ

→Δ
  (A.1) 

Naturally, the conditional probability of no change in the number of entities during this time 

interval is n(1 {[ (t)] t o( t)})− μ Δ + Δ . 

 

Let the probability that exactly n entities are present at time t be denoted as 

np (t) Pr[N(t) n]= = , where ( )0 0n n , n 1, ..., 2,1, 0∈ − ; n0 is the initial number of entities in the 

system. For the two adjacent time intervals, (0, t) and (t, t t)+ Δ , the occurrence of exactly n 

entities being present at time (t t)+ Δ  are realized according to the following mutually exclusive 

events; see Figure A.1. 
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Figure A.1. Probability balance for the pure-death process involving the mutually 

exclusive events in the time interval, (t, t + Δt). 
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(1) With a probability of n 1 n 1{[ (t)] t o( t)}p (t)+ +μ Δ + Δ , the number of entities will decrease by 

one during time interval (t, t t)+ Δ , provided that exactly (n 1)+  entities are present at time t. 

(2) With a probability of o(Δt), the number of entities will change by exactly j entities during 

time interval (t, t t)+ Δ , provided that exactly (n j)−  entities are present at time t, where 

02 j n≤ ≤ . 

(3) With a probability of n n(1 {[ (t)] t o( t)})p (t)− μ Δ + Δ , the number of entities will remain 

unchanged during time interval (t, t t)+ Δ , provided that n entities are present at time t. 

 

Summing all these probabilities and consolidating all quantities of o(Δt) yield 

 n n 1 n 1 n np (t t) {[ (t)] t}p (t) {1 [ (t)] t}p (t) o( t)+ ++ Δ = μ Δ + − μ Δ + Δ   (A.2) 

Rearranging this equation, dividing it by Δt, and taking the limit as Δt → 0 give rise to the 

master equation of the pure-death process as{{19 Oppenheim, I. 1977; 27 van Kampen, N. G. 1992 }} 

 n n 1 n 1 n n
d p (t) (t) p (t) (t) p (t)
dt + += μ − μ   (A.3) 

This is Eq. (3) in the text. For convenience, the intensity function, n (t)μ , of the pure-death 

process of interest, Eq. (2) in the text, is rewritten as 

 2
n

dn(t) n
dt

μ = − = α   (A.4) 



 S-5 

Inserting the right-hand side of the above expression into the right-hand side of the master 

equation, Eq. (A.3), gives rise to 

 ( )2 2
n n 1 n

d p (t) n 1 p (t) n p (t)
dt +

⎡ ⎤ ⎡ ⎤= α + − α⎣ ⎦⎣ ⎦ ,    n = n0, n0 – 1, …, 2, 1, 0  (A.5) 

This is Eq. (5) in the text. 
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Appendix B. Expansion of the Master Equation 

 

The master equation of the process, Eq. (3) in the text, is 

)t(p)t(p)t(p
dt
d

nn1n1nn μ−μ= ++ ,    n = n0, n0 – 1, …, 2, 1, 0   (B-1)  

The one-step operator, E, is defined by its effect on an arbitrary function, f(n), as follows:18 

f (n) f (n 1)= +E    and   1f (n ) f (n 1)− = −E   

With the aid of this operator, Eq. (B-1) is reduced to 

( )n n n
d p (t) 1 p (t)
dt

= − μE ,    n = n0, n0 – 1, …, 2, 1, 0   (B-2)  

The intensity of death, μn, in this expression is given in Eq. (2) in the text as 

2
n

dn(t) n
dt

μ = − = α    (B-3) 

where α is a proportionality constant. Thus, the master equation, Eq. (B-2), can be rewritten as 

( )( )2
n n

d p (t) 1 n p (t)
dt

= − αE  (B-4) 

It is expected that at later time t, the probability distribution of N(t), pn(t) or p(n;t), exhibits a 

sharp peak at some position of order Ω, while its width will be of order Ω½ (see Figure A-1); the 

symbol, Ω, is the system’s size, which is n0 in the current work. To formulate this formally, N(t) 

is expressed as the sum of the macroscopic term, Ωϕ(t), and the fluctuation term, Ω½Ξ(t). Thus, 

1/ 2
0 0N(t) n (t) n (t)= ϕ + Ξ  (B-5)  

whose realization is 

1/ 2
0 0n n (t) n= ϕ + ξ    (B-6)  
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The function, ϕ(t), in these two equations is adjusted so as to follow the motion of the peak in 

time. Accordingly, p(n;t) is transformed into function π(ξ;t) depending on the realization of Ξ(t), 

ξ, as 

p(n; t) Pr[N(t) n] Pr[ (t) ] ( ; t)= = = Ξ = ξ = π ξ  (B-7)  

From Eq. (B-6), we have 

1/ 2 1/ 2
0 0n(n ) n (t)−ξ = − ϕ  (B-8)  

With n fixed, the time derivative of the above expression is given by 

1/ 2
0

d dn
dt dt
ξ ϕ

= −  (B-9)  

Differentiating Eq. (B-7) with respect to time t leads to 

d dp(n; t)
dt t dt

∂π ∂π ξ⎛ ⎞= + ⎜ ⎟∂ ∂ξ ⎝ ⎠
 (B-10)  

By inserting Eq. (B-9) into this equation, we obtain 

1/ 2
0

d dp(n; t) n
dt t dt

∂π ϕ ∂π⎛ ⎞= − ⎜ ⎟∂ ∂ξ⎝ ⎠
 (B-11)  

In light of the one-step operator, E, we obtain, from Eq. (B-6) 

1/ 2
0 0

1/ 2 1/ 2 1/ 2
0 0 0 0

1/ 2 1/ 2
0 0 0

n n 1 [n (t) n ] 1

[n (t) n ] n n

n (t) n ( n )

−

−

= + = ϕ + ξ +

= ϕ + ξ +

= ϕ + ξ +

E

  

In other words, E transforms n into (n+1), and therefore, ξ into ( 1/ 2
0n−ξ + ); as a result, from Eq. 

(B-7), 

p(n; t) p(n 1; t)= +E   

or 

1/ 2
0( ; t) ( n ; t)−π ξ = π ξ +E  (B-12)   
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The Taylor expansion of 1/ 2
0( n ; t)−π ξ +  about ξ, is given by 

2
1/2 1/2 1/2 2

0 0 0 2

1( n ;t) ( ; t) n ( ; t) (n ) ( ; t) ...
2!

− − −∂ ∂
π ξ+ = π ξ + π ξ + π ξ +

∂ξ ∂ξ
  

or 

2
1/2 1/2 1

0 0 0 2

1( n ;t) 1 n n ... ( ; t)
2

− − −⎛ ⎞∂ ∂
π ξ+ = + + + π ξ⎜ ⎟∂ξ ∂ξ⎝ ⎠

 (B-13)  

In view of Eq. (B-12), the above expression can be transformed to 

2
1/2 1

0 0 2

1p(n 1;t) p(n;t) 1 n n ... p(n;t)
2

− −⎛ ⎞∂ ∂
+ = = + + +⎜ ⎟∂ξ ∂ξ⎝ ⎠

E   

Thus, we have 

2
1/2 1

0 0 2

11 n n ...
2

− −∂ ∂
= + + +

∂ξ ∂ξ
E  (B-14)  

Substituting Eqs. (B-6), (B-7), (B-11), and (B-13) into the master equation, Eq. (B-2), leads to 

1/ 2
0

dn
t dt

∂π ϕ ∂π⎛ ⎞− ⎜ ⎟∂ ∂ξ⎝ ⎠
 

2
1/2 1 1/2 2

0 0 0 0 02

1n n n ... n ( n )
2

− − −⎛ ⎞∂ ∂ ⎡ ⎤= + + α ϕ+ ξ π⎜ ⎟⎣ ⎦∂ξ ∂ξ⎝ ⎠
  (B-15) 

Absorbing the system’s size, n0, into the time variable, t, as 

0n t = γ    

and truncating the terms after the second-order derivative for large n0 give 

1/ 2
0

dn
d

∂π ϕ ∂π⎛ ⎞− ⎜ ⎟∂γ τ ∂ξ⎝ ⎠
 

2
1/2 1 1/2 2

0 0 0 02

1n n n ( n )
2

− − −⎛ ⎞∂ ∂ ⎡ ⎤= + α ϕ+ ξ π⎜ ⎟⎣ ⎦∂ξ ∂ξ⎝ ⎠
  (B-16) 
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By expanding the right-hand side of this equation and collecting the resultant terms of orders 

1/ 2
0n  and 0

0n  separately, we have 

( ) ( )

1/ 2
0

2
0 2 1/ 2 2
0 02

dn
d

1n 2 n
2

∂π ϕ ∂π⎛ ⎞− ⎜ ⎟∂γ τ ∂ξ⎝ ⎠

⎡ ⎤∂ ∂ π ∂π
= αϕ ξπ + αϕ − −αϕ⎢ ⎥∂ξ ∂ξ ∂ξ⎣ ⎦

     
 

( ) ( ) ( )
2 2

1/ 2 2 1/ 2 2
0 02 2

1n n
2

− −⎡ ⎤∂ ∂ ∂
+ αϕ ξπ + α ξ π + α ξ π⎢ ⎥∂ξ ∂ξ ∂ξ⎣ ⎦

  (B-17) 

Comparing both sides of the above expression gives rise to 

2d
d
ϕ

=−αϕ
γ

 (B-18) 

and 

( )
2

2
2

12
2

∂π ∂ ∂ π
= αϕ ξπ + αϕ

∂γ ∂ξ ∂ξ
  (B-19) 

Of these two equations, the former is the macroscopic equation governing the overall behavior of 

the process, and the latter is a linear Fokker-Plank equation governing the fluctuations of the 

process around the macroscopic values and whose coefficients depend on t through ϕ(t). 
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≈ 

p(n;0) 

p(n;t) 

p(n; ∞) 

Ωϕ(0) Ωϕ(t) Ωϕ(∞) 

Ω½ξ 

 

Figure B-1. Temporal evolution of the probability distribution, p(n;t). 
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Appendix C. Derivation of Mean and Variance 

 

Random variable N(t) in terms of ϕ(t) is given by Eq. (B-5) as 

1/ 2
0 0N(t) n (t) n (t)= ϕ + Ξ  (C-1)  

whose realization, n, is given by Eq. (B-6) as 

1/ 2
0 0n n (t) n= ϕ + ξ   (C-2)  

At t = 0, n = n0 and ( 1/ 2
0n ξ ) = 0, i.e., no fluctuations around n0 exist. Hence, from Eq. (C-2), 

(0) 1ϕ =   (C-3)  

For convenience, Eq. (B-18) for ϕ(t) is rewritten below. 

2d
d
ϕ

=−αϕ
γ

  (C-4) 

where 0n tγ = . Integrating this equation with the initial condition given by Eq. (C-3) leads to 

1( )
1

ϕ γ =
αγ+

  

In terms of t, this equation can be rewritten as 

( )0

1(t)
n t 1

ϕ =
α +

 (C-5)  

 

For any arbitrary functions f and g which take integers, the following expression holds (van 

Kampen, 1992) 

0 0n 1 n
1

n 0 n 1
[g(n) f (n)] [f (n) g(n)]

−
−

= =
=∑ ∑E E   (C-6)  

For the case where 

g(–1) = f(0) = g(n0) = g(n0 + 1) = 0, 

 



 S-12 

Equation (C-6) becomes 

0 0n n
1

n 0 n 0
[g(n) f (n)] [f (n) g(n)]−

= =
=∑ ∑E E   (C-7)  

When functions f and g take real numbers, the central-difference approximation gives 

f (x x) f (x)f (x)
x x
∂ + Δ −

≈
∂ Δ

  (C-8)  

and 

2

2 2

f (x x) 2f (x) f (x x)f (x)
x ( x)
∂ + Δ − + − Δ

≈
∂ Δ

  (C-9)  

Hence, 

x
g(x) f (x)

x
∂⎡ ⎤

∑ ⎢ ⎥∂⎣ ⎦
 

x

f (x x) f (x)g(x)
x

+ Δ −⎡ ⎤≈ ∑ ⎢ ⎥Δ⎣ ⎦
 

[ ] [ ]{ }
x x

1 g(x)f (x x) g(x)f (x)
x

≈ + Δ −∑ ∑
Δ

  (C-10)  

In view of the property of the one-step operator, Eq. (C-7), the right-hand side of the above 

expression can be transformed to 

[ ] [ ]{ }
x x

1 g(x)f (x x) g(x)f (x)
x

+ Δ −∑ ∑
Δ

 

[ ] [ ]{ }
x x

1 g(x) f (x) g(x)f (x)
x

= −∑ ∑
Δ

E  

[ ]{ }1

x x

1 f (x) g(x) g(x)f (x)
x

−⎡ ⎤= −∑ ∑⎣ ⎦Δ
E  

[ ] [ ]{ }
x x

1 f (x)g(x x) f (x)g(x)
x

= − Δ −∑ ∑
Δ
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x

g(x x) g(x)f (x)
x

− Δ −⎡ ⎤= ∑ ⎢ ⎥Δ⎣ ⎦
 

x

g(x) g(x x)f (x)
x

− − Δ⎡ ⎤= −∑ ⎢ ⎥Δ⎣ ⎦
 

x
f (x) g(x)

x
∂⎡ ⎤≈ −∑ ⎢ ⎥∂⎣ ⎦

  (C-11)  

Thus, 

x x
g(x) f (x) f (x) g(x)

x x
∂ ∂⎡ ⎤ ⎡ ⎤= −∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

  (C-12)   

Similarly, 

2

2
x

g(x) f (x)
x

⎡ ⎤∂
∑ ⎢ ⎥∂⎣ ⎦

 

2
x

f (x x) 2f (x) f (x x)g(x)
( x)

⎡ ⎤+ Δ − + − Δ
≈ ∑ ⎢ ⎥Δ⎣ ⎦

 

[ ] [ ] [ ]{ }2
x x x

1 g(x)f (x x) 2 g(x)f (x) g(x)f (x x)
( x)

≈ + Δ − + − Δ∑ ∑ ∑
Δ

  (C-13)  

In light of Eq. (C-7), the right-hand side of the above expression can be rewritten as 

[ ] [ ] [ ]{ }2
x x x

1 g(x)f (x x) 2 g(x)f (x) g(x)f (x x)
( x)

+ Δ − + − Δ∑ ∑ ∑
Δ

  

[ ] [ ]{ }1
2

x x x

1 g(x) f (x) 2 g(x)f (x) g(x) f (x)
( x)

−⎡ ⎤= − +∑ ∑ ∑ ⎣ ⎦Δ
E E    

[ ] [ ]{ }1
2

x x x

1 f (x) g(x) 2 g(x)f (x) f (x) g(x)
( x)

−⎡ ⎤= − +∑ ∑ ∑⎣ ⎦Δ
E E    

[ ] [ ] [ ]{ }2
x x x

1 f (x)g(x x) 2 f (x)g(x) f (x)g(x x)
( x)

= − Δ − + + Δ∑ ∑ ∑
Δ

   

2
x

g(x x) 2g(x) g(x x)f (x)
( x)

⎡ ⎤+ Δ − + − Δ
= ∑ ⎢ ⎥Δ⎣ ⎦
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2

2
x

f (x) g(x)
x

⎡ ⎤∂
≈ ∑ ⎢ ⎥∂⎣ ⎦

  

Thus,  

2 2

2 2
x x

g(x) f (x) f (x) g(x)
x x

⎡ ⎤ ⎡ ⎤∂ ∂
=∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

  (C-14)   

 

The linear Fokker-Plank equation governing the fluctuations of the process around the 

macroscopic values is given by Eq. (B-19) as 

( )
2

2
2

12
2

∂π ∂ ∂ π
= αϕ ξπ + αϕ

∂γ ∂ξ ∂ξ
  (C-15)  

Because γ = n0t, this equation can be rewritten as 

( ) ( ) ( )
2

2
0 0 2

12 n n
t 2

∂π ∂ ∂ π
= α ϕ ξπ + α ϕ

∂ ∂ξ ∂ξ
 (C-16) 

Multiplying both sides of the above equation by ξ and summing over all values of ξ yield 

( ) ( )
2

2
0 0 2

( ) 12 n n
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂π ∂ ξπ ∂ π
ξ = α ϕ ξ + α ϕ ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (C-17) 

By virtue of Eqs. (C-12) and (C-14), the right-hand side of this expression can be transformed to 

( ) ( )
2

2
0 0 2

12 n n
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂π ∂ξ ∂ ξ
ξ = α ϕ − ξπ + α ϕ π∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

   

or 

( )02 n
tξ ξ

∂π ⎡ ⎤⎡ ⎤ξ = − α ϕ ξπ∑ ∑⎣ ⎦ ⎢ ⎥∂ ⎣ ⎦
  (C-18)  

The first moment of random variable Ξ(t), i.e., E[Ξ(t)], is defined as 

E[ (t)] ( ; t)
ξ

Ξ = ξπ ξ∑  
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or 

E[ (t)]
ξ

Ξ = ξπ∑   (C-19)  

and thus, 

d E[ (t)]
dt tξ

∂π
Ξ = ξ∑

∂
  (C-20)  

In light of Eqs. (C-19) and (C-20), Eq. (C-18) reduces to 

( )0
d E[ (t)] 2 n E[ (t)]
dt

⎡ ⎤Ξ = − α ϕ Ξ⎣ ⎦   (C-21)  

Inserting Eq. (C-5) for ϕ(t) into this equation and integrating the resulting expression yield 

( )
1

2
0

cE[ (t)]
n t 1

Ξ =
⎡ ⎤α +⎣ ⎦

  (C-22)  

From the initial conditions for the transformed probability distribution, π(ξ;t), 

1 if 0
( ;0)

0 elsewhere

ξ =⎧
⎪π ξ = ⎨
⎪
⎩

  (C-23)  

and the definition of E[Ξ(t)], as given by Eq. (C-19), we have 

E[ (0)] 0Ξ =   (C-24)  

thereby indicating that 

1c 0=   (C-25)  

Hence, 

E[ (t)] 0Ξ =   (C-26)  
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Similarly, multiplying both sides of Eq. (C-16) by ξ2 and summing over all values of ξ yield 

( ) ( )
2

2 2 2 2
0 0 2

( ) 12 n n
t 2ξ ξ ξ

⎡ ⎤⎡ ⎤∂π ∂ ξπ ∂ π
ξ = α ϕ ξ + α ϕ ξ∑ ∑ ∑⎢ ⎥⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  (C-27)  

By virtue of Eqs. (C-12) and (C-14), the right-hand side of the above expression can be 

transformed to 

( ) ( )
2 2 2

2 2
0 0 2

12 n n
t 2ξ ξ ξ

⎡ ⎤ ⎡ ⎤∂π ∂ξ ∂ ξ
ξ = α ϕ − ξπ + α ϕ π∑ ∑ ∑⎢ ⎥ ⎢ ⎥∂ ∂ξ ∂ξ⎣ ⎦ ⎣ ⎦

  

or 

( ) ( )2 2 2
0 04 n n

tξ ξ ξ

∂π ⎡ ⎤ ⎡ ⎤ξ = − α ϕ ξ π + α ϕ π∑ ∑ ∑⎢ ⎥ ⎢ ⎥∂ ⎣ ⎦ ⎣ ⎦
  (C-28)  

For the transformed probability distribution, π(ξ;t), the following property must hold 

( ; t) 1
ξ

π ξ =∑    

or 

1
ξ

π =∑   (C-29)  

In view of this equation, Eq. (C-28) can be rewritten as 

( ) ( )2 2 2
0 04 n n

tξ ξ

∂π ⎡ ⎤ξ = − α ϕ ξ π + α ϕ∑ ∑⎢ ⎥∂ ⎣ ⎦
  (C-30)  

The second moment of random variable Ξ(t), i.e., E[Ξ2(t)], is defined as 

2 2E[ (t)] ( ; t)
ξ

Ξ = ξ π ξ∑   

or 

2 2E[ (t)]
ξ

Ξ = ξ π∑   (C-31)  
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and thus, 

2 2d E[ (t)]
dt tξ

∂π
Ξ = ξ∑

∂
  (C-32)  

In view of Eqs. (C-31) and (C-32), Eq. (C-30) reduces to 

( ) ( )2 2 2
0 0

d E[ (t)] 4 n E[ (t)] n
dt

Ξ = − α ϕ Ξ + α ϕ     

or 

( ) ( )2 2 2
0 0

d E[ (t)] 4 n E[ (t)] n
dt

Ξ + α ϕ Ξ = α ϕ   (C-33) 

By substituting Eq. (C-5) for ϕ(t) into this equation and integrating the resulting expression, 

( ) ( )
2 2

4
0 0

c1E[ (t)]
3 n t 1 n t 1

Ξ = +
⎡ ⎤α + ⎡ ⎤α +⎣ ⎦ ⎣ ⎦  (C-34)  

 

From the aforementioned initial conditions for the transformed probability distribution, π(ξ;t), 

Eq. B-23, and the definition of E[Ξ2(t)], Eq. (C-31), we have 

2E[ (0)] 0Ξ = , (C-35) 

thereby indicating that 

2
1c
3

= −   (C-36)  

Hence, 

( ) ( )
2

4
0 0

1 1 1E[ (t)]
3 n t 1 n t 1

⎧ ⎫⎪ ⎪Ξ = −⎨ ⎬
⎡ ⎤α + ⎡ ⎤α +⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (C-37) 
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The mean, E[N(t)] or m(t), is the expected value (first moment) of random variable N(t). From 

Eq. (C-1), m(t) can be obtained as 

1/ 2
0 0m(t) E[N(t)] n (t) n E[ (t)]= = ϕ + Ξ  (C-38)  

Substituting Eqs. (C-5) and (C-26) into the above expression gives rise to 

( )
0

0

nm(t)
n t 1

=
α +

 (C-39)  

This is Eq. (7) in the text. Note that (αn0) is a constant. By lumping [(αn0)t] as dimensionless 

time τ, we have  

0nm( )
1

τ =
τ +

 (C-40)  

The normalized, or dimensionless, form of the mean, m( )τ , is obtained from this expression as 

0

m( ) 1m( )
n 1

τ
τ = =

τ +
 (C-41)  

This is Eq. (9) in the text. 

 

The variance, Var[N(t)] or σ2(t), is the second moment of N(t) about the mean, m(t). Thus, 

2 2 2 2(t) Var[N(t)] E[(N(t) E[N(t)]) ] E[N (t)] m (t)σ = = − = −   (C-42)  

In view of Eq. (C-1) and the above expression, we have 

{ } { }2 22 2
0 0 0(t) n Var[ (t)] n E[ (t) E[ (t)] ] n (E[ (t)] E[ (t)] )σ = Ξ = Ξ − Ξ = Ξ − Ξ   (C-43)  

Substituting Eqs. (C-26) and (C-37) into this equation yields 

( ) ( )
2 0

3
0 0

n 1(t) 1
3 n t 1 n t 1

⎧ ⎫⎪ ⎪σ = −⎨ ⎬
⎡ ⎤α + ⎡ ⎤α +⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
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This is Eq. (10) in the text. In terms of τ, this equation becomes 

( ) ( )
2 0

3

n 1( ) 1
3 1 1

⎡ ⎤
σ τ = −⎢ ⎥

τ + τ +⎢ ⎥⎣ ⎦
 (C-44)  

This is Eq. (11) in the text. The standard deviation, σ(τ), is the square root of the variance, σ2(τ). 

Hence, from the above equation, 

( ) ( )

1/ 21/ 2
1/ 22 0

3

n 1( ) ( ) 1
3 1 1

⎡ ⎤⎡ ⎤
⎡ ⎤σ τ = σ τ = −⎢ ⎥⎢ ⎥⎣ ⎦ τ + τ +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (C-45) 

The normalized form of the standard deviation, ( )σ τ , is given by 

( ) ( )

1/ 2

1/ 2 3
0 0

( ) 1 1( ) 1
n 13n 1

⎡ ⎤σ τ
σ τ = = −⎢ ⎥

τ +⎢ ⎥⎡ ⎤τ + ⎣ ⎦⎣ ⎦
 (C-46) 

This is Eq. (13) in the text. 
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Appendix D.  Estimation of n0 

 

For convenience, the order of magnitude estimate of the total number of obtainable pores, n0, 

that could form open pores on the carbonaceous substrate’s internal surfaces per unit weight of 

the activated susbtrate is obtained by dividing the total volume of open pores per unit weight of 

ACs by the volume of a single open pore. The former can be recovered from the experimental 

characterization of ACs produced from a carbonaceous substrate under specific activation 

conditions, and the latter can be computed under the assumption that the shape of the pore is 

perfectly cylindrical. For illustration, the total volume of open pores for ACs prepared at 873 K 

is 0.96 cm3 per gram of ACs.28 Moreover, the volume of a single pore is given by 

 2
pv ( r )= π  (D-1) 

where r  and  are the pore’s average radius and length, respectively. For a perfectly cylindrical 

pore, r  can be expressed as37 

 s

s g

2r
S
ε

=
ρ

 (D-2) 

In the above expression, εs, ρs, and Sg are structural properties of ACs, which are specifically, 

their porosity, apparent density, and surface area per unit weight of ACs, respectively. For ACs 

prepared at 873 K,28 the corresponding values of these properties are 0.66, 0.69 g ⋅ cm–3, and 

1,366 m2 ⋅ g–1, 28 thereby yielding r  as 1.40 nm. By changing  from 1 nm to 50 nm, the volume 

of a single pore, vp, varies from 6.16 ⋅ 10–21 cm3 to 3.08 ⋅ 10–19 cm3 as computed from Eq. (D-1). 
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Thus, the order of magnitude estimate of n0 falls within the range between 3.12 ⋅ 1015 and 1.56 ⋅ 

1017 pores per milligram of ACs. 




